Seniors to celebrate commencement with parties, picnics, ceremonies

Parties, picnics and special ceremonies May 17-20 will make commencement for WU seniors graduating this year a week-long whirl of activity.

For the first time, the College of Arts and Sciences will hold a ceremony to recognize individually graduating seniors at 8 p.m. Thursday evening, May 20, in the Quadrangle. Chancellor William H. Danforth, Dean Linda B. Salomon, and other college administrators will preside at the event.

The School of Engineering and Applied Science will also hold a ceremony to recognize graduates at 8 p.m. Friday, May 14, in Edison Theatre. The School of Engineering and Applied Science will then hold a reception at 10 p.m. in Francis Field.

A final reminder — caps and gowns may be picked up from 9 a.m. to 5 p.m. May 18-20 in room 303 Mallinckrodt Center. They are to be returned between 11 a.m. and 5 p.m. on commencement day.

Parties, picnics and special ceremonies May 17-20 will make commencement for WU seniors graduating this year a week-long whirl of activity.

For the first time, the College of Arts and Sciences will hold a ceremony to recognize individually graduating seniors at 8 p.m. Thursday evening, May 20, in the Quadrangle. Chancellor William H. Danforth, Dean Linda B. Salomon, and other college administrators will preside at the event.

The School of Engineering and Applied Science will also hold a ceremony to recognize graduates at 8 p.m. Friday, May 14, in Edison Theatre. The School of Engineering and Applied Science will then hold a reception at 10 p.m. in Francis Field.

A final reminder — caps and gowns may be picked up from 9 a.m. to 5 p.m. May 18-20 in room 303 Mallinckrodt Center. They are to be returned between 11 a.m. and 5 p.m. on commencement day.

Seniors will journey off-campus on Wednesday night, May 19, to visit a popular watering hole and music spot, the Fourth and Pine bar, at Fourth and Pine Sts., at 6 p.m. Students must make their own transportation arrangements.

Seniors are also invited to show up early on commencement morning at 7:30 a.m. in Bowles Plaza to toast themselves and their families in Mallinckrodt Center.

Other commencement week events include the annual initiation of new members to Phi Beta Kappa, the national academic honor society, at 11 a.m. Thursday, in Steinberg Auditorium.

Florence Moog, Rebstock Professor of Biology, will give an address.

Notis K. Smith, professor of art and archaeology, will give an address.

"The Solomon Window," at the Eliot Clinic Auditorium, will give an address.

"The Solomon Window," at the Eliot Clinic Auditorium, will give an address.

One of the long-standing projects is the analysis of patients’ heart rhythms, first in coronary care units in real-time (as it happens) and later from 24-hour recordings. A special boon to researchers is an improved computer program that makes it possible to play back and analyze a 24-hour recording in 24 minutes. Noted Thomas, "It’s important to miss as little as possible, and in the end, to be able to quantify the rhythms. Also, there’s a lot more information recorded than we know how to extract right now."

While continuing research on the analyses, the BCL is processing long-term heart recordings from a half-dozen medical centers in the country for collaborative studies on the effectiveness of various drugs.

Another ongoing project involving researchers in anatomy and neurology is the mapping of neural pathways in the brain. By injecting radioactive particles into nerve cells in animals, researchers can examine the tissue, using a computer system developed at BCL, to determine where the particles have traveled.

A second mapping project aims at

eventual cooperation with the Veterinary School to map neural pathways in the brains of animals that have been exposed to poisons or vaccines. "The end result," Notis said, "will be a detailed map of the brain, containing the first indications of how the brain affects the body and the body affects the brain."

Richly satisfying as these developments have been, Thomas noted that "the most gratifying aspect of this work is the challenge. We are constantly pushed to the limits of our knowledge."

The prototype of the new, flexible computer, called LINC (Laboratory Instrument Computer), was designed to couple closely with the job it was doing — in other words, to analyze information and to encourage the investigator’s interaction while an experiment was in progress. A second-generation computer, called PC (Programmed Console), was subsequently developed in the same style at WU’s Biomedical Computer Laboratory (BCL) and then marketed commercially. Not limited to laboratory research, these computers were employed in clinical situations almost from the beginning.

Cox, now chairman of the WU Department of Computer Science, was instrumental in establishing a network of research-oriented computer resources — a network that spans the Hilltop and medical school campuses to include BCL, the departments of computer science and electrical engineering, and the Computer Systems Laboratory, a floating University research laboratory.

The early work at BCL was the start of something big. While researchers there have since switched to more modern microprocessors, many of the projects begun with the LINC and PC computers are still going strong. "The tools have changed somewhat," observed current director Lewis J. Thomas, Jr., "but the style is the same."

One of the long-standing projects is the analysis of patients’ heart rhythms, first in coronary care units in real-time (as it happens) and later from 24-hour recordings. A special boon to researchers is an improved computer program that makes it possible to play back and analyze a 24-hour recording in 24 minutes. Noted Thomas, "It’s important to miss as little as possible, and in the end, to be able to quantify the rhythms. Also, there’s a lot more information recorded than we know how to extract right now."

While continuing research on the analyses, the BCL is processing long-term heart recordings from a half-dozen medical centers in the country for collaborative studies on the effectiveness of various drugs.

Another ongoing project involving researchers in anatomy and neurology is the mapping of neural pathways in the brain. By injecting radioactive particles into nerve cells in animals, researchers can examine the tissue, using a computer system developed at BCL, to determine where the particles have traveled.

A second mapping project aims at

eventual cooperation with the Veterinary School to map neural pathways in the brains of animals that have been exposed to poisons or vaccines. "The end result," Notis said, "will be a detailed map of the brain, containing the first indications of how the brain affects the body and the body affects the brain."

Richly satisfying as these developments have been, Thomas noted that "the most gratifying aspect of this work is the challenge. We are constantly pushed to the limits of our knowledge."

The prototype of the new, flexible computer, called LINC (Laboratory Instrument Computer), was designed to couple closely with the job it was doing — in other words, to analyze information and to encourage the investigator’s interaction while an experiment was in progress. A second-generation computer, called PC (Programmed Console), was subsequently developed in the same style at WU’s Biomedical Computer Laboratory (BCL) and then marketed commercially. Not limited to laboratory research, these computers were employed in clinical situations almost from the beginning.

Cox, now chairman of the WU Department of Computer Science, was instrumental in establishing a network of research-oriented computer resources — a network that spans the Hilltop and medical school campuses to include BCL, the departments of computer science and electrical engineering, and the Computer Systems Laboratory, a floating University research laboratory.

The early work at BCL was the start of something big. While researchers there have since switched to more modern microprocessors, many of the projects begun with the LINC and PC computers are still going strong. "The tools have changed somewhat," observed current director Lewis J. Thomas, Jr., "but the style is the same."

One of the long-standing projects is the analysis of patients’ heart rhythms, first in coronary care units in real-time (as it happens) and later from 24-hour recordings. A special boon to researchers is an improved computer program that makes it possible to play back and analyze a 24-hour recording in 24 minutes. Noted Thomas, "It’s important to miss as little as possible, and in the end, to be able to quantify the rhythms. Also, there’s a lot more information recorded than we know how to extract right now."

While continuing research on the analyses, the BCL is processing long-term heart recordings from a half-dozen medical centers in the country for collaborative studies on the effectiveness of various drugs.

Another ongoing project involving researchers in anatomy and neurology is the mapping of neural pathways in the brain. By injecting radioactive particles into nerve cells in animals, researchers can examine the tissue, using a computer system developed at BCL, to determine where the particles have traveled.

A second mapping project aims at

eventual cooperation with the Veterinary School to map neural pathways in the brains of animals that have been exposed to poisons or vaccines. "The end result," Notis said, "will be a detailed map of the brain, containing the first indications of how the brain affects the body and the body affects the brain."

Richly satisfying as these developments have been, Thomas noted that "the most gratifying aspect of this work is the challenge. We are constantly pushed to the limits of our knowledge."

The prototype of the new, flexible computer, called LINC (Laboratory Instrument Computer), was designed to couple closely with the job it was doing — in other words, to analyze information and to encourage the investigator’s interaction while an experiment was in progress. A second-generation computer, called PC (Programmed Console), was subsequently developed in the same style at WU’s Biomedical Computer Laboratory (BCL) and then marketed commercially. Not limited to laboratory research, these computers were employed in clinical situations almost from the beginning.

Cox, now chairman of the WU Department of Computer Science, was instrumental in establishing a network of research-oriented computer resources — a network that spans the Hilltop and medical school campuses to include BCL, the departments of computer science and electrical engineering, and the Computer Systems Laboratory, a floating University research laboratory.

The early work at BCL was the start of something big. While researchers there have since switched to more modern microprocessors, many of the projects begun with the LINC and PC computers are still going strong. "The tools have changed somewhat," observed current director Lewis J. Thomas, Jr., "but the style is the same."

One of the long-standing projects is the analysis of patients’ heart rhythms, first in coronary care units in real-time (as it happens) and later from 24-hour recordings. A special boon to researchers is an improved computer program that makes it possible to play back and analyze a 24-hour recording in 24 minutes. Noted Thomas, "It’s important to miss as little as possible, and in the end, to be able to quantify the rhythms. Also, there’s a lot more information recorded than we know how to extract right now."

While continuing research on the analyses, the BCL is processing long-term heart recordings from a half-dozen medical centers in the country for collaborative studies on the effectiveness of various drugs.

Another ongoing project involving researchers in anatomy and neurology is the mapping of neural pathways in the brain. By injecting radioactive particles into nerve cells in animals, researchers can examine the tissue, using a computer system developed at BCL, to determine where the particles have traveled.

A second mapping project aims at

continued on p. 4
Rybalka researches definitive work on Sartre's fiction

This country's bibliophiles have had reason to rejoice in recent weeks as the first four authoritative editions of works by classic American authors—Melville, Hawthorne, Whitman and Harriet Beecher Stowe—have come off the press in an ambitious series that will eventually number more than 100 volumes. Inevitably this major publishing project from the Library of America has been compared with the famous French Pleiade series.

But on this side of the Atlantic, few are aware that a WU professor of French, Michel Rybalka, is one of the editors of a new and exquisitely bound brown leather, gold-rimmed Pleiade book on the late Jean-Paul Sartre, published earlier this year in Paris by Gallimard. Eligible Owles romanesques de Sartre, it includes an introduction, detailed chronology, and Sartre's fictional works: Nausea, The Wall, Roads to Freedom, and a number of hitherto unpublicized interviews. The latter include a short story, "Depaysement," written in 1936, Drole d'amitié, which is the fourth volume of Rybalka's Pleiade series, and a series of letters written by Sartre to Simone de Beauvoir.

This tour de force by Rybalka and his coeditor, Michel Contat, a noted French author and journalist, numbers 2,386 pages, printed on heavy paper comparable to that used in costly Bibles. "I've been working on this project with the help of Sartre's estate for ten years," Rybalka explained. "Some of my research was done at the Bibliothèque Nationale in Paris, which recently acquired Sartre's manuscript of Nausea. Our Pleiade edition is a thoroughly complete, critical annotated text, the interrelates, notes, documents and variants. By Pierre-Delpech, in a res never published in The Guardian, has observed that it is "edited and annotated with prodigious erudition."

Rybalka said that response to this new work has been extremely gratifying. "Within less than two months after its publication in January in Paris, 20,000 copies were sold on the Continent." He noted also that the interest of the French press in this definitive work on Sartre's fiction has been unprecedented. "Some 25 periodicals had reviewed our book by March 1," he said. Favorable comment has come from some of France's most outstanding writers, including Bobbe-Griller and Le Clezio in Le Monde.

"This intense interest underscores our conviction that Sartre is extremely rele vant and continues to have a profound influence on intellectual thought in Europe," Rybalka observed. He is world-famous for his scholarship on Sartre. Hazel Barnes, in her work on Sartre, said Rybalka was "a new and extremely talented person who works on his philosophical views. The conversations, together with a bibliography compiled by Rybalka, were subsequently edited by Rybalka, said that response to this new work has been extremely gratifying. "Within less than two months after its publication in January in Paris, 20,000 copies were sold on the Continent." He noted also that the interest of the French press in this definitive work on Sartre's fiction has been unprecedented. "Some 25 periodicals had reviewed our book by March 1," he said. Favorable comment has come from some of France's most outstanding writers, including Bobbe-Griller and Le Clezio in Le Monde. "This intense interest underscores our conviction that Sartre is extremely rele vant and continues to have a profound influence on intellectual thought in Europe," Rybalka observed. He is world-famous for his scholarship on Sartre. Hazel Barnes, in her work on Sartre, said Rybalka was "a new and extremely talented person who works on his philosophical views. The conversations, together with a bibliography compiled by Rybalka, were subsequently edited by Rybalka, said that response to this new work has been extremely gratifying. "Within less than two months after its publication in January in Paris, 20,000 copies were sold on the Continent." He noted also that the interest of the French press in this definitive work on Sartre's fiction has been unprecedented. "Some 25 periodicals had reviewed our book by March 1," he said. Favorable comment has come from some of France's most outstanding writers, including Bobbe-Griller and Le Clezio in Le Monde. "This intense interest underscores our conviction that Sartre is extremely rele vant and continues to have a profound influence on intellectual thought in Europe," Rybalka observed. He is world-famous for his scholarship on Sartre. Hazel Barnes, in her work on Sartre, said Rybalka was "a new and extremely talented person who works on his philosophical views. The conversations, together with a bibliography compiled by Rybalka, were subsequently edited by

Michel Rybalka

Paul Arthur Schlipph of SIU-Carbondale, and published as volume sixteen of The Library of Living Philosophers. The book itself, entitled The Philosophy of Jean-Paul Sartre, was issued by Open Court last year. A segment of these interviews has just been published in French in Paris in the March issue of Magazine Litteraire.

Rybalka has concentrated on his study of Sartre for nearly a quarter of a century. He and Contat have published numerous early works on Sartre and cur rently have a work in press, Les Ecrivains de jeunesse de Sartre. Rybalka is contemplating writing a biography on Sartre.

Needleman named to first alumni-sponsored chair

The first medical alumni-endowed professorship in the nation has been established at the WU School of Medicine. Philip Needleman, head of the Edward Mallinckrodt Department of Pharmacology, has been named the school's first alumni professor. The announcement was made at the medical school's annual alumni festivities May 1.

Needleman is an internationally recognized pharmacologist best known for his characterization of the synthesis and function of prostaglandins and their intermediates on the renal and cardiovascular systems.

Needleman, who joined the School of Medicine faculty in 1967 after having served as a postdoctoral fellow for three years, was named chairman of the Department of Pharmacology in 1976. He was elected "Preclinical Teacher of the Year" by the graduating classes of 1971, 1972, 1977 and 1982.

The Alumni Endowed Professorship Program was initiated at the School of Medicine to attract and retain the finest faculty possible by endowing professorships with donations by alumni and former house staff members. The ultimate goal is to establish an endowed professorship in each department.

Pew Trust grants $500,000 for medical school construction

The WU School of Medicine has received a $500,000 grant from the Pew Memorial Trust Company to be used toward construction of the school's new Clinical Sciences Research Building. This eleven-story, 375,000 square-foot structure is expected to cost $50 million.

Chancellor William H. Danforth noted that this gift is the first that WU has received from the Pew Memorial Trust. "This generous grant is encouraging and heartening. Washington University has set a very high priority on bringing the most advanced scientific understanding to the diagnosis and treatment of human disease. The building will contain excellent new facilities and provide additional space for some of our most significant research efforts, ranging from mental illness and new techniques in surgery to new understandings in immunology."

Samuel B. Gross, vice chancellor for medical affairs at WU, said, "The proposed new structure will facilitate collaborative research and physical unity for the first time all institutions at the Washington University Medical Center."

The Pew Memorial Trust is the oldest and largest of several charitable trusts founded by the members of the Pew family and endowed by the Glenn mede Trust Company. Originally established in 1948 in Pennsylvania as the Pew Memorial Foundation, it was created in memory of the late Joseph N. Pew, founder of Sun Oil Co., now Sun Com panoy, Inc., and his wife, Mary Anderson Pew, by their four surviving children: Mary Ethel Pew, Mrs. Mabel Pew Myrin, J. Howard Pew, and Joseph N. Pew Jr., all of them now deceased.

"Student Life editor Bohlmann speaks on public service at commencement"

Paul A. Bohlmann, a graduating senior in the College of Arts and Sciences, will give the student address at commencement Friday, May 21. Bohlmann will speak on the virtues of community service after graduation. "Our plea to the student community for the student to serve is an important aspect of the quality of life after graduation."

Bohlmann, 1981-82 editor-in-chief of Student Life was one of eight students who applied for the honor of being the student commencement speaker. He was chosen by a committee of students, faculty and staff on the basis of a speech and delivery.

Bohlmann decided to participate in the competition for student speaker because of his interest in working to live their lives. Community service and the belief that we are not just individuals, but part of a community, is one of those ideas people should consider. Bohlmann will graduate summa cum laude at Friday's ceremonies with a major in history. For the past six months, Bohlmann has been researching and writing an honors thesis in history.
Approximately 383 graduating students will be recognized for their scholarship and leadership at the Eliot Honors Convocation at 2:30 p.m. Thursday, May 20, in Graham Chapel. Speaking at the ceremony will be Norris K. Smith, professor and chairman of the WU Department of Art and Archaeology. The title of the talk is "Unreaching." "The first five years Basu has carried out extensive research in the area of stress analysis (specifically, p-version of the finite element method) in connection with projects funded by the National Aeronautics and Space Administration (NASA), Association of American Railroads (AAR), and Washington University Technology Associates (WUTA). He is the principal investigator of the WUTA contract to develop the first commercial version of a new generation of stress analysis software (FIESTA-2D) based on the p-version of the finite element method. This software is proposed to be distributed exclusively by McDonnell Douglas Automation Co., St. Louis.

M. Carolyn Baum, director of occupational therapy at the WU School of Medicine, has been elected president of the American Occupational Therapy Association. Baum will accept the presidency of the 35,000-member association at the association's annual meeting May 15 in Philadelphia. For the past three years, she has served as vice president of the association.

Baum received her bachelor's degree from the University of Kansas at Lawrence in 1970 and her master's degree from Webster College at St. Louis in 1979. Prior to her arrival at WU in 1975, Baum was director of physical medicine and rehabilitation and director of occupational therapy at the Research Medical Center in Kansas City.

Dagmar Hamilton, visiting associate professor in the WU School of Law and the Department of Political Science, has been awarded a $1,000 Texas Excellence Teaching Award from the Texas Ex-Students Association of the University of Texas. Hamilton is an associate professor in the Lyndon Baines Johnson School of Public Affairs at the University of Texas. The award is a university-wide one awarded annually by the alumni of the University of Texas.

Student-athletes cited with new Hayes Award

Chancellor William H. Danforth will announce a new award at Eliot Honors Convocation this year, the W. Alfred Hayes Award, named in honor of this 1949 WU alumnus, life trustee, athlete, entrepreneur, and St. Louis civic and charitable leader. Hayes died on Dec. 4, 1980. The convocation will be held at 2:30 p.m. Thursday, May 20, in Graham Chapel.

The Hayes Award will be presented annually to graduating student-athletes who by personal example have provided constructive leadership at WU.
Thursday, May 13
4 p.m. Department of Chemistry Seminar, "Model Studies of Carbon Monoxide Hydrogenation," Cheryl Casey, dept. of chemistry, U. of WU. 311 McMillen Lab.
6:45 p.m. Department of Mathematics Colloquium, "Embedding Problems," Michael Markowicz, prof. of mathematics, U. of Chicago. 199 Cupples I. (Tex. 4 p.m., 222 Cupples I.)
6:50 p.m. William Greenleaf Eliot Society Dinner with special guest Fred Haise Brown, former CBS sports reporter and host of "Brown on Books" radio show, Bellefonte Country Club, 12253 Ladue Rd. For Eliot Society members and their guests.
Saturday, May 15
9 a.m. Neuroscience Program Lecture, "Tissue Culture in the Study of the Differentiation of Neurons Derived from Neural Cere," Mary Johnson, WU prof. of anatomy and neurobiology. 511 McDonnell Medical Sciences Bldg., 4570 McKeil.
Sunday, May 16
3 p.m. Opening reception for School of Fine Arts Undergraduate Exhibition, Upper Gallery, and "Early, Old Master and Contemporary Printmaking Techniques," exhibition, Print Gallery, WU Gallery of Art, Steinberg Hall. 11 a.m.-5 p.m. weekdays; 11 a.m.-3 p.m. weekends. May 16-23.
7 p.m. "Core Show," a collection of works by WU School of Fine Arts freshmen and sophomores. Betty Hall Gallery. 10 a.m.-4 p.m. weekdays; 1-5 p.m. weekends. May 21-August 31.
Memorable Skinner visit fulfills donors Lewins' ideas on humanities
Quentin Skinner of the University of Cambridge, who recently spent a month at WU as the Lewin Visiting Professor in the Humanities, has returned to Great Britain after lecturing here frequently on "Law and Liberty." Somehow, while delivering these formal addresses and also a course of more informal talks, he found time to meet with students, who were captivated by his erudition and charming demeanor.

Exhibitions
"School of Fine Arts Undergraduate Exhibition," a collection of works by WU School of Fine Arts juniors and seniors in diverse media. Upper Gallery, WU Gallery of Art, Steinberg Hall. 10 a.m.-5 p.m. weekdays; 11 a.m.-3 p.m. weekends. May 16-23.
"Early, Old Master and Contemporary Printmaking Techniques," a comparative survey of printmaking techniques organized by the WU art history department. WU museum. Print Gallery, WU Gallery of Art, Steinberg Hall. 10 a.m.-5 p.m. weekdays; 1-5 p.m. weekends. May 16-23.
"Core Show," a collection of drawings and designs by WU School of Fine Arts freshmen and sophomores. Betty Hall Gallery. 10 a.m.-4 p.m. weekdays; 1-5 p.m. weekends. May 21-August 31.

Memorable Skinner visit fulfills donors Lewins' ideas on humanities
Quentin Skinner of the University of Cambridge, who recently spent a month at WU as the Lewin Visiting Professor in the Humanities, has returned to Great Britain after lecturing here frequently on "Law and Liberty." Somehow, while delivering these formal addresses and also a course of more informal talks, he found time to meet with students, who were captivated by his erudition and charming demeanor.

The enthusiastic reception of the young British political theorist on this campus is exactly what the donors of this Visiting Professorship, Mr. and Mrs. Tobias Lewin, had hoped might ensue when they endowed it a few years ago.

Quentin Skinner himself acknowledged that he and his wife, who occupied the Hurst apartment on the South-40, had found their residence here on extremely pleasant experience. "We had a memorable time in St. Louis," Skinner said, "and the students were a delight. They loved our baby daughter, Olivia," he added. "We were extremely well looked after on campus. People were most generous to us. In fact, he concluded with a smile, 'we didn't have a single free evening.'

Having summed up their reactions hastily, Skinner turned his attention to packaging, which included noting the great bounty of books back to England, including, among others, Saul Bellow's new work, Dean's December. They are a great bargain here,' Skinner explained, 'as compared with what comparable volumes cost in England.'

Computers—continued from p. 1
identifying the sequences of minute fragments that make up DNA, the generic material of life. Because the DNA molecules of higher forms of life are extraordinarily long, 'slicing' them into smaller and smaller pieces with restriction enzymes in order to analyze them would take forever. A more promising approach, Thomas explained, is to first break the DNA into larger overlapping parts and then use the computer to reconstitute these fragment sequences. Other collaborative research at BCL concerns improved versions of positron emission tomography scanners and better methods of gauging radiation doses for cancer patients. 'The list of as a critical sense of written values. Comprehension of these ideas can be the basis of considerable pleasure in the years to come,' they concluded.

skinner himself acknowledged that he and his wife, who occupied the Hurst apartment on the South-40, had found their residence here on extremely pleasant experience. "We had a memorable time in St. Louis," Skinner said, "and the students were a delight. They loved our baby daughter, Olivia," he added. "We were extremely well looked after on campus. People were most generous to us. In fact, he concluded with a smile, 'we didn't have a single free evening.'

Having summed up their reactions hastily, Skinner turned his attention to packaging, which included noting the great bounty of books back to England, including, among others, Saul Bellow's new work, Dean's December. They are a great bargain here,' Skinner explained, 'as compared with what comparable volumes cost in England.'

Computers—continued from p. 1
identifying the sequences of minutefragments that make up DNA, the genetic material of life. Because the DNA molecules of higher forms of life are extraordinarily long, "slicing" them into smaller and smaller pieces with restriction enzymes in order to analyze them would take forever. A more promisingapproach, Thomas explained, is to first break the DNA into larger overlapping parts and then use the computer to reconstitute these fragment sequences. Other collaborative research at BCL concerns improved versions of positron emission tomography scanners and better methods of gauging radiation doses for cancer patients. ‘The list of new uses of computers and digitaltechnology is bound to grow as the revolution in integrated circuits continues,’ said G. James Blaine III, BCL's associate director.

"Our focus continues to be on using state-of-the-art technology to helpsolve problems," Thomas said. "We're more successful at this institution than most because of the federation of laborato ries and departments whose collaboration has been sustained over the years by support from the National Institutes of Health's Division of Research Resources. Taken all together, WU has one of the largest technical and biomedical computing resources in the nation."