Endothelial-specific fibroblast growth factor receptor 1 and 2 deletion impairs vascular remodeling and recovery in an in vivo, closed-chest model of cardiac ischemia-reperfusion injury

Stacey House
Washington University School of Medicine in St. Louis

Carla Weinheimer
Washington University School of Medicine in St. Louis

Attila Kovacs
Washington University School of Medicine in St. Louis

David Ornitz
Washington University School of Medicine in St. Louis

Follow this and additional works at: http://digitalcommons.wustl.edu/em_conf

Recommended Citation
BACKGROUND AND OBJECTIVES

Fibroblast growth factor (FGF) signaling is cardioprotective in various models of myocardial infarction. FGF receptors (FGFRs) are expressed in multiple cell types in the adult heart, but the cell type-specific FGFR signaling which mediates different cardioprotective endpoints is currently unknown.

METHODS

Mouse Model of Closed-chest Cardiac Ischemia-Reperfusion Injury: The mouse model of closed-chest cardiac ischemia-reperfusion injury was performed in the Muscular Cardiomyocyte Phenotyping Core at Washington University in St. Louis School of Medicine. Mice were anesthetized with ketamine/xylazine (100 mg/kg and 5 mg/kg, i.p.) and prepared intracardially through aseptically maintained median sternotomy. Mice were divided into wildtype (WT) and Tie2Cre FGFR1/2 DCKO groups. Controls for these experiments are double fox-2 (Fox-2) and Tie2Cre Fox-2 DCKO mice.

Echocardiographic determination of baseline functional characteristics of Tie2Cre FGFR1/2 DCKO mice. There are no alterations in ejection fraction (A), fractional shortening (B), or stroke volume (C) in Tie2Cre FGFR1/2 DCKO mice in the absence of injury. n=5-6.

Baseline quantification of SMA positive vessel density (A) and capillary density in non-ischemic hearts shows no difference in Tie2Cre FGFR1/2 DCKO hearts compared to wildtype control hearts. n=4.

Echocardiographic determination of wall motion abnormalities (A) and LV end-diastolic volume (B) in controls and Tie2Cre FGFR1/2 DCKO hearts after 7 days of reperfusion. B: Ablation of FGFR1 and FGFR2 in endothelial cells results in decreased capillary density but no change in capillary size after IR injury. n=5-6, *p=0.05 vs. wildtype.

RESULTS

Figure 2: Echocardiographic determination of baseline functional characteristics of Tie2Cre FGFR1/2 DCKO mice. There are no alterations in ejection fraction (A), fractional shortening (B), or stroke volume (C) in Tie2Cre FGFR1/2 DCKO mice in the absence of injury. n=5-6.

Figure 3: Baseline quantification of SMA positive vessel density (A) and capillary density in non-ischemic hearts shows no difference in Tie2Cre FGFR1/2 DCKO hearts compared to wildtype control hearts. n=4.

Figure 6: (A) Echocardiographic determination of wall motion abnormalities at 1 day and 7 days after in vivo IR injury. (B) Tie2Cre FGFR1/2 DCKO hearts show increased hypokinetic area compared to wildtype control hearts at 7 days but not 1 day after IR injury. n=5-6, *p=0.05 vs. wildtype.

Figure 9: A: Representative images of CD31 staining capillaries in the peri-infarct area of wildtype and Tie2Cre FGFR1/2 DCKO hearts 7 days after 7 days of shortening. B: Ablation of FGFR1 and FGFR2 in endothelial cells results in decreased capillary density but no change in capillary size after IR injury. n=5-6, *p=0.05 vs. wildtype.

CONCLUSION

Ablation of FGFR1 and FGFR2 in endothelial cells does not affect the cardiac hypertrophic response to IR injury.

Vascular remodeling after IR injury is impaired in mice with endothelial-specific ablation of FGFR1 and FGFR2.

FUNDING

This research was funded by grants from the American Heart Association (S. House), start up funds from the Washington University Division of Emergency Medicine (S. House), and NIH grant HL105732 (O. Ornitz).