2005

Genetic basis for comorbidity of alcohol and marijuana dependence

Julia D. Grant
Washington University School of Medicine in St. Louis

Follow this and additional works at: http://digitalcommons.wustl.edu/guzeposter2005

Part of the Medicine and Health Sciences Commons

Recommended Citation
http://digitalcommons.wustl.edu/guzeposter2005/10

This Poster is brought to you for free and open access by the 2005: Alcoholism and Comorbidity at Digital Commons@Becker. It has been accepted for inclusion in Posters by an authorized administrator of Digital Commons@Becker. For more information, please contact engeszer@wustl.edu.
Genetic Basis for Comorbidity of Alcohol and Marijuana Dependence

Julia D. Grant, Ph.D.

Washington University School of Medicine

Supported by AA07728, AA10249, AA11998
COLLABORATORS

Washington University School of Medicine
 • Andrew C. Heath, D.Phil.
 • Kathleen K. Bucholz, Ph.D.
 • Michael T. Lynskey, Ph.D.
 • Pamela A.F. Madden, Ph.D.

Queensland Institute of Medical Research
 • Nicholas G. Martin, Ph.D.
 • Dixie J. Statham, M.A.
INTRODUCTION

• Previous research has suggested that both alcohol dependence and marijuana dependence are heritable

• Furthermore, both clinical and general population studies have suggested a moderate to strong relationship between alcohol consumption and marijuana use

• Although it is plausible that the association is attributable to underlying risk factors shared by both alcohol and marijuana, little research has examined this possibility using a genetically informative design
RESEARCH QUESTIONS

• What are the relative contributions of genetic and environmental factors to marijuana dependence and DSM-IV alcohol dependence in young adults?

• To what extent are the genetic and environmental influences on marijuana and alcohol dependence the same?
SAMPLE

- 4955 individuals who completed a telephone diagnostic interview for the Australian Twin Study (“1989 cohort”)

- Both members of 2087 twin pairs:

 MZF=525 MZM=353
 DZF=415 DZM=296 DZO=498

- Mean age=29.5 years (range: 23-35)
MEASURES
Marijuana, part 1

- 2906 individuals had tried marijuana
- Mean age at first use = 18.9 years
- Number of times used:
 - Mean = 168.8
 - Median = 10
 - Mode = > 1000
 - 50.9% 10 or fewer times
 - 10.9% 1000 or more times
MEASURES
Marijuana, part 2

• Marijuana dependence was based on four criteria:
 • Used more often or in greater amounts than intended (13%; n=387)
 • Needed more to obtain same effect as had felt initially (16%; n=453)
 • Continued to use even though knew it caused emotional and/or psychological problems (17%; n=486)
 • Wanted to cut down on use 3+ times in life (15%; n=430)
MEASURES
Marijuana, part 3

- Total number of marijuana dependence symptoms (of those who had tried marijuana):
 - 71% had 0 Sx (n=2074)
 - 11% had 1 Sx (n=315)
 - 8% had 2 Sx (n=222)

- Marijuana dependence was defined as having three or four dependence symptoms

- 10% of users met dependence criteria (n=295)
MEASURES

Alcohol

• Only 25 of the 4955 participants (<1%) were lifelong alcohol abstainers

• 1070 respondents met DSM-IV criteria for alcohol dependence (3+ symptoms of 7 possible occurring within a 12-month period):

 • 28% had 0 Sx (n=1362)
 • 26% had 1 Sx (n=1263)
 • 22% had 2 Sx (n=1095)
 • 12% had 3 Sx (n=580)

 • 7% had 4 Sx (n=321)
 • 3% had 5 Sx (n=171)
 • 2% had 6 Sx (n=98)
 • 1% had 7 Sx (n=38)
RESULTS, 1

• Tetrachoric correlations provide an initial indication of familial influences on marijuana and alcohol dependence

• Because the MZ correlations are larger than the DZ correlations for both men and women (see **TABLE 1**), there is evidence of genetic influence on both measures

• Because the DZO correlations are similar in magnitude to the DZF and DZM correlations (see **TABLE 1**), there is not evidence of a gender difference in the genetic influences
TABLE 1:

Tetrachoric Correlations

Marijuana Dependence

<table>
<thead>
<tr>
<th></th>
<th>MZF=0.57* (0.30 – 0.77)</th>
<th>DZF=0.28 (-0.12 – 0.61)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MZF</td>
<td>0.57* (0.30 – 0.77)</td>
<td>DZF=0.28 (-0.12 – 0.61)</td>
</tr>
<tr>
<td>MZM</td>
<td>0.58* (0.30 – 0.78)</td>
<td>DZM=0.34* (0.03 – 0.60)</td>
</tr>
<tr>
<td></td>
<td>DZO=0.26 (-0.09 – 0.56)</td>
<td>DZM=0.34* (0.03 – 0.60)</td>
</tr>
</tbody>
</table>

Alcohol Dependence

<table>
<thead>
<tr>
<th></th>
<th>MZF=0.56* (0.39 – 0.69)</th>
<th>DZF=0.38* (0.19 – 0.56)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MZF</td>
<td>0.56* (0.39 – 0.69)</td>
<td>DZF=0.38* (0.19 – 0.56)</td>
</tr>
<tr>
<td>MZM</td>
<td>0.51* (0.35 – 0.65)</td>
<td>DZM=0.26* (0.07 – 0.44)</td>
</tr>
<tr>
<td></td>
<td>DZO=0.26* (0.09 – 0.41)</td>
<td>DZM=0.26* (0.07 – 0.44)</td>
</tr>
</tbody>
</table>

* Indicates p < .05
RESULTS, 2

- Structural equation modeling was used to assess the significance of genetic and environmental influences on marijuana and alcohol dependence, and to assess the extent of genetic and environmental overlap.

- The bivariate genetic model used to assess genetic and environmental overlap between alcohol and marijuana dependence is shown in FIGURE 1.

- There was significant genetic influence on both alcohol and marijuana dependence (see TABLE 2).

- The genetic overlap between alcohol and marijuana dependence was significant and substantial; environmental overlap was not significant (see TABLE 3).
FIGURE 1

A = additive genetics
C = shared environment
E = nonshared environment

r_A, r_C, and r_E are the genetic, shared environmental, and nonshared environmental correlations respectively.
TABLE 2: Proportions of Variance

<table>
<thead>
<tr>
<th></th>
<th>Alcohol Dependence</th>
<th>Marijuana Dependence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetic</td>
<td>0.46*</td>
<td>0.56*</td>
</tr>
<tr>
<td></td>
<td>(0.19 – 0.63)</td>
<td>(0.19 – 0.74)</td>
</tr>
<tr>
<td>Shared Environmental</td>
<td>0.07</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>(0.001 – 0.28)</td>
<td>(0.001 – 0.36)</td>
</tr>
<tr>
<td>Nonshared Environmental</td>
<td>0.46*</td>
<td>0.39*</td>
</tr>
<tr>
<td></td>
<td>(0.37 – 0.57)</td>
<td>(0.26 – 0.56)</td>
</tr>
</tbody>
</table>

* Indicates p < .05
<table>
<thead>
<tr>
<th></th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetic</td>
<td>0.87*</td>
</tr>
<tr>
<td></td>
<td>(0.40 – 1.00)</td>
</tr>
<tr>
<td>Shared Environmental</td>
<td>-1.00</td>
</tr>
<tr>
<td></td>
<td>(-1.00 – 1.00)</td>
</tr>
<tr>
<td>Nonshared Environmental</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>(-0.09 – 0.37)</td>
</tr>
</tbody>
</table>

* Indicates $p < .05$
CONCLUSIONS

• Both marijuana dependence and DSM-IV alcohol dependence are influenced by genetic factors ($h^2=0.56$ and 0.46 respectively)

• There is evidence of substantial genetic overlap between marijuana and alcohol dependence ($r_A=0.87$)

• Nonshared environmental influences on marijuana and alcohol dependence do not appear to be correlated ($r_E=0.13$)