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ABSTRACT

We examine the use of high-throughput sequencing
on binding sites recovered using a bacterial one-
hybrid (B1H) system and find that improved
models of transcription factor (TF) binding specifi-
city can be obtained compared to standard methods
of sequencing a small subset of the selected clones.
We can obtain even more accurate binding models
using a modified version of B1H selection method
with constrained variation (CV-B1H). However,
achieving these improved models using CV-B1H
data required the development of a new method of
analysis—GRaMS (Growth Rate Modeling of
Specificity)—that estimates bacterial growth rates
as a function of the quality of the recognition
sequence. We benchmark these different methods
of motif discovery using Zif268, a well-characterized
C2H2 zinc-finger TF on both a 28 bp randomized
library for the standard B1H method and on 6 bp
randomized library for the CV-B1H method for
which 45 different experimental conditions were
tested: five time points and three different IPTG
and 3-AT concentrations. We find that GRaMS
analysis is robust to the different experimental par-
ameters whereas other analysis methods give
widely varying results depending on the conditions
of the experiment. Finally, we demonstrate that the
CV-B1H assay can be performed in liquid media,
which produces recognition models that are
similar in quality to sequences recovered from
selection on solid media.

INTRODUCTION

Determining the specificity of transcription factors (TFs)
is an important step in elucidating regulatory networks. It
is also an essential step in developing rules describing the
relationship between the protein sequence of a TF and its
preferred binding sites, which can be used to predict the
specificities of uncharacterized TFs and to design TFs with
novel specificities. Traditionally, determining the specifi-
city of a TF was a slow and laborious process. Recent
technological advances have greatly increased the rate at
which new TFs can be analyzed (1). One new method,
MITOMI (2,3), provides good estimates of binding
affinities to different DNA sequences in a moderately
high-throughput format, including a recent advance that
allows affinity measurements for all possible 8-long
(8-mer) binding sites. Protein binding microarrays
(PBMs) were first described �10 years ago, and recently
have been implemented in a format that allows all 10-mers
to be included in the analysis (4–6). Cognate site identifi-
cation (CSI) is a related technique with similar capabilities
(7–9). Systematic evolution of ligands by exponential en-
richment (SELEX) has long been used to determine the
specificity of TFs, but initially it was used in a low-
throughput manner that only returned the consensus
sequence and some measure of the variability tolerated
at different positions (10–13). Several years ago, it was
coupled with a serial analysis of gene expression (SAGE)
method to create a moderate throughput method that
greatly increased the accuracy of specificity determination
(14). In the last year, SELEX has been scaled up to utilize
next generation sequencing methods and is now capable of
determining highly accurate specificities for TFs (15–17).
One advantage of SELEX over the other methods is that it
is capable of analyzing binding sites of essentially any
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length; the only limitation is that the library of potential
binding sites is limited to �1012 and the number of sites
that can be sequenced is �108, both of which are much
greater than all possible 10-mers (106 different sequences),
the limit of methods such as PBM.
Another method to determine the binding specificities

of TFs is a bacterial one-hybrid (B1H) system (18–20). In
this approach a TF is expressed in Escherichia coli fused to
the o subunit of RNA Polymerase. This turns any DNA
binding protein into an activator of transcription. A
library of randomized binding sites is located upstream
of a weak promoter driving expression of a selectable
gene. Under appropriate growth conditions only sites
with high affinity for the TF will survive selection. As
with SELEX, this approach has the advantage that
binding sites of any size can be studied, the only limitation
being that the library size is constrained by the transform-
ation efficiency of bacteria, which is �108 individual se-
quences. Another advantage of this approach is that the
TF does not have to be purified, or expressed in vitro; any
TF that can be functionally expressed in E. coli can be
assayed with this method making it rapid and easy to
use. It can also be used with TFs that have very low spe-
cificity by fusing them to two fingers of a zinc-finger
protein to create a chimeric protein with sufficient speci-
ficity and affinity for function within the B1H system (20).
Previously binding sites were sequenced from a small num-
ber of surviving colonies, typically 20–40, and a model of
the specificity of the TF would be inferred using a motif
finding program (20,21), such as Consensus (22) or
MEME (23).
Regardless of the method employed, the goal is to

obtain an accurate quantitative model of the specificity
of the TF. In this article, we test several different vari-
ations of the B1H method, including different approaches
to analyzing the data, using the well-characterized Zif268
zinc-finger protein as the standard for comparison. We
find that the standard B1H method, which employs a
large randomized library and determines the binding
sites from a few selected colonies, has reasonable accuracy
which can be further improved by the application of
high-throughput sequencing methods that determine the
frequencies of selected binding sites across the distribution
from high affinity to low affinity. We also show that using
a library with limited variability, in which part of the
binding site is fixed and the other part randomized,
combined with high-throughput sequencing allows us to
measure the growth rate of colonies containing each site in
the library. An algorithm that models the relationship
between binding energy and growth rate can then further
increase the accuracy of the quantitative specificity model.
We call this experimental approach CV-B1H for ‘con-
strained variation B1H’ and the analysis method
GRaMS for ‘Growth Rate Modeling of Specificity’ and
we compare its performance under many different experi-
mental protocols to other experimental and analysis
methods. Overall we show that CV-B1H is an inexpensive,
fast and easy method for accurately determining the spe-
cificity of a TF, where optimal results are obtained when
the data are analyzed using an appropriate model that
accounts for the dynamic growth of cells.

METHODS

Zif268 B1H selections

All of the B1H binding site selections were performed as
described previously using an o-Zif268 fusion protein ex-
pressed from a UV2 promoter in the plasmid pB1H2o
(20). Zif268 was used for these experiments because it
has been thoroughly characterized by a number of other
methods allowing comparison of the recognition models
we obtain to its previously defined specificity.

Randomized 28 bp binding site library

Four independent B1H binding site selections for Zif268
were performed using a 28-bp randomized library in
pH3U3 reporter vector as previously described (20).
Approximately 2� 107 co-transformed cells containing
the library and the o-Zif268 expression plasmid were
plated under each selection condition on selective media
plate containing 0, 2 (replicated) or 5mM 3-AT and
10�M IPTG. These selections were incubated at 37�C
for 36–48 h following which surviving cells were washed
off the plate as a pool. The plasmid DNA from the pooled
colonies was isolated. Library regions from the recovered
reporter plasmids were PCR amplified, adaptor ligated
with barcodes identifying each selection, and the library
for Illumina sequencing was prepared as previously desc-
ribed (24). The initial 28 bp library was also Illumina-
sequenced where �107 reads were obtained to provide a
background model for subsequent motif analysis.

Randomized 6 bp binding site library

The binding site library (GCGGCCACTGGGCAGCTG
GCCANNNNAAAAATNNNNNNGCGGTACCTAGG
TTCTTCGAATTC) cloned between the EcoRI and NotI
sites in pH3U3 contains two different randomized regions:
a 6 bp element (bold underlined) that is associated with the
four 30-bases of the Zif268 recognition sequence (GCGG,
underlined) and a 4 bp randomized region (italics) that
serves as an internal control to identify sequences that
may be enriched in the selections or preparation for
sequencing sample due to jackpot effects. We did not
observe any evidence of a jackpot effect. Auto-activating
clones within this library were removed by 5-FOA counter
selection as previously described (20). Approximately 106

co-transformed cells containing the library and the
o-Zif268-expression plasmid were plated under each selec-
tion condition on selective media plates containing 0.5, 1
or 2mM 3-AT and 0, 10 or 50�M IPTG, where these
selections were incubated at 37�C for 4, 8, 12, 18 or
24 h. This was a total of 45 independent selections. At
the desired time-point surviving cells were washed off
the plate as a pool. Isolated plasmid DNA from the
pooled cells was prepared for Illumina sequencing as for
the 28 bp library. Using barcodes for each experiment,
sequences from all 45 experiments were obtained from a
single Illumina sequencing lane that contained over 15
million reads, leading to an average of about 300 000
binding sites per experiment. There are only 4096 different
6-mer sites so this quantity of sequences is sufficient for
good coverage of all possible binding sites. We also
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performed CV-B1H from the same initial library in liquid
media with 5mM 3-AT and 50�M IPTG. After 4 h the
cells were pelleted, plasmids isolated and they were
prepared for Illumina sequencing as with the experiments
on plates. We independently sequenced the counter
selected library, which was the input to each of the
binding site selection experiments, to define the initial fre-
quency of each 6-mer. More than 16 million reads were
obtained and every 6-mer was observed at least 472 times.
This allowed us to determine the enrichment of each site
after selection. The sequences from each data set are avail-
able at http://ural.wustl.edu/htb1h_zif68 and from the
GEO database (GSE26767).

Binding site modeling using existing programs

We model the binding energy of Zif268 for any sequence
using a position weight matrix (PWM) (25). We used four
different motif discovery methods on the different data
sets. BioProspector (26) was used on both the 28 bp data
sets with a site size of 10 bp and on the 6 bp data sets with
a site size of 6 bp. For the 6 bp data set, the orientation
was fixed whereas for the 28 bp data sets sites could be
discovered in either orientation. A third-order Markov
model, based on the sequences of the respective initial
libraries, was used for the background model. MEME
(23) was run only on the 28 bp data sets because it
requires sites longer than 6 bp for motif analysis. The
3000 most abundant 28-mers served as the input to
MEME with each sequence being used only once in the
input set. Sites were allowed to occur in either orientation.
BEEML (16) requires the alignment of the binding sites
for motif analysis, so it was used only on the 6 bp data sets
with the background model derived from the 6-mer counts
in the initial library. On the 6 bp data sets, we also tested a
simple log-odds method that determines the value of each
PWM element from the ratio of the observed frequency of
each base at each position in the aligned binding sites to
the observed frequency of each base at each position in the
initial library (from the randomized region). We also
tested the accuracy obtained from the consensus
sequence, GCGTGGGCGG, where its energy is set to
zero and the optimal mismatch energy (over all possible
integer values) is two.

Binding site modeling based on growth rate analysis

We model protein–DNA binding using a biophysical
model described previously (16). Briefly, the probability
that the sequence Si is bound at equilibrium is:

PðSi boundÞ ¼
½TF � Si�

½TF � Si�+½Si�
¼

½TF�

½TF�+KdðSiÞ
ð1Þ

where Kd is the dissociation constant and square brackets
indicate concentrations. It is convenient to express the
energy of binding, Ei, relative to the Gibbs free energy
of binding to a reference sequence; we use the consensus
sequence, in units of RT, with its energy defined as,
Eref=0:

PðSi boundÞ ¼
1

1+eEi��
ð2Þ

where

Ei ¼
��G

�

i

RT
¼
ð�G

�

i ��G
�

refÞ

RT
ð3Þ

and

� ¼ ln
½TF�

KdðSrefÞ
ð4Þ

Binding sites with Ei=� have a binding probability of
one-half.
In order to grow and replicate, cells must express suffi-

cient His3 enzyme to meet their histidine requirements.
We define the growth rate of an allele as the number of
doublings that a cell possessing it undergoes each hour
during exponential growth phase. The equation

NiðtÞ ¼ Nið0Þ2
rit ð5Þ

describes the exponential growth of a colony, where t is
the number of hours, Ni(t) is the final number of cells
possessing site Si present at time t, ri is the growth rate
for cells containing that site in doublings per hour and
Ni(0) is the initial number of cells with that site at time
zero.
Histidine is a rate limiting reagent, and we make the

simplifying assumption that the amount of histidine is
directly proportional to the occupancy of the His3
promoter by the TF (up to some saturating level) and
that the growth rate, ri, of cells possessing Si is directly
proportional to the amount of histidine produced, up to a
level where it is no longer limiting. The relationship
between binding energy of the TF for site Si and the
growth rate is then:

ri ¼ log2
NiðtÞ

Nið0Þ

� �
=t ¼

M

1+eEi��
ð6Þ

where M is the maximum growth rate for these cells under
the same conditions but with histidine not being limiting.
Supplementary Figure S1A shows a simulated ideal ex-
periment where the counts for each sequence depend on
the binding energies as described in the biophysical model
of the preceding equations. Data taken at different time
points will fall on different curves, but when converted to
growth rates all of the data sets converge to a common
curve describing the relationship between growth rate and
binding energy (Supplementary Figure S1B).
We are only able to determine the frequency of each

allele from the Illumina reads. In order to convert these
frequencies into numbers of cells, we need to know the
initial number of cells plated, nI, and the final number of
cells on the plate, nF, at time t. The growth rates
determined by the frequencies at time t will be off by a
constant

c ¼
log2 nF=nIð Þ

t
ð7Þ

such that

ri ¼
log2 fiðtÞ=fið0Þð Þ

t
+c ð8Þ
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where fi(t) is the frequency of site Si at time t and fi(0) is
the initial frequency of Si before selection. We refer to the
quantity

fiðtÞ

fið0Þ
ð9Þ

as the enrichment of site Si at time t. For a given experi-
ment, every growth rate will be off by the same constant.
If we assume that the minimum growth rate is zero (cells
may not divide but they do not disappear from the plate),
we can determine the constant by assuming the plateau of
high energy binding sites represents a growth rate of zero.
For the remainder of the paper, including all of the figures,
the calculated growth rates for each site have been
adjusted such that the median of the high energy plateau
is defined as zero.
For a given PWM, the predicted growth rates,r̂i,

depends on the energy model via:

r̂i ¼
M

1+e ~Si� ~W��
ð10Þ

where ~Si is the encoded sequence, Si and ~W is the PWM.
In this analysis, M was fixed to the maximum growth
rate for each data set. We use the Levenberg-Marquardt
algorithm (27–29) in a program called GRaMS to
perform a least squares fit between the measured and
predicted growth rates in order to find the optimum
PWM.

Assessment of different protocols and analysis methods

For each experimental data set and each analysis method
we obtain a PWM. We adjust the elements such that
those corresponding to the reference sequence are
assigned zero, and the other elements are estimates of
the binding energy differences for each other base at
each position in the binding site, as proposed by Berg
and von Hippel (24). We determine the accuracy of
each method by measuring, using the squared Pearson
correlation coefficient (R2), how well it predicts the
binding data from a single-round SELEX experiment
(16). In that experiment a large library of random
10-mers were bound to Zif268 and the bound fraction as
well as the initial library were Illumina sequenced. For
each PWM, the values of m and a non-specific binding
energy, Ens, are found that maximize the fit for that
model so that the comparisons are strictly between
how well the PWMs capture the energy differences for
each base at each position. BEEML (16) was developed
specifically to model that SELEX data so we determined
its R2 value when trained on the SELEX data directly
as the maximum that any other PWM could be expected
to obtain. This was 0.93 and 0.96 for the 10 bp PWMs
and 6 bp PWMs, respectively. The remaining vari-
ance is probably due to experimental noise as well
as binding energy contributions not captured by the
simple PWM which are known to exist but be small for
Zif268 (30).

RESULTS

Selections from 28 bp library

We first characterized how well the PWM obtained from
the 28 bp library can predict the zif268 SELEX data. The
PWM from Meng et al. (2005), which was based on only
17 sequences from selected colonies, gives an R2=0.67.
This is nearly as high as that obtained from a Zif268
PWM obtained from PBM data (R2=0.69) (4) and is
much better than simply using a consensus sequence
(GCGTGGGCGG) to predict quantitative binding affi-
nities, which gives an R2=0.27. We next tested whether
using high-throughput sequencing methods when applied
to the B1H selected clones would provide a motif with
even higher accuracy. We collected all of the cells on the
plate from a selection using Zif268, which includes the
large colonies, small colonies and even individual cells
that have not divided, purified the binding site plasmids
and subjected the entire mixture to Illumina sequencing.
We did this for four different growth conditions and
obtained between 117 475 and 928 304 sequences from
each selection (after removing poor quality reads that
did not match the fixed sequences flanking the library).
We used BioProspector and MEME to obtain alignments
and PWMs from each data set, and then used those
PWMs to predict the SELEX data. The results from
both motif discovery methods were nearly identical, with
median R2 of 0.79 and 0.80 for BioProspector and
MEME, respectively (Figure 1). This is a significant im-
provement over the PWM based on only 17 sequences. We
also tested how many reads are required to obtain that
accuracy by randomly selecting subsets of sequences of
various sizes from our data sets. We found that the
maximum accuracy was achieved by both BioProspector
and MEME analyses with a population of about 3000
reads. Thus, a large number of different B1H binding
site selections can be multiplexed together in a single
Illumina lane to minimize sequencing costs, while still ob-
taining good recognition models for each experiment.

Selections from 6 bp library

While quite good, those R2 values still leave considerable
room for improvement. We next tested whether we could
get further improvement by fixing part of the binding site,
in this case 4 bp, and only randomizing the remaining 6 bp
for our B1H binding site selections. This eliminates
problems related to aligning the binding sites because
the TF should always prefer the orientation and position
that overlaps the fixed region; we found no exceptions to
that expectation in the analysis of the data that was
generated. Moreover, because there are only 4096 differ-
ent 6 bp sequences, we can obtain good frequency esti-
mates for all binding sites in both the initial library and
in the selected sites while at the same time multiplexing
many different experiments in a single Illumina lane. We
averaged about 300 000 reads for each of 45 different
selections that explore a range of different selection con-
ditions (3-AT, IPTG and incubation time). Motif com-
parisons for data generated from these experiments were
made to the subset of Zif268 SELEX data that contained
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the GCGG sequence in the last four positions on the
binding site, to be consistent with the constraints in our
selections. The BEEML PWM predicts the SELEX data
(that it was trained on) with an R2=0.96, which is the
maximum we would expect from any other method
trained on alternative data sets. The simple consensus
sequence, with optimal mismatch penalty, predicts the
SELEX data with an R2=0.50 and the 6 bp segment of
the previous B1H Zif268 PWM (18) fits with R2=0.74
(Figure 2). We performed a traditional B1H experiment
on this library, picking and sequencing just 22 colonies,
and the resulting PWM had an R2 of only 0.52, much
worse than the previous PWM from a 28 bp library.
Equally unexpected was that BioProspector and log-
odds analyses on the various 6 bp experiments were
highly variable and generally much poorer than for the
28 bp library. The median values of R2 were only 0.52
and 0.54 for BioProspector and log-odds, respectively
and the maximum values were only 0.71 and 0.74
(Figure 2). Motifs generated from selections with short
incubation times displayed the worst performance, but
none of the experimental conditions performed very well
on this library.

We think these results are explained by the fact that the
initial library, which has been counter selected to remove
autoactivating sequences, has a very low proportion of the
consensus binding site and some other closely related sites.
Their low initial frequencies ensure that even after the 24 h
time selections they have not become the most abun-
dant sites, therefore leading to PWMs with sub-optimal
parameters. Although both the log-odds method and
BioProspector take the initial library into account through
their background estimates, those are only based on the
total composition, in the case of log-odds, or a third-order

Markov model, neither of which really captures the explicit
deficiency of specific binding sites, some of which are high-
affinity sites. We, therefore, tested the BEEML program
on the 45 data sets. It takes into account each specific
binding site in both the initial and selected libraries and,
based on a biophysical model for enrichment based on
affinity, does a nonlinear regression to find the optimal
parameters for a PWM. While its performance is still quite
poor on the earliest time points, its median R2 is 0.86 and
its best is 0.92, both significantly better than the other
methods (Figure 2). This level of performance makes
BEEML analysis of the 6 bp CV-B1H data even better
than the BioProspector and MEME performance on the
28 bp high-throughput B1H data sets (Figure 1).
Since we expect the differences in binding energies for

different sites to affect their relative growth rates, we de-
veloped GRaMS to obtain optimal PWMs for CV-B1H
data according to the model described in ‘Methods’
section. Supplementary Figure S1 shows, for ideal simu-
lated data, how the occurrences of difference binding sites
at various time points fall on different lines, but when
converted to growth rates they all converge to a single
line that shows the relationship between growth rate and
binding energy. Figure 3A shows the results from one ex-
periment (8 h, 50�M IPTG, 2mM 3-AT) where the
binding energies are the predictions from the GRaMS
model (Figure 3B). Supplementary Figure S2 shows the
same curve for all 45 data sets. While obviously noisier
than the simulated data, the curves are all very similar and
are consistent with our model. Supplementary Figure S3
shows the logos for all 45 data sets. Note that the models
are very similar indicating that with GRaMS analysis
the resulting models are relatively insensitive to the exact
experimental protocol. Motifs from the 4 h time points are

Figure 1. Box plot showing the ability of the set of MEME and BioProspector motifs learned from the four 28 bp B1H data sets to predict the
SELEX data. For each PWM, R2 was calculated to determine the correlation between the predicted and observed SELEX counts. The performance
of three PWMs from the literature is also shown. Zhao2009, Berger2006 and Meng2005 were learned from SELEX, PBM and B1H data, respectively.
The GCGTGGGCGG consensus sequence PWM was constructed using an optimal mismatch penalty term.
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still the least accurate and those from the late time points
have slightly reduced accuracy probably due to the onset
of colony saturation for the highest affinity binding sites.
At the earlier times points increased stringency, using
higher concentrations of 3-AT, improved the quality of
the motifs somewhat but the results are not much
affected by the concentration of IPTG. In contrast,
Supplementary Figure S4 shows the Logos for the 45 dif-
ferent PWMs obtained by BioProspector. While overall
they are not too bad, they are more variable between dif-
ferent conditions and none fit the SELEX data as well as
the GRaMS models.
Using GRaMS, we obtained R2 values with a median of

0.92 (Figure 2) and with a maximum value of 0.94, nearly
as good as the maximum expected. The entire range is
from 0.84 to 0.94, again indicating that the models are
relatively insensitive to the exact experimental protocol.
Only one sample gave an R2 as low as 0.84, with the
next lowest value being 0.88. On average, the lowest R2

values were obtained using GRaMS models trained on the
4 h data sets. None of the methods performed particularly
well on these data sets, but GRaMS performed the best
(Supplementary Figure S5). On data sets from the later
time points, the R2 values ranged from 0.89 to 0.94 with a
median of 0.92 (Supplementary Table S1).
The largest difference between the logos from GRaMS

(Supplementary Figure S2) and from BioProspector
(Supplementary Figure S3) is at position 5, where
BioProspector nearly always shows a slight preference
for A over G, whereas GRaMS has a somewhat larger

preference for G over A, which is consistent with the
SELEX data. This difference can be attributed to bias in
the initial library (probably due to the counter selection),
which contains many more sequences with A at position 5
than with G. Even after selection up to 24 h, A remains the
most common base in each data set, which causes the
BioProspector PWM to prefer A. But the growth rate of
sites with G in position 5 is, on average, greater than for
those with A, so GRaMS infers the higher affinity for G.
Presumably BioProspector would perform better if the
initial library were less biased, as we observed in the
28 bp library, but one advantage of GRaMS is that it
takes the bias into account directly through its back-
ground model and so is not strongly influenced by it.

We also performed CV-B1H in liquid culture and found
that similar models could be obtained. Supplementary
Figure S6 shows the motif obtained through GRaMS
analysis after 4 h of growth which attained an R2=0.93
on the SELEX quantitative predictions. This may be the
most straightforward method to employ for selections in
practice but we have not examined its performance in
detail as we have with the plate growth method.
Performing the B1H assay in liquid media has the poten-
tial artifact that the cells with low affinity sites may be able
to grow using histidine made in excess by other cells,
although this should not be a major limitation at early
time points when the cell densities are very low.

Given that GRaMS performed so well with CV-B1H
data, we wondered whether it would also improve
the models obtained from the 28 bp B1H experiments.

Figure 2. Boxplot showing the ability of the 45 PWMs produced by each analysis method using each B1H data set as training data to predict the
SELEX nnnnnnGCGG data. For each model, R2 was calculated to determine the correlation between the predicted and observed SELEX counts.
The performance of four individual PWMs is also indicated. Two of these PWMs, Zhao2009 and Meng2005, were obtained from published SELEX
and B1H studies respectively; the first six positions of these PWMs were used. The LT-B1H PWM was learned from 22 sequences obtained from a
CV-B1H experiment. The GCGTGG consensus sequence PWM was constructed using an optimal mismatch penalty term.
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One limitation is that GRaMS does not generate a native
alignment of binding sites from a population of selected
sequences, it requires an existing alignment to generate
a binding motif. Consequently, we generated PWMs
with GRaMS using the aligned sites generated by
BioProspector and MEME, and we used for the back-
ground model the counts of 10-mers from the input
28 bp library. This provided almost no improvement over
the original MEME and BioProspector models, where the
median R2 values increased by only 0.01 for both sets
(data not shown). We think this stems from several
factors including: an incomplete sampling of the binding
sites, especially the low affinity sites, in the BioProspector
and MEME alignments; an incomplete sampling of the
sequences in the initial library for the construction of
the background model; and the influence on the activity
of a sequence by its distance from the promoter, which is
evident in the strong preferences for the recovery of
binding sites at specific registers in the randomized se-
quences, that is not accounted for within the current
GRaMS model. Therefore as currently implemented,
GRaMS does not provide an improved analysis method
for general B1H experiments, even with high-throughput
sequencing data, but with the appropriate experimental
design, as in the CV-B1H experiments, it can be used to

obtain highly accurate, quantitative models of TF
specificity.

DISCUSSION

The B1H assay has proven to be a robust technique ap-
plicable to a wide variety of different TF families. For
instance, it has recently been successfully applied to
more than 200 different Drosophila TFs from a variety
of different families (i.e. pfam families: bZIP_1, bZIP_2,
CBF_beta, Fork_head, HLH, HMG_box, PAX, RHD,
Runt, zf-C2H2 and zf-C4) (31). We find that applying
massively parallel sequencing methods to all of the
selected binding sites on an entire plate can lead to more
accurate, quantitative models of TF specificity. The new
models are more accurate than those obtained from the
same library when sequencing only a few selected colonies,
as might be expected. These new models are also slightly
better than those obtained from PBM experiments on
Zif268. Despite the increased accuracy from the high-
throughput sequencing there remains substantial room
for improvement. We show that by constraining the vari-
ability in the library, which eliminates ambiguities in the
alignment of the sites and allows for deep sampling of the
population, very accurate models can be obtained.
However, even when using the CV-B1H protocol, the
accuracy of the resulting motifs depends on the data
analysis method employed. By measuring growth rates
of cells across the distribution from high affinity to low
affinity sites and using a biophysical model for the rela-
tionship between growth rate and binding energy,
GRaMS is able to obtain more accurate models from
B1H data than any other approach we tested. This
approach is fairly insensitive to the exact B1H protocol
used and we obtained good models under all of the vari-
ations that we tested except for the very early time point
(4 h). From selections in liquid culture, we were able to
obtain a good model even after only 4 h of growth.
Increased 3-AT concentrations, which increase the strin-
gency of the selection, increased the accuracy of the result-
ing model slightly on average. The IPTG concentration
had little effect, although 10 and 50�M were slightly
better than zero, on average.
We have used some simplifying assumptions in our bio-

physical model, but the fact that we consistently get good
PWMs suggests that the assumptions are reasonable. In
particular, we have not used a coupling factor, referred to
as � by Berg and von Hippel (32,33) that relates the
binding energy to the functional activity of a binding
site. In essence, we assume �=1, which is within the
range of 0.5 to 1.5 that they found for several natural
systems. If we empirically determine a � for each of our
PWMs that convert them to the optimal PWM for Zif268,
we find that it decreases at late times, but we think this is
best explained by the saturation effects of the faster
growing colonies beginning to reach their maximum size.
For early time points, and for most conditions, assuming
�=1 appears to be a good approximation. It is unclear
whether this relationship will hold true for other TFs, but
the fact that the TFs analyzed by this approach use the

Figure 3. Results of CV-B1H on Zif268 analyzed with GRaMS. (A)
Plot of predicted energies versus growth rates per 6-mer. The GRaMS
PWM (8h, 50�M IPTG, 2mM 3-AT) was used to predict the energies.
The growth rates (shifted so that the median value is zero) are from the
8 h, 50�M IPTG, 2mM 3-AT data set used to estimate the GRaMS
PWM. (B) Sequence logo for the GRaMS PWM obtained from the
same data set. The y-axis indicates the information content of each
position in bits. Sequence logos were produced using in-house
software, svgSeqLogo, written by RGC.
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o-fusion as the means of coupling DNA binding to tran-
scriptional activation suggests that assuming �=1 is
likely to be reasonable in general.
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wustl.edu/resources.html#Software.
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