Endocrine therapy resistant ESR1 variants revealed by genomic characterization of breast cancer derived xenografts

Shunqiang Li
Washington University School of Medicine in St. Louis

Dong Shen
Washington University School of Medicine in St. Louis

Jieya Shao
Washington University School of Medicine in St. Louis

Robert Crowder
Washington University School of Medicine in St. Louis

Jeremy Hoog
Washington University School of Medicine in St. Louis

See next page for additional authors

Follow this and additional works at: http://digitalcommons.wustl.edu/hamlet_pubs
Endocrine-Therapy-Resistant \$ESR1\$ Variants Revealed by Genomic Characterization of Breast-Cancer-Derived Xenografts

Shunqiang Li,1,2,13 Dong Shen,3,13 Jieya Shao,1 Robert Crowder,1 Wenbin Liu,4 Aleix Prat,5,6 Xiaping He,6 Shuying Liu,4 Jeremy Hoog,1 Charles Lu,2 Li Ding,2,3,9 Obi L. Griffith,3 Christopher Miller,3 Dave Larson,3 Robert S. Fulton,3 Michelle Harrison,3 Tom Mooney,3 Joshua F. McMichael,3 Jingjin Luo,2,7 Yu Tao,7 Rodrigo Goncalves,1 Christopher Schlosberg,8 Jeffrey F. Hiken,8 Laila Saied,9 Cesar Sanchez,10 Therese Giuntoli,1 Caroline Bumb,1 Crystal Cooper,1 Robert T. Kitchens,1 Austin Lin,1 Chanpheng Phommaly,1 Sherri R. Davies,1 Jin Zhang,3 Megha Shyam Kaurvi,1 Donna McEachern,11 Yi Yu Dong,1 Cynthia Ma,1,2 Timothy Pluard,1,2 Michael Naughton,1,2 Ron Bose,1,2 Rama Suresh,1 Reida McDowell,1 Loren Michel,1,2 Rebecca Aft,12 William Gillanders,12 Katherine DeSchryver,1 Richard K. Wilson,5,3 Shaomeng Wang,11 Gordon B. Mills,3 Ana Gonzalez-Angulo,4 John R. Edwards,8 Christopher Maher,1,2,3 Charles M. Perou,6 Elaine R. Mardis,2,3 and Matthew J. Ellis1,2,*

1Section of Breast Oncology, Division of Oncology, Department of Internal Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
2Siteman Cancer Center Breast Cancer Program, Washington University in St. Louis, St. Louis, MO 63110, USA
3The Genome Institute, Washington University in St. Louis, St. Louis, MO 63110, USA
4Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
5Translational Genomics Unit, Vall d’Hebron Institute of Oncology (VHIO), Passeig de la Vall d’Hebron 119-129, Barcelona 08035, Spain
6Departments of Genetics, and Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
7Division of Biostatistics, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
8Center for Pharmacogenomics, Washington University in St. Louis, St. Louis, MO 63110, USA
9Residency Program, Department of Internal Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
10Department of Hematology-Oncology, Pontificia Universidad Catolica de Chile, Santiago 8330032, Chile
11Departments of Internal Medicine, Pharmacology, and Medicinal Chemistry, University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
12Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
13These authors contributed equally to this work
*Correspondence: mellis@dom.wustl.edu
http://dx.doi.org/10.1016/j.celrep.2013.08.022
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

SUMMARY

To characterize patient-derived xenografts (PDXs) for functional studies, we made whole-genome comparisons with originating breast cancers representative of the major intrinsic subtypes. Structural and copy number aberrations were found to be retained with high fidelity. However, at the single-nucleotide level, variable numbers of PDX-specific somatic events were documented, although they were only rarely functionally significant. Variant allele frequencies were often preserved in the PDXs, demonstrating that clonal representation can be transplantable. Estrogen-receptor-positive PDXs were associated with \$ESR1\$ ligand-binding-domain mutations, gene amplification, or an \$ESR1/YAP1\$ translocation. These events produced different endocrine-therapy-response phenotypes in human, cell line, and PDX endocrine-response studies. Hence, deeply sequenced PDX models are an important resource for the search for genome-forward treatment options and capture endocrine-drug-resistance etiologies that are not observed in standard cell lines. The originating tumor genome provides a benchmark for assessing genetic drift and clonal representation after transplantation.

INTRODUCTION

Many stage 3 breast cancers and effectively all stage 4 breast cancers are fatal, with annual worldwide deaths from the disease approaching one-half million (Youlden et al., 2012). Large-scale partial and whole-genome sequencing (WGS) was recently conducted on early-stage, treatment-naive breast cancer samples (Ellis and Perou, 2013). By contrast, the genomic landscape of advanced and treatment-resistant breast cancer is poorly documented. We therefore developed a panel of patient-derived xenografts (PDXs) from patients with poor-prognosis, treatment-resistant disease for genomic and functional studies, because early-passage PDX models reproduce gene expression patterns observed in the originating human tumors.
and recapitulate the chemotherapy response (DeRose et al., 2011; Fleming et al., 2010; Kabos et al., 2012; Marangoni et al., 2007; Zhang et al., 2013). However, it has remained unclear to what extent PDX models accurately represent the genomic characteristics of the originating tumor at a whole-genome level. The value of the PDX approach in the setting of estrogen-receptor-positive (ER+) breast cancer has also been questioned because very few breast cancer PDXs expressing ER have been reported.

WGS using massively parallel techniques is the gold standard for comparing an originating tumor with a counterpart PDX because partial-genome sequencing, which focuses on the coding sequence alone (i.e., exome sequencing), does not fully document all mutations, particularly structural variations (SVs) or other mutational events that occur in noncoding space (Ley et al., 2008). Promisingly, WGS of a single example of a breast cancer primary, a brain metastasis, and a PDX basal-like breast cancer “trio” demonstrated that the PDX model efficiently captures almost all of the genome-wide somatic mutations observed in the originating tumor, and displayed enrichment for mutations that were present in the metastatic sample even though they were derived from the primary tumor (Ding et al., 2010). Heterogeneity in mutation frequencies also has not been comparatively evaluated for PDX models and originating tumors, so a customized capture approach (Welch et al., 2012) was used to generate high depth at somatic variant positions genome wide, coupled with statistical analyses for this comparison. RNA sequencing (RNA-seq) was conducted to determine the expression level of individual mutations and to confirm gene fusion events (Ley et al., 2011). Reverse phase protein array (RPPA) was employed to determine whether protein and phosphoprotein expression patterns were stable upon serial transplantation (Tabchy et al., 2011). We also successfully developed multiple ER+ PDXs from patients with endocrine-therapy-resistant disease, and our genomic and functional analyses revealed mechanistic insights into resistance that have not been achieved with conventional cell line approaches.

RESULTS

Derivation and RNA/Protein Expression Patterns in Xenografts from Advanced Stage Breast Cancer

Samples were obtained from 152 patients (Figure 1A), which yielded 22 serially transplantable PDXs from 20 patients, for an engraftment rate of 13.1%. These PDXs are referred to as “Washington University Human in Mouse” (WHIM) lines and were mostly obtained from patients with advanced disease or larger primary tumors that rapidly developed lethal metastasis (Table S2A). Concordant ER and HER2 status was demonstrated at the mRNA level (Table 1), and PDX expression of ER and HER2 protein was confirmed by western blot (Figure S1). Mouse and human centromere-specific fluorescent in situ hybridization (FISH) assays were conducted to demonstrate that stromal elements were murine in origin, the malignant cells were human, and there was no evidence for interspecies cellular fusion events (Figures S2A–S2C). Agilent 44K Array-based mRNA expression data were generated from the originating tumors and from matched early- and late-passage PDX counterparts. We subjected the matched pairs to unsupervised hierarchical clustering after removing genes that were highly differentially expressed between progenitor and PDX models (FDR = 0) to ensure that this comparison was “tumor centric” and not confounded by differences in the hybridization properties of mRNA arising from human versus mouse stroma (Table S2B). In almost all cases, the originating tumor and WHIM lines derived from the same individual clustered adjacently (Figure 1B). Each sample was also classified into one of five intrinsic gene-expression subtypes; luminal A (dark blue), luminal B (light blue), HER2-enriched (pink), basal-like (red), and Claudin-low (yellow) using PAM50 (Parker et al., 2009) and the “Nine-Cell Line Claudin-low subtype predictor” (Prat et al., 2010; Table 1; Figure 1B). The PDX lines derived from ER+ clinical samples were all subtype luminal by PAM50 in both the human and mouse samples, with the exception of WHIM11, which was classified as HER2-E. Of note, the human luminal originating tumors expressed high levels of cytokeratin 14 (CK14), CK5, and CK17 mRNA, but there was no evidence for expression of these CKs by the counterpart luminal PDX. To investigate this discordance, we conducted immunohistochemistry for CK5 on the human luminal tumor progenitor samples (derived from cutaneous metastases). This revealed normal-appearing CK5-positive epithelial cells arranged in ducts “trapped” among CK5-negative malignant luminal epithelial cells, thereby “contaminating” the progenitor tumor samples with basal epithelial keratins (Figure S2D). To investigate the luminal classification further, PDX mRNA was also profiled on a 244K customized UNC Agilent chip (Cancer Genome Atlas Network, 2012a) and the PDX data clustered with clinical breast cancer samples profiled on the same platform. In this analysis, all ER+ PDXs segregated with luminal B tumors (Figure S3). The WHIM12 line was derived from a metastatic carcinoma and showed a near-perfect correlation with the claudin-low signature (Figure S4). To address the stability of PDXs at the level of protein and phosphoprotein expression, multiple samples taken from the same passage and upon serial passage were assayed by RPPAs (Tabchy et al., 2011). Data from 110 antibodies for 68 samples harvested from 20 WHIM lines were clustered with the data from 386 primary breast cancers studied by The Cancer Genome Atlas (TCGA) research network (Cancer Genome Atlas Network, 2012a; Table S2C). In every case, the samples from each WHIM line clustered adjacently, including the two double isolates (WHIM2 and WHIM5, and WHIM20 and WHIM23; Figure S5). This suggests that the intra-PDX proteomic heterogeneity was considerably lower than the intertumoral heterogeneity in a large RPPA data set and was relatively stable over time and passage. The PDX samples were dispersed across the breast TCGA data, indicating that they are representative of the heterogeneous biology of breast cancer. An analysis was conducted to determine the relative rank of protein and phosphoprotein levels for each WHIM tumor with respect to the ranges in the TCGA data set (Table S2C). Here, the WHIM lines did not contain any extreme data outliers with respect to the phosphoprotein levels documented in the TCGA data. Phosphorylation of the phosphatidylinositol-3-kinase/AKT pathway proteins represented the highest-ranked pathway activation event (Table 1).
A

- 152 individuals entered protocol
- 60 primary tumor samples from patients with early stage disease
- 132 specimens from patients with advanced disease

<table>
<thead>
<tr>
<th>ER- HER2-</th>
<th>HER2+</th>
<th>ER+ HER-</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 successfully grafted</td>
<td>6 successfully grafted</td>
<td>7 successfully grafted</td>
</tr>
<tr>
<td>HIM technique</td>
<td>HIM technique</td>
<td>HIM technique</td>
</tr>
<tr>
<td>7 out of 36 attempts in total</td>
<td>1 out of 36 attempts in total</td>
<td>1 out of 36 attempts in total</td>
</tr>
<tr>
<td>1 out of 12 primaries</td>
<td>1 out of 18 primaries</td>
<td>1 out of 18 primaries</td>
</tr>
<tr>
<td>6 out of 31 primaries</td>
<td>6 out of 31 primaries</td>
<td>6 out of 31 primaries</td>
</tr>
<tr>
<td>Direct implantation</td>
<td>Direct implantation</td>
<td>Direct implantation</td>
</tr>
<tr>
<td>6 out of 29 attempts in total</td>
<td>6 out of 29 attempts in total</td>
<td>6 out of 29 attempts in total</td>
</tr>
<tr>
<td>1 out of 15 primaries</td>
<td>1 out of 26 primaries</td>
<td>1 out of 26 primaries</td>
</tr>
<tr>
<td>4 out of 14 primaries</td>
<td>4 out of 14 primaries</td>
<td>4 out of 14 primaries</td>
</tr>
</tbody>
</table>

13 xenografts with adequate sample for whole genome sequencing of normal, human progenitor tumor and xenograft

B

(legend on next page)
Genomic Fidelity of PDX Models

Using paired-end massively parallel sequencing, we sequenced 17 originating tumor, xenograft, and germ-line trio DNA samples to ≥ 30-fold average whole-genome coverage. For 13 trios, we subsequently validated each candidate mutation using solution-based hybridization capture followed by deep sequencing of the originating tumor, the paired WHIM line, and the normal DNA (for the somatic variants observed in WHIM4, WHIM24, WHIM25, and WHIM26, further validation was not conducted; see Table S2D for the coding region single-nucleotide variation [SNV] observed in these examples). In the 13 cases subjected to validation, a total of 59,189 genome-wide SNVs were confirmed (Table S2E). Of these, 1,056 (1.8%) were nonsilent protein coding mutations or in RNA genes (Table S2F). Across all WHIM lines, there were 241 (range 0–77) out of a total of 58,814 validated genome-wide SNVs that were unique to the originating tumor (0.4%). In contrast, a much higher number of sites (5,450, range 29–1,564, 9.3%) were PDX specific (Table S2G). Seventy-one mutations were detected in “significantly mutated genes” (SMGs) as defined by TCGA data (Cancer Genome Atlas Research Network, 2012b), luminal tumors (Ellis et al., 2012), or triple-negative tumors (Shah et al., 2012; Table S2H). Each PDX harbored mutation(s) in at least one SMG (WHIM6) and up to 12 SMGs (WHIM14). A small number of potentially significant mutations were observed in the PDX but not in the originating tumor (WNK2 in WHIM8, PIK3R4 and KRAS in WHIM9, MAP4K2 in WHIM16, and CBLB in WHIM18). Thirty-four PDX-specific missense mutations were identified as potentially deleterious or functionally significant by a mutation impact assessment algorithm (Xi et al., 2004), and all examples contained at least one predicted deleterious PDX-specific SNV, except for WHIM2 (Table S2I). The PDX data analysis pipeline removed sequence reads contributed by the murine genome, thereby “computationally purifying” the human tumor DNA (Ding et al., 2010). Biallelic deletions (e.g., in PTEN) were therefore revealed with clarity in the WHIM analysis (Figure S6) and amplified regions were often enhanced (Figures 2A, B, and S7–S9). Of the 5,336 copy-number variation (CNV) phenotypes that were detected in the 13 cases analyzed, 5,036 (94.4%) had the same call (amplified or deleted) in both the originating tumor and the counterpart PDX line (Table S2L). Remarkably, all SVs (translocations, large deletions, and inversions) were preserved upon transplantation, including regions characteristic of chromothripsis (Stephens et al., 2011; Figures 2A, 2B, and S7).

Genomic Stability of PDX across Early and Late Passages

Subsequent to our earlier report on comparative WGS of a primary tumor, brain metastasis, and primary-derived PDX trio (Ding et al., 2010), a PDX model also was derived from the patient’s brain metastasis (WHIM5), enabling a deep genomic analysis of two xenografts from the same patient. The vast majority of the validated somatic SNVs and indels were shared by the four genomes (n = 1,598) as well as seven translocations, 11 deletions, and four inversions. The breast primary tumor and brain metastasis contained no single-sample unique SNV or SV (i.e., all of the SNVs were noted in at least one other sample; Figure 3A). However, in every comparison, more SNVs were observed in the tumor sample taken at a later time point when compared with a sample taken at an earlier time point (whether a PDX sample pair or a human sample pair). For example, in a comparison of the two human specimens, 13 SNVs were unique to the primary tumor, but 231 SNVs were unique to the metastasis. Additionally, both WHIM lines harbored additional sample-unique noncoding SNVs that become detectable after xenografting (39 in the case of WHIM2 and 43 in the case of WHIM5; Figure 3B). Since therapeutic experiments require extensive expansion of PDX models, we also conducted a “late-exome” study to characterize genomic drift in the WHIM2 genome, performing exome sequencing on two separate passage eight tumor grafts (Figure 3C). This experiment detected 38 additional variants in both specimens, although none of the SNVs were clearly damaging mutations in cancer-associated genes (Table S2K).

The Genome-Wide Variant Allele Frequency Is a Transplantable Phenotype

To compare mutant allele representation in the originating tumor isolates versus their corresponding PDX models, we obtained deep coverage through our capture-based validation approach and then calculated the proportion of sequencing reads that contained a mutant allele. This value was expressed as a percentage (variant allele frequency [VAF]) and analyzed by scatter-plot (Figures 2C and 2D; see Figures S7–S9 for the remaining examples). The genome-wide correlation coefficients across the 13 tumor/PDX pairs varied from 0.32 (WHIM8) to 0.86 (WHIM; Table S2L and Figures S7–S9). In the majority of cases, there was statistical evidence for VAF stability genome wide, with nine out of the 13 comparisons showing correlation coefficients above 0.65. For example, WHIM18 (R = 0.85) displayed coding region (yellow) and noncoding region (blue) VAF stability, including all six SMG mutations (Figure 2C). Eight other pairs exhibited correlation coefficients above 0.65 (Table S1L), suggesting that VAF stability was the rule, not the exception. Clearly, differences in tumor purity biased the correlation, as the originating tumors were variably contaminated with DNA from normal stromal elements, whereas the PDX had been computationally purified. However, WHIM8 stood out from the other cases by exhibiting a low correlation coefficient (0.26) and a relatively large
<table>
<thead>
<tr>
<th>WHIM Number</th>
<th>Intrinsic Subtype</th>
<th>P1/Late WHIM</th>
<th>HER2 RNA<sup>a</sup> human/P1</th>
<th>ER RNA<sup>b</sup> human/P1</th>
<th>PS3 Mutation human/P1</th>
<th>PIK3CA Mutation human/P1</th>
<th>ESR1 Mutation Translocation amplification</th>
<th>Highest Ranked phospho-protein by RPPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>2<sup>i</sup></td>
<td>basal</td>
<td>basal</td>
<td>1.3</td>
<td>3.1</td>
<td>S166S ins WT</td>
<td>WT</td>
<td>p90RSK_pT359</td>
<td></td>
</tr>
<tr>
<td>Primary</td>
<td>basal</td>
<td>basal</td>
<td>1.0</td>
<td>1.0</td>
<td>S166S ins WT</td>
<td>WT</td>
<td>rank = 25.5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>N/A</td>
<td>Her2-E</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A WT</td>
<td>Src_pY527</td>
<td></td>
</tr>
<tr>
<td>Primary</td>
<td>Her2-E</td>
<td>1.8</td>
<td>3.8</td>
<td>WT</td>
<td>WT</td>
<td>rank = 4.0</td>
<td>p27_p198</td>
<td></td>
</tr>
<tr>
<td>Skin met</td>
<td>basal</td>
<td>basal</td>
<td>−5.9</td>
<td>−5.7</td>
<td>R175H WT</td>
<td>WT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brain met</td>
<td>basal</td>
<td>basal</td>
<td>2.2</td>
<td>2.2</td>
<td>R175H WT</td>
<td>WT</td>
<td>rank = 28.7</td>
<td></td>
</tr>
<tr>
<td>5<sup>j</sup></td>
<td>basal</td>
<td>basal</td>
<td>3.1</td>
<td>1.1</td>
<td>S166S ins WT</td>
<td>WT</td>
<td>p90RSK_pT359</td>
<td></td>
</tr>
<tr>
<td>Skin met</td>
<td>basal</td>
<td>basal</td>
<td>2.2</td>
<td>1.0</td>
<td>WT</td>
<td>WT</td>
<td>rank = 62.3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>basal</td>
<td>basal</td>
<td>−1.5</td>
<td>3.1</td>
<td>WT</td>
<td>WT</td>
<td>PRAS40_pT246</td>
<td></td>
</tr>
<tr>
<td>Primary</td>
<td>basal</td>
<td>basal</td>
<td>1.2</td>
<td>3.6</td>
<td>WT</td>
<td>WT</td>
<td>rank = 59.2</td>
<td></td>
</tr>
<tr>
<td>Skin met</td>
<td>Her2-E</td>
<td>8.6</td>
<td>3.6</td>
<td>Y234H WT</td>
<td>WT</td>
<td>Shc_pY317</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>LumA</td>
<td>LumB</td>
<td>1.2</td>
<td>72.2</td>
<td>WT</td>
<td>H1047R WT</td>
<td>Akt_pS474</td>
<td></td>
</tr>
<tr>
<td>Skin met</td>
<td>LumB</td>
<td>LumB</td>
<td>2.1</td>
<td>365.2</td>
<td>WT</td>
<td>H1047R WT</td>
<td>rank = 25.0</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>N/A</td>
<td>basal</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>WT</td>
<td>N/A</td>
</tr>
<tr>
<td>Skin met</td>
<td>basal</td>
<td>basal</td>
<td>1.6</td>
<td>−2.1</td>
<td>Y220C WT</td>
<td>WT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>HER2-E</td>
<td>LumB</td>
<td>−1.6</td>
<td>31.8</td>
<td>D184X ins WT</td>
<td>WT</td>
<td>p70S6K_pT389</td>
<td></td>
</tr>
<tr>
<td>Primary</td>
<td>HER2-E</td>
<td>1.2</td>
<td>112.1</td>
<td>D184X ins WT</td>
<td>WT</td>
<td>rank = 13.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>CLDN low</td>
<td>CLDN low</td>
<td>−5.0</td>
<td>2.4</td>
<td>R248Q WT</td>
<td>WT</td>
<td>Akt_pT308</td>
<td></td>
</tr>
<tr>
<td>Primary</td>
<td>CLDN low</td>
<td>−5.0</td>
<td>−1.2</td>
<td>R248Q WT</td>
<td>WT</td>
<td>rank = 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin met</td>
<td>basal</td>
<td>basal</td>
<td>−4.8</td>
<td>−2.1</td>
<td>C238Y WT</td>
<td>WT</td>
<td>Src_pY527</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>LumA</td>
<td>LumB</td>
<td>1.0</td>
<td>5.3</td>
<td>I195T WT</td>
<td>WT</td>
<td>rank = 14.3</td>
<td></td>
</tr>
<tr>
<td>Skin met</td>
<td>LumB</td>
<td>LumA</td>
<td>1.3</td>
<td>1.2</td>
<td>I195T WT</td>
<td>WT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>basal</td>
<td>basal</td>
<td>−2.9</td>
<td>40.1</td>
<td>R248W H1047R AMP</td>
<td>4E-BP1_pT37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin met</td>
<td>LumB</td>
<td>LumB</td>
<td>1.2</td>
<td>171.5</td>
<td>R248W H1047R AMP</td>
<td></td>
<td>rank = 13.7</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>LumB</td>
<td>LumA</td>
<td>2.9</td>
<td>40.1</td>
<td>R248W H1047R AMP</td>
<td></td>
<td>4E-BP1_pT37</td>
<td></td>
</tr>
<tr>
<td>Skin met</td>
<td>LumA</td>
<td>LumB</td>
<td>1.2</td>
<td>171.5</td>
<td>R248W H1047R AMP</td>
<td></td>
<td>rank = 13.7</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>N/A</td>
<td>basal</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>WT</td>
<td>PKC-delta_pS564</td>
</tr>
<tr>
<td>Primary</td>
<td>basal</td>
<td>basal</td>
<td>−22.8</td>
<td>4.1</td>
<td>WT</td>
<td>WT</td>
<td>rank = 2.5</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>LumA</td>
<td>LumB</td>
<td>−3.9</td>
<td>65.5</td>
<td>WT</td>
<td>E545K</td>
<td>ESR1 YAP1</td>
<td>ER-alpha_pS118</td>
</tr>
<tr>
<td>Skin met</td>
<td>LumB</td>
<td>LumB</td>
<td>3.1</td>
<td>19.9</td>
<td>WT</td>
<td>E545K</td>
<td>ESR1 YAP1</td>
<td>rank = 16.5</td>
</tr>
<tr>
<td>20</td>
<td>LumB</td>
<td>LumA</td>
<td>3.1</td>
<td>135.2</td>
<td>C182X E542K Y537S</td>
<td>PDK1_pS241</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin met</td>
<td>LumB</td>
<td>LumB</td>
<td>5.9</td>
<td>71.6</td>
<td>C182X E542K Y537S</td>
<td></td>
<td>rank = 57.8</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>basal</td>
<td>basal</td>
<td>−7.5</td>
<td>6.4</td>
<td>P151H WT</td>
<td>WT</td>
<td>Chk1_pS345</td>
<td></td>
</tr>
<tr>
<td>Primary</td>
<td>basal</td>
<td>basal</td>
<td>−6.8</td>
<td>−1.9</td>
<td>P151H WT</td>
<td>WT</td>
<td>rank = 16.7</td>
<td></td>
</tr>
</tbody>
</table>

(Continued on next page)
number of xenograft-specific mutations in the homozygous range of 80% or higher (Figure 2D). This pattern suggests the emergence of a clone that was below the detection limit in the originating tumor sample but had become a significant contributor to the PDX mutational repertoire.

Most PDX-Specific Mutations Are Not Expressed

The RNA-seq approach (Cancer Genome Atlas Research Network, 2012) detected mRNA expression from 462 (44%) of the 1,056 validated, nonsilent SNVs identified by DNA sequencing of 13 PDX tumors (Table S2M). Expression was detected for only 39 of the 69 SMG mutations. Of the PDX-unique SMG mutations, only \textit{WNK2} in WHIM8, \textit{PIK3R4} and \textit{KRAS} in WHIM9, and \textit{MAP4K2} in WHIM16 were detectable in the RNA-seq data. However, all \textit{TP53} mutations were expressed at high levels (75%–100% of reads; Table S2H). The RNA-seq data were also used to examine the expression of PDX-specific missense mutations predicted to be functionally significant by Polyphen (Xi et al., 2004). Of the 34 mutations in this class, only 11 were expressed according to the RNA-seq reads (Table S2I): \textit{Hist1H1E} in WHIM6, \textit{ABCC1} in WHIM8, \textit{WDR81} in WHIM13, \textit{MAP4K2} in WHIM16, \textit{ZNF687} in WHIM21, and \textit{KRAS}, \textit{SLC23A}, \textit{LRRC58}, \textit{MAPK9}, \textit{KIF21B}, and \textit{PIK3R4} in WHIM9. Since \textit{MAP3K1} mutations have not been previously reported in available cell lines, RNA-seq analysis was used to confirm that a splice site mutation in WHIM20 indeed generated a splice donor, leading to an out-of-frame \textit{MAP3K1} transcript (Figure S10).

The Estradiol Response of ER+ PDX Mirrors the Clinical Phenotype of the Originating Tumor

The estradiol dependence of each ER+ PDX was studied by transplantation into oophorectomized mice with or without estradiol supplementation. Four luminal PDX exhibited estradiol-independent growth (Figures 4A, 4B, 4D, and 4E) consistent with the fact these xenographed samples were accrued after the development of aromatase inhibitor resistance (Table S2A). WHIM24 was the only example that exhibited estradiol-dependent growth (Figure 4F); the patient who contributed this sample had a protracted clinical course and experienced a durable clinical response to tamoxifen after xenograft sample accrual. The growth of WHIM16 was delayed by estradiol (Figure 4C). Furthermore, established WHIM16 tumors exhibited marked regression in response to estradiol exposure (Figure 4G), modeling the paradoxical estradiol treatment of advanced breast cancer, which produced a modest response in the patient who contributed this sample (Ellis et al., 2009). The patient who donated WHIM18 had a particularly striking history of fulvestrant resistance (progression within 1 month of therapy; Table S2A), and WHIM18 proved to be just as fulvestrant unresponsive in the PDX setting (Figure 4H).

\textbf{ESR1} Translocation, Point Mutation, or Gene Amplification in ER+ PDX Models

The RNA-seq data analysis identified five interchromosomal in-frame gene fusion events (Figure S11), including a balanced translocation between 6q and 11q in WHIM18 that created a transcript encoding the 5' four exons of \textit{ESR1} (amino acids...
regions of the coding sequence of ESR1 (Figure 5C). In this experiment, MCF7 cell DNA was used as a nonamplified ESR1 control, and, unexpectedly, MCF7 cells that had been subjected to long-term estrogen deprivation (LTED) (Sanchez et al., 2011), but not parental MCF7 cells, showed marked ESR1 gene amplification (Figure 5C) with associated increased expression levels of ESR1 protein (Figure 5E). These data suggest that ESR1 amplification is an adaptation to estrogen deprivation in this well-studied model. WHIM20 expressed an ESR1-Y537S point mutation that was present in the majority of reads (96%) in the RNA-seq data (Table S2M). WHIM24 harbored an ESR1-E380Q mutation (Table S2D), which was not detected in the originating tumor but was present in 42 of 42 reads in the PDX (Figure S12). Low estradiol xenografting (i.e., no E2 supplementation) may therefore favor the growth of tumors with somatic variants in ESR1, since four out of seven ER+ PDXs analyzed by sequencing contained a mutation or a gene rearrangement. Interestingly, in a recent study by Piccart et al. (2013), ESR1 sequencing of advanced breast cancer samples from a clinical trial revealed both ESR1-Y537S and ESR1-E380Q. Piccart et al.’s report, in combination with our observations, clearly delineates a hot spot of ligand-binding-domain ESR1 mutations in advanced breast cancer (Figure 5D) that complement the initial example (Y537N) in the 1990s (Zhang et al., 1997).

ESR1/YAP1 and ESR1-Y537S Induce Estradiol-Independent Growth

ESR1-Y537S and ESR1-Y537N are known to induce estradiol-independent transcriptional activity (Weis et al., 1996; Zhang et al., 1997). To compare the properties of ESR1 point mutations affecting the Y537 residue with the ESR1/YAP1 fusion gene product, MCF7 and T47D lines were engineered to overexpress wild-type ESR1, ESR1YAP1, ESR1-Y537S, and ESR1-Y537N proteins (YFP provided the control). Under low-estrogen conditions, all three mutant ESR1 constructs increased proliferation in T47D and MCF7 cells compared with the YFP control, and the three mutant ESR1 constructs were all more active than wild-type ESR1 (Figure 6A). In T47D cells, the proliferation of cells harboring ESR1-Y537N or ESR1-Y537S was largely estradiol independent, although some estradiol responsiveness was retained for ESR-Y537N in MCF7 cells. ESR1/YAP1 was as active as the two point mutants in inducing estradiol-independent growth, but E2 was able to further stimulate growth in ESR1/YAP1-expressing cells in T47D cells. This indicates that ESR1/YAP1 does not obviously function to inhibit the function of endogenous ESR1 (i.e., it was not dominant negative). Fulvestrant significantly inhibited the growth of cells expressing ESR1-Y537S, ESR1-Y537N, and wild-type ESR1, and induced downregulation of wild-type and mutant ER protein expression (Figure S13). However, growth suppression was incomplete for the two point mutants, suggesting partial resistance to fulvestrant. Cells expressing the ESR1/YAP1 fusion were clearly insensitive to fulvestrant and the fusion protein was not downregulated, since the ligand-binding domain of ESR1 is absent from this chimeric protein (Figure S13). Similar overall findings regarding growth induction under low-estrogen conditions by ESR1 mutants and the ESR1/YAP1 fusion were made in MCF7 cells (Figure 6B). Of note, however, cells expressing

1–365, fused to the C terminus of YAP1 (amino acids 230–504; Figure 5A). Western blots on WHIM18 extracts confirmed the presence of an appropriately sized ESR1/YAP1 fusion protein that was detected by an N-terminal ESR1 antibody and a YAP1 antibody, but not by a C-terminal ESR1 antibody (Figure 5E). Gene amplification across the ESR1 promoter and coding region was observed in WHIM16 (Figure 5B) and was associated with high levels of ESR1 protein (Figure 5D). To quantify and confirm the degree of amplification in WHIM16, we conducted quantitative PCR (qPCR) of the promoter region and two

Figure 2. Pairwise Genome-Wide VAF, CNV, and SV Analyses

(A and B) The circos plots for (A) WHIM18 and (B) WHIM8 show the closely matched SVs and CNVs in the tumor of origin and the paired WHIM line. To compare differences in mutant allele frequency between the originating tumor and the PDX counterpart, the read counts for each mutant and wild-type allele were expressed as a percentage of all reads at that position and analyzed by scatterplot and simple correlation coefficient.

(C) WHIM18 has a high correlation coefficient (0.84) in both the coding region (yellow) and noncoding region (blue). The VAF stability was maintained across all six SMG mutations.

(D) WHIM8 represented the opposite extreme with a low correlation coefficient (0.32) and a relatively large number of xenograft-specific mutations in the homozygous range of 80% or higher. Related to this figure are analyses for the other whole-genome sequenced originating tumor/PDX pairs that are dis-
Figure 3. Whole-Genome Comparisons of Breast Primary Tumor and Brain Metastasis with their Counterpart PDX Model Xenografts from the Same Patient

(A) The majority of the validated somatic SNVs were shared by the breast primary tumor, brain metastasis, and xenografts (1,598). In addition, seven translocations, 11 large deletions, and four inversions were present in all samples, without any SV detected or lost upon engraftment. However in every comparison, more SNVs were observed in the later time sample than in the earlier sample. In a comparison of the two human specimens, 13 were unique to the primary tumor and 231 were unique to the metastasis. Additionally, both WHIM lines harbored additional sample-unique noncoding SNVs (39 in the case of WHIM2 and 43 in the case of WHIM5).

(B) Exome sequencing of two separate DNA samples isolated from WHIM2 passage 8, after expansion for therapeutic studies. Mutations in coding space have accumulated, but a study of the 38 mutations observed in both samples suggests that most are passengers rather than biological drivers.
ESR1-Y537S grew poorly relative to cells expressing other ESR1 mutant constructs and exhibited signs of cell death (data not shown). Gain-of-function ESR1 point mutants may therefore require a cellular background that is tolerant of the extreme properties of these constitutively active ESR1 mutants. In accord with this hypothesis, ectopic expression levels for the Y537S mutant were lower than wild-type ER in both T47D and MCF7 (Figures 6C and 6D), and were extremely low in WHIM20, which naturally expresses the ESR1-Y537S mutant (Figure 5E). Lysates from cells grown in charcoal-stripped serum (CSS) media were analyzed for progesterone receptor (PR) and trefoil factor 1 (TFF1) expression by western blot. In both cell lines, the ESR1 point mutations strongly induced PR expression in a hormone-independent fashion relative to wild-type ESR1 and YFP control lines, whereas ESR1/YAP1 had a more modest effect. For TFF1, the two ESR1 point mutants induced expression in MCF7 cells in low-estradiol conditions, but caused less induction in the T47D cells. ESR1/YAP1 strongly induced TFF1 expression relative to wild-type in both cell lines. In the WHIM tumors that expressed these mutations naturally, high PR expression was associated with the lines expressing the mutations or gene rearrangements (WHIM16, WHIM18, WHIM20, and WHIM24). In contrast, WHIM lines with a wild-type ESR1 locus (WHIM9 and WHIM11) but estradiol-independent growth showed very low levels of PR expression (Figure S14).

DISCUSSION

In this study, we assessed the degree to which breast cancer PDX models are genomic replicas of human tumors based on genome-wide analysis, including translocations, insertions, deletions, point mutations, and amplification events. The stability
Figure 5. ESR1 Gene Rearrangements and Point Mutations in Lumenal PDX Models

(A) WHIM18 and the originating tumor harbored a balanced translocation between 6q and 11q in WHIM18 that created a fusion-transcript-defected mRNA-seq that encodes the 5’ four exons of ESR1 (amino acids 1–365, including the DNA-binding domain but not the steroid-binding domain) fused to the C terminus of YAP1 (amino acids 230–504), thereby excluding the TEAD domain and the first WW motif of YAP1, but retaining the second WW motif, the SH3 domain, the YES phosphorylation site, and the transactivation domain.

(B) WHIM16 and the originating tumor harbor amplification of the ESR1 gene that extends from the promoter region throughout the coding sequence that was mapped using read counts obtained during WGS.

(C) qPCR on genomic DNA using three separate probes was used to confirm gene amplification in WHIM16 cells. The negative control was MCF7 cells. In a screen for ESR1-gene-amplified cell lines, MCF7 cells that were adapted after LTED were found to have developed ESR1 gene amplification. qPCR results were normalized relative to parental MCF7 (Par.). The positions of probes 1, 2, and 3 are displayed in (B). Error bars are ±1 SD of the mean relative quantification (RQ); *p < 0.05, ** is p < 0.01.

(D) WHIM20 cells harbored and expressed a mutation in ESR1-Y537S, and WHIM24 harbors ESR1-E380Q (indicated in blue). The finding of ESR1-V537S and ESR1-E380Q in these PDX lines complements a recent report on ESR1 sequencing of advanced disease samples in which multiple mutations in the AF2/ligand-binding domain (in pink) were observed (Piccart et al., 2013; mutation positions from this report are indicated in red).

(E) Tumor lysates from six ESR1+ WHIM lines (WHIM9, WHIM11, WHIM16, WHIM18, WHIM20, and WHIM24) were analyzed by western blot using antibodies targeting the N terminus or C terminus of ESR1 or the C terminus of YAP1. In parallel, lysates from three breast cancer cell lines (parental MCF7, LTED MCF7, and MDA-MB-231) were analyzed as controls. All blots were replicated four times. ESR1 intensity detected by the N-terminal ER antibody was quantified and normalized against the actin level. For WHIM lines, the normalized ESR1 levels were averaged from four replicate blots and expressed as relative values using parental MCF7 as the internal reference. For cell lines, ESR1 levels were similarly normalized against actin and expressed as relative values using parental MCF7 as the internal reference. Lysates from cell lines and WHIM tumors were analyzed in the same blot, but the images displayed reflect different exposure times.

See also Figure S15.
of SVs was striking, suggesting that these genomic features may stabilize early in pathogenesis, perhaps during telomere crisis (Chin et al., 2004). Regarding SNVs, almost all mutations detected in the originating tumor were present in the PDX, but a variable number of SNVs were PDX unique (Table S2 I). However, such SNVs were detectable at the mRNA level and were functionally linked when the later samples contained multiple SNVs (Figure 3). These SNVs may increase “tumor fitness” in the transplanted environment or may just be passengers in a constantly mutating tumor (most were in noncoding regions). PDX-specific SNVs may simply arise from serial population reductions during repeated xenografting events, which can select a passenger mutation at random due to cell attrition during transplantation (“population bottlenecks”; Gisselsson et al., 2010). This might explain the accumulation of seemingly nonfunctional mutations observed with late-passage exome sequencing (Table S2K). However, selection by increasing tumor fitness is a more likely explanation for cases in which the PDX-specific mutations were detectable at the mRNA level and were functionally linked to cancer biology, such as KRAS (Santos et al., 1984) in WHIM9, PIK3R4 (Huang et al., 2011; Shull et al., 2012) and Kras (Santos et al., 1994) in WHIM9, MAP4K2 in WHIM16 (Lau et al., 2012), and ESR1-E380Q in WHIM24. Thus, we are not arguing that PDXs are perfect genomic replicas of the originating tumors; rather, we suggest that tracking the

![Figure 6. Point Mutations and a Translocation in ESR1 Induce Estradiol-Independent Growth](image-url)
PDX genome, benchmarked against the originating tumor, is a way to assess the ongoing genomic integrity of the model during experimentation. This is something that has never been considered for conventional cell-line approaches, where the progenitor tumor genome is rarely available and analysis of ongoing genetic drift is not a routine aspect of experimental design.

An important issue that was not addressed by previous investigations is the effect of the xenografting process on the VAF, since each mutation can either be present in the founder clone (and therefore present in all cells) or arise later in a subclone and therefore occur with a lower frequency because it is present in only a subpopulation of cells. VAF analysis, perhaps surprisingly, showed that the VAF for many mutations was preserved in the PDX, even in the case of rare mutations. This implies that clonal representation can be transplantable, i.e., different clones maintain their relative prevalence in equilibrium. Since clonal prevalence is maintained despite growth in an immunocompromised host, immunoediting (differential immune responses against particular mutant proteins) is an unlikely explanation for relative clone abundance in this setting (DuPage et al., 2012; Matsushita et al., 2012). Our findings are compatible with other recent studies on the clonal diversity of epithelial cancers, which showed that minor clones are carried at low frequencies for many passages until a section event (e.g., therapeutic intervention or the process of adaption to growth in a new organ) increases the minor mutation prevalence (Ding et al., 2012; Kreso et al., 2013).

Genomic analysis of each ER+ PDX raised tumor-unique hypotheses to explain endocrine-therapy resistance, underscoring the etiological heterogeneity of this common clinical problem. The WHIM11 line was isolated from a patient with a fulminant clinical course and little evidence for sensitivity to endocrine therapy (Table S2A). Despite the patient’s ER+ HER2 – status, WHIM11 was classified as HER2-E by PAM50. This biomarker pattern predicts poor responsiveness to aromatase inhibition (Ellis et al., 2011). WHIM11 was a TP53 mutant and harbored a biallelic deletion in PTEN (Figure S6). RPPA data confirmed high levels of pS70S5K and 4EBP1 protein phosphorylation, indicating phosphoinositol-3-kinase pathway activation (Figure S3), which has been implicated in endocrine-therapy resistance (Sanchez et al., 2011). WHIM9 harbored monoallelic expression of an R515I mutation in SMAD4 (Table S2M). SMAD4 mutations were recently associated with genome instability in head and neck cancer (Bornstein et al., 2009), which could explain why this particular luminal PDX had a high rate of PDX-specific mutations, although which mutation caused endocrine resistance in this line remains unclear.

WHIM16 exhibited paradoxical regression with estradiol, which is an effective but nonintuitive late-line endocrine therapy for some advanced ER+ breast cancers (Ellis et al., 2009). The ESR1 amplification and high-level ESR1 protein expression in WHIM16 therefore raise the hypothesis that ESR1 amplification may be a predictive marker for responsiveness to estradiol therapy in advanced disease. This suggestion is consistent with the finding (Figures 5B and 5C) that MCF7 cells develop ESR1 gene amplification after LTED in vitro, conditions under which estradiol is well known to induce apoptosis (Lewis et al., 2005; Song et al., 2001). In T47D cells, overexpression of wild-type ESR1 gene/protein increased growth in low-estradiol conditions, supporting the notion that by driving ESR1 overexpression, ESR1 gene amplification promotes adaptive resistance to estrogen deprivation (Figure 6B). This hypothesis is also compatible with clinical observations indicating that ESR1 amplification is associated with poor clinical outcome (Ejertsen et al., 2012; Lin et al., 2013; Nielsen et al., 2011).

The ESR1-Y537S hormone-binding-domain mutation is clearly a potent cause of aromatase-inhibitor resistance. Expression of ESR1-Y537S produced greater growth than wild-type ESR1 under estrogen-deprived conditions and very strong induction of PR in the absence of estradiol in both cell lines tested (Figures 6C and 6D). Since ESR1-Y537S (or other mutations in this region of ESR1) was not observed in >500 exome sequencing experiments by the TCGA, it seems likely that mutations in the hormone-binding domain largely occur as an adaptation to endocrine treatment. Consistent with this conclusion, an ESR1 mutation hotspot in the ligand-binding-domain/AF2 region was observed in metastatic samples from a clinical trial for patients with nonsteroidal aromatase-inhibitor-resistant advanced breast cancer (Piccart et al., 2013). Our in vitro data indicate that ESR1-Y537S was responsive to fulvestrant, as protein expression was downregulated. However, suppression of growth was incomplete, indicating partial resistance (Figures 6 and S13). The patient whose tumor harbored ESR1-Y537S (WHIM20) experienced only 4 months of clinical benefit from fulvestrant, which is compatible with the hypothesis that ESR1-Y537S-positive tumors may be less responsive to this commonly used second-line endocrine intervention for advanced breast cancer. WHIM24, a PDX that was estradiol dependent (Figure 4) and associated with a tamoxifen clinical response (but resistance to aromatase inhibition) harbored an ESR1-E380Q mutation. This mutation has already been documented to be associated with estradiol hypersensitivity, increased DNA binding, and estradiol-independent activity (Pakdel et al., 1993). However, ESR1-E380Q was not detected in the relatively low-coverage WGS analysis of the originating tumor, so the link with the clinical phenotypes observed is uncertain (Figure S11).

The identification of the ESR1/YAP1 fusion gene in WHIM18 completes the mechanistic spectrum of gain-of-function mutations in ESR1 associated with endocrine-resistant breast cancers. YAP1 plays a central role in organ size and tumorigenesis through the Hippo pathway (Lin et al., 2013); however, the domains that are responsible for most of these biological properties are in the N terminus of YAP1 and therefore absent from the fusion gene. Analysis of TCGA breast cancer RNA-seq data revealed two other in-frame fusion genes that preserve at least the first four exons of ESR1 (preserving DNA binding). In one case, a fusion was detected with AKAP12, a putative tumor-suppressor gene (Gelman, 2012), and in the second case it was detected with POLH, a DNA polymerase associated with xeroderma pigmentosum (Ortega-Recalde et al., 2013; Figure S15). These findings indicate that the ESR1/YAP1 translocation documented in WHIM18 is not a private event, but is a member of a class of translocations that preserve the DNA-binding and AF1 domains of ESR1 with variable in-frame C-terminal partners that replace the ligand-binding and AF2 domains. Although these in-frame ESR1 translocations are likely rare, the
denominator for breast cancer is so large that even low percentages of particular somatic events can represent clinically significant patient populations if the effect on the disease course is dramatic (i.e., in this instance, intrinsic and universal endocrine-therapy resistance).

In conclusion, PDX models validated through comparative whole-genome analysis against the originating tumor are a useful starting point for studies of the molecular pharmacology of advanced breast cancer. No actively growing cancer has a static genome, and genetic drift though cell attrition is inherent in the xenografting process. Furthermore, selection of mutations that increase tumor fitness in the murine environment is to be expected. However, unlike conventional cell lines, PDX-specific mutations can be monitored with reference to the genome of the originating human tumor, establishing a tumor “pedigree” that can be checked before and after each functional or pharmacological experiment. This continuous genomic annotation approach is illustrated by the late-passage exome sequencing ecological experiment. This continuous genomic annotation approach is illustrated by the late-passage exome sequencing ecological experiment. This continuous genomic annotation approach is illustrated by the late-passage exome sequencing ecological experiment.

The identification of endocrine-resistance-associated ESR1 gene rearrangements and point mutations has deep implications for the management of metastatic breast cancer. The choice of endocrine therapy in an advanced-disease setting could be based on the presence and class of ESR1 gene mutations and rearrangements if more were known about the correlations with outcomes. The detection of these mutations in the xenograft setting establishes the principle that the PDX approach captures genomic events that have been understudied in the past because they are not present in conventional ER+ cell lines even when experimentally selected for endocrine drug resistance in vitro. The availability of authentic PDX-based models of endocrine-therapy-resistant luminal breast cancer will facilitate the testing of therapeutic interventions and perhaps particularly those designed to more effectively target mutant forms of ESR1.

EXPERIMENTAL PROCEDURES

Generation and Analysis of PDX Breast Cancer Models
All human tissues for these experiments were processed in compliance with NIH regulations and institutional guidelines, and approved by the institutional review board at Washington University. All animal procedures were reviewed and approved by the institutional animal care and use committee at Washington University in St. Louis. Detailed methods are provided in Extended Experimental Procedures. PDX models are available through the application to the Human and Mouse-Linked Evaluation of Tumors core at http://digitalcommons.wustl.edu/hamlet/.

WGS and Capture Validation
Seventeen patients with blood, tumor, and xenograft were selected for WGS. Detailed histories for these patients and xenografts are provided in Table S2A. Libraries were prepared using unamplified genomic DNA from blood (normal), tumor, and xenograft samples. Paired-end sequencing was performed on the Illumina platform as previously described (Ellis et al., 2012; Walter et al., 2012). Variant calling and validation of all mutations using liquid-phase hybridization capture were performed as previously described (Welch et al., 2012). All DNA have been deposited with dbGAP under accession number phs000611 (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000611.v1.p1).

mRNA-Seq
mRNA-seq was performed as previously described (Cancer Genome Atlas Research Network, 2012b). Reads were mapped using the MapSplice algorithm (Wang et al., 2010). Expressed gene fusions were nominated using ChimeraScan v0.4.3 (Iyer et al., 2011) with default parameters. Gene fusion nominations were required to have at least two independent spanning junction reads. Sequences will be made available upon application to CGHub. TCGA mRNA-seq data can be accessed through the TCGA program (http:// cancergenome.nih.gov). All PDX mRNA-seq data have also been deposited with dbGAP under accession number phs000611 (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000611.v1.p1).

DNA Microarray-Based Gene-Expression Analysis
Agilent’s 4x44K Whole Human Gene expression microarray processing, data quality control and processing, and research use only PAM50 subtype classification were previously described (Ellis et al., 2011). The chromosomal-gene identities were identified after a two-class paired significance analysis of microarrays (SAM) with an FDR of 0% between 18 paired progenitor human tumors and xenografts (Table S2B). The GEO accession number for the chip-based gene expression data reported in this paper is GSE41685. PDX tumors were also analyzed by 244K UNC customized Agilent chips for clustering with data with unmatched primary tumors (GEO accession number GSE46604).

Quantification of ESR1 Amplification
A real-time PCR system (Life Technologies) was run for ESR1 amplifications using control genes FAM38B and ASXL2 as described previously (Reis-Filho et al., 2008).

RPPA, In Vitro Growth Assays, Lentivirus Gene Transduction, and Western Blots
Standard methods were used for RPPA (Tabchy et al., 2011); see Extended Experimental Procedures for other standard protein-analysis approaches.

Statistical Methods
Hierarchical clustering was applied with a distance metric of one minus the Pearson correlation coefficient and using the average linkage method. Clustering results were visualized as dendrograms in heatmaps. Pearson and Spearman rank-based correlation coefficients were separately calculated to demonstrate VAF stability between a PDX and its patient origin.

ACCESSION NUMBERS
The dbGAP accession number for the DNA and PDX mRNA sequences reported in this paper is phs000611. The GEO accession number for the gene-expression data used in Figure 1B is GSE41685. PDX tumors were also analyzed by 244K UNC customized Agilent chips for clustering with data from primary tumors (GEO accession number GSE46604; Figure S3).

SUPPLEMENTAL INFORMATION
Supplemental Information includes Extended Experimental Procedures, 15 figures, and two tables and can be found with this article online at http://dx.doi.org/10.1016/j.celrep.2013.08.022.

ACKNOWLEDGMENTS
This work was funded by grants to M.J.E. by Susan G. Komen for the Cure (BCTR0707708, KG090422, and PG12220321). The DNA sequencing and analysis were performed by the Genome Institute at Washington University School of Medicine and supported by grants to R.K.W. from the National Human Genome Research Institute (NHGRI U54 HG003079). The Tissue Procurement Core was supported by NCI 3P50 CA68438. The HAMLET Core was supported by CTSI grant UL1 RR024992. M.J.E. is also supported as a Susan G. Komen Scholar and by the Breast Cancer Research Fund, the Barnes Jewish Hospital Foundation, the Theresa Harpole Foundation for Metastatic
Breast Cancer, and a gift from the Mary Speak family. The RPPA analysis was supported by NCI grants P01CA099031, U54CA112970, K0801694, and P30 CA16672 to G.M. The RNA-seq was supported by grants from the TCGA Project (U24-CA143848), the NCI Breast SPORE Program (PSO-CA58223-09A1), and the Breast Cancer Research Foundation to C.M.P. M.J.E. and C.M.P. own shares and have leadership positions in Bioclassifier and University Genomics, which has licensing income from patents related to the ProSigna breast cancer intrinsic subtype test.

Received: May 6, 2013
Revised: July 16, 2013
Accepted: August 9, 2013
Published: September 19, 2013

WEB RESOURCES

The URLs for data presented herein are as follows:
Digital Commons, http://digitalcommons.wustl.edu/hamlet/
Index of OOMPA, http://bioinformatics.mdanderson.org/oompa
UNC Microarray Database, https://genome.unc.edu/

REFERENCES

