Identifying basal ganglia divisions in individuals using resting-state functional connectivity MRI

Kelly Anne Barnes1*, Alexander L. Cohen1, Jonathan D. Power1, Steven M. Nelson1, Yannic B. L. Dosenbach1, Francis M. Miezin1,2, Steven E. Petersen1,2,3,4 and Bradley L. Schlaggar1,2,3,5

1 Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
2 Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
3 Department of Psychology, Washington University School of Medicine, St. Louis, MO, USA
4 Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO, USA
5 Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA

Edited by: Lucina Q. Uddin, Stanford University, USA
Reviewed by: Adriana Di Martino, New York University Langone Medical Center, USA
Bogdan Draganski, University College London, UK

*Correspondence: Kelly Anne Barnes, Department of Neurology, Washington University School of Medicine, 4525 Scott Avenue, Room 2220, St. Louis, MO 63110, USA.
e-mail: barnesk@npg.wustl.edu
Received: 19 February 2010; paper pending published: 23 March 2010; accepted: 11 May 2010; published online: 10 June 2010.

Copyright © 2010 Barnes, Cohen, Power, Nelson, Dosenbach, Miezin, Petersen and Schlaggar. This is an open-access article subject to an exclusive license agreement between the authors and the Frontiers Research Foundation, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

FIGURE S1 | Analyses were conducted using an eta² threshold of 0.85 (black arrows, A–C) where there is strong community structure in the network (A, green bar at Q=0.3), the network is sparse (B, green bar at Edge Density ~0.05) but fully connected (C, green bar at Graph Connectedness ~1.0).
Figure S2 | Rows 1–3. From Cohort two, three subjects’ basal ganglia voxels colored with respect to modularity optimization groupings (shown on each subject’s MP-RAGE; coloring for each hemisphere and each subject is arbitrary). Arrows indicate modules labeled as Dorsal Caudate (Red Arrows, $z = 16$), Dorsal Caudal Putamen (Blue Arrows, $z = 10$), and Ventral Striatum (Purple Arrows, $z = -8$). Row 4. Conjunction of modules ascribed the same label across Cohort Two subjects. Color bar depicts number of subjects with a module assignment at each voxel.
Figure S3 | Z-transformed rs-fcMRI maps from modularity assignments are statistically reliable within each cohort for the right hemisphere divisions (first and second rows, $z \geq 3.00$, $k = 21$, corresponding to $p < 0.05$, Monte Carlo corrected) and yield common regions of correlation across cohorts (conjunction analysis, third row). Positive correlations are depicted in warm colors (first two rows) and their overlap is depicted in red in the conjunction analysis (third row). Negative correlations are depicted in cool colors (first two rows) and their overlap is depicted in green in the conjunction analysis (third row).