
Washington University School of Medicine
Digital Commons@Becker

Open Access Publications

2011

Enrichment analysis of genetic association in genes
and pathways by aggregating signals from both rare
and common variants
Wei Yang
Washington University School of Medicine in St. Louis

C Charles Gu
Washington University School of Medicine in St. Louis

Follow this and additional works at: http://digitalcommons.wustl.edu/open_access_pubs

Part of the Medicine and Health Sciences Commons

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open
Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact engeszer@wustl.edu.

Recommended Citation
Yang, Wei and Gu, C Charles, ,"Enrichment analysis of genetic association in genes and pathways by aggregating signals from both rare
and common variants." BMC Proceedings.5,Suppl 9. S52. (2011).
http://digitalcommons.wustl.edu/open_access_pubs/518

http://digitalcommons.wustl.edu?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F518&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wustl.edu/open_access_pubs?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F518&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wustl.edu/open_access_pubs?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F518&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/648?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F518&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:engeszer@wustl.edu


PROCEEDINGS Open Access

Enrichment analysis of genetic association in
genes and pathways by aggregating signals from
both rare and common variants
Wei Yang1, C Charles Gu1,2*

From Genetic Analysis Workshop 17
Boston, MA, USA. 13-16 October 2010

Abstract

New high-throughput sequencing technologies have brought forth opportunities for unbiased analysis of
thousands of rare genomic variants in genome-wide association studies of complex diseases. Because it is hard to
detect single rare variants with appreciable effect sizes at the population level, existing methods mostly aggregate
effects of multiple markers by collapsing the rare variants in genes (or genomic regions). We hypothesize that a
higher level of aggregation can further improve association signal strength. Using the Genetic Analysis Workshop
17 simulated data, we test a two-step strategy that first applies a collapsing method in a gene-level analysis and
then aggregates the gene-level test results by performing an enrichment analysis in gene sets. We find that the
gene set approach which combines signals across multiple genes outperforms testing individual genes separately
and that the power of the gene set enrichment test is further improved by proper adjustment of statistics to
account for gene-wise differences.

Background
Although it is debatable whether individual common sin-
gle-nucleotide polymorphism (SNPs) or multiple rare
variants underlie common human diseases, the truth is
probably somewhere in between in that both types of var-
iants might be important. Opportunities to include rare
SNPs in current genome-wide association studies
(GWAS) are brought forth by new high-throughput
sequencing technologies. However, lone rare variants
with appreciable effect sizes at the population level are
hard to find. Therefore existing methods to detect risk
rare variants are mostly of the collapsing type; these
methods aggregate effects from multiple markers. Popu-
lar collapsing methods include the combined multivariate
and collapsing (CMC) method [1] and the weighted-sum
test [2]. These methods combine the effects of many
SNPs in a chromosome region (e.g., vicinity of a candi-
date gene) to enhance statistical power.

Another way to combine small effects is to use enrich-
ment analysis to test exceptional enrichment of signals in
predefined sets of variables (e.g., SNPs in genes or genes
in biological pathways). In general, when multiple effects
are combined, noise (SNPs or genes) may be included
indiscriminately with true signals. To achieve good test
power, it is essential to properly use enrichment analysis
or collapsing so as to ensure the focus on true signals
while mitigating the influence of noise.
Gene set enrichment analysis (GSEA) was first applied

in gene expression analysis [3] and was later brought into
GWAS analysis [4]. We previously developed an exten-
sion of GSEA, called variable set enrichment analysis
(VSEA), for improved enrichment analysis in GWAS [5].
One of the main issues addressed by our VSEA extension
is how to properly normalize the statistics for aggregation
to compensate for their distributional differences that
result from various gene or gene set sizes or complicated
interactions. This issue becomes more important when
both rare and common SNPs are included in the analysis.
In this paper, we test a two-step strategy that first applies
a collapsing method at the gene level and then aggregates
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the gene-level test results using an improved enrichment
analysis. This two-step approach is applied to the Genetic
Analysis Workshop 17 (GAW17) simulated data with
knowledge of the underlying simulating model; we also
test both the CMC and the weighted-sum tests for gene-
level analysis and both VSEA and GSEA for gene-set-
level enrichment analysis.

Methods
Step 1: collapsing methods for genes
For gene-level tests, we used two collapsing methods to
aggregate signals from multiple markers in genes. The
first method is the CMC method. In this approach, rare
variants (minor allele frequency [MAF] ≤ 0.01) in a gene
are collapsed into a single variant and tested in regres-
sion models together with other common variants [1].
We consider two variations of the CMC method when
defining the new collapsed variant. CMC-1 defines a 0/1
indicator for the presence of any rare variants; CMC-
count uses the count of copies of rare alleles.
The second method is the weighted-sum test [2]. In this

approach all variants within the gene are collapsed into a
single variant by weighting each SNP to adjust for allele
frequencies. When this method is applied to quantitative
traits, we also use two variations of tests to get the p-
values. WeightSum1 is a permutation-based approach to
test the significance of the cross product of the collapsed
variant and trait; WeightSum2 regresses the trait against
the collapsed variant.
For more details on the collapsing methods, readers

may refer to the review paper by Dering et al. [6].

Step 2: enrichment tests for gene sets
Gene set enrichment tests are used to evaluate the com-
bined significance of sets of genes. The procedure was first
proposed by Subramanian et al. [3] in the original GSEA
method to study differential genome-wide expression pro-
files. The method tests whether a gene set is significantly
enriched with differentially expressed genes by comparing
the enrichment of association signals in a given gene set
with that in gene sets drawn at random. For the present
study, we perform the GSEA using the gene-level statistics
derived from the collapsing tests as gene scores. For
improved power, we apply our VSEA extension developed
for GWAS; this analysis properly adjusts for the difference
in gene score distributions for genes of various sizes and

SNP frequency composition [5] by using information from
permutation tests. We apply this test to assess the power
of detecting the true gene set and the stability when noise
is included or when some true signals are excluded.
Using the GAW17 data set, we performed all gene-based

and gene set tests using Q2 as the phenotype of interest
and using the unrelated-individuals sample (697 subjects).
For the gene set analysis, 13 genes that contribute to the
risk of Q2 make up a gene set. In addition, we formed
three types of gene sets by adding 5, 10, or 15 randomly
selected genes to the Q2 genes; we also formed two more
types by excluding 5 and 10 genes from the Q2 genes; one
reference gene set consisted of genes contributing to Q1
phenotype; and finally, 200 gene sets consisted of ran-
domly selected irrelevant genes to assess the false-positive
rate, all with comparable gene set sizes (ranging from 3 to
64 genes). Two thousand permutations were used for the
enrichment tests. We completed analyses of the first 25
replicates of the simulated data for this report.

False-positive rates and spurious genes
Other investigators have observed extensive false-posi-
tive rates (FPRs) using various statistical methods [7,8].
One of the major reasons for the high FPRs is long-dis-
tance linkage disequilibrium among SNPs. We follow
the method of Luedtke et al. [8] to identify “spurious
genes” resulting from long-distance linkage disequili-
brium and examine analysis results after excluding these
genes.
Of the 3,205 genes in the data set, 13 contain causal

SNPs, leaving 3,192 nonrisk genes. We define a spur-
iously associated gene as any nonrisk gene that is identi-
fied as significantly (p < 0.05) associated with the
phenotype in at least 16 of the 200 replicates for the
gene-based collapsing methods. We found that 980
genes were spurious.

Results
Step 1: gene-based tests
The FPRs of the four gene-based tests are shown in
Table 1. For all collapsing methods, the FPR is inflated
(0.087–0.108). After excluding the spurious genes, the
FPR drops, but it is still slightly inflated (0.052–0.60).
The FPR is well maintained using permutations.
The power to detect the 13 genes using the collapsing

methods in step 1 is shown in Table 2. The overall

Table 1 False positive rates at a nominal significance level of 0.05 in step 1

CMC-1 CMC-count WeightSum1 WeightSum2

Irrelevant genes 0.087 0.087 0.108 0.086

Irrelevant genes excluding spurious ones 0.060 0.060 0.059 0.052

Permutations 0.050 0.050 0.035 0.050

False positive rates were calculated by counting significant values in either irrelevant genes or in 2,000 permutation tests.
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power of using the two CMC tests is similar and is gen-
erally higher than or comparable to that of the
weighted-sum methods. Two genes, VNN1 and VNN3,
are easily picked up at a significance level of 0.05, espe-
cially using the CMC methods. Four other genes that
have fair power (≥0.4) are GCKR, PDGFD, SIRT1, and
SREBF1.

Step 2: gene set tests
We calculated the FPRs for the enrichment tests by
using the proportion of signals in the 200 random gene
sets at a significance level of 0.05 and averaging over 25
replications (Table 3). Both methods tend to give
inflated rates to some extent whether spurious genes are
included or not, although excluding them did produce
better results (reducing FPR by 12.4% on average).
After adjusting the gene test statistics for their size and

linkage disequilibrium structure in VSEA, we found that,
when checking power, the gene set enrichment tests out-
performed the straightforward GSEA in all situations
(Figure 1). This result held no matter whether spurious
genes were present or not, whether noise genes were
included or true risk genes were left out, and whether the
gene-level test used the CMC method or the weighted-
sum method. When using the CMC methods and exclud-
ing spurious genes, VSEA achieves 100% power to detect

the Q2 risk genes (p < 0.05), even when up to 10 random
noise genes were included in the gene set. Moreover, the
FPR of VSEA to find the reference Q1 risk gene set was
always below the nominal 0.05.
When noise genes were included in the risk gene set or

true risk genes were left out, both VSEA and GSEA suf-
fered from power loss. For VSEA, when using the CMC
methods and excluding spurious genes, the power
remained as high as 0.88 when 20 noise genes were
included, but power was reduced to about 50% when only
3 risk genes were included. Also, removing spurious genes
improved the power of both VSEA and GSEA.

Discussion and conclusions
We tested an improved method for enrichment analysis
on top of gene-based collapsing methods for combining
association signals across multiple genes. We compared
the performance of the new method, which uses two col-
lapsing methods to deal with the problem of small effects
of rare variants, with two methods for gene set enrichment
analysis and demonstrated the importance of normalizing
gene-level test results. In the gene-level analysis, the CMC
method performs slightly better than the weighted-sum
method. It is worth noting that the weighted-sum method
was originally proposed for case-control data with a rank
sum test, and we tested association of the weighted sum
with phenotype in order to extend it to quantitative trait
analysis. At the gene set level, VSEA clearly outperformed
direct application of conventional GSEA without normali-
zation. The result shows that normalization of gene-based
statistics is essential in gene-set-based enrichment analysis.
Furthermore, the two-step approach of combining single
rare variants across multiple genes clearly outperforms
testing individual genes separately.
Data quality is an important issue no matter what

method is used in the gene-level and gene-set-level tests.
We observed inflated FPR in all our analysis methods
when “dirty” data were used. However, after excluding
spurious genes, the FPR dropped to close to a nominal
level for both the gene-based tests and the gene set
enrichment tests, and the FPR for the gene set methods
was only slightly higher than the FPR for the gene-based
tests. The fact that the FPR is still slightly inflated could
be due to the complexity of the data. For example, we

Table 2 Power to detect the risk genes for Q2 in step 1

Gene CMC-1 CMC-count WeightSum1 WeightSum2

BCHE 0.36 0.28 0.04 <0.01

GCKR 0.52 0.52 0.64 0.52

INSIG1 0.08 0.08 <0.01 0.12

LPL 0.24 0.24 0.04 0.04

PDGFD 0.52 0.52 0.04 <0.01

PLAT <0.01 <0.01 <0.01 <0.01

RARB 0.16 0.16 0.24 0.12

SIRT1 0.40 0.52 0.52 0.36

SREBF1 0.44 0.44 <0.01 <0.01

VLDLR 0.04 0.04 <0.01 0.12

VNN1 0.88 0.92 0.96 0.96

VNN3 0.80 0.80 0.24 0.12

VWF 0.04 0.04 0.28 0.20

Power is shown at significance levels of 0.05.

Table 3 False positive rates of VSEA at a nominal significance level of 0.05 in step 2

Gene-based test

Method CMC-1 CMC-count WeightSum1 WeightSum2

Spurious genes present GSEA 0.057 0.060 0.097 0.089

VSEA <0.001 0.086 0.080 0.080

Spurious genes excluded GSEA 0.047 0.047 0.056 0.070

VSEA 0.061 0.060 0.070 0.070
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considered only the effect of spurious genes that have
excessive correlation with true risk genes; the cryptic
population structure observed by other GAW17 contri-
butors was not addressed.
Finally, an important practical issue in successfully

applying a gene-set-based strategy is to have a correct
list of promising gene sets to begin with. Although
many data-driven approaches have been proposed

recently to create such a list, it is beyond the scope of
this report and certainly warrants further investigation.
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Figure 1 Power of two types of gene set enrichment tests in step 2 Gene set enrichment analysis aggregates the results of gene-based
tests for a group of genes. We tested the 13 genes contributing to the Q2 phenotype and used the genes for the Q1 phenotype as a negative
reference. Noise was introduced to the Q2 genes by adding 5, 10, 15, and 20 genes. Also, in the last two gene sets part of the true signals was
ignored by randomly excluding 5 or 10 risk genes. Power is shown for two types of enrichment tests: GSEA (without adjusting the gene-level
test scores) and VSEA (gene scores adjusted). Tests were performed before (dashed lines) and after (solid lines) excluding spurious genes. These
gene set tests were based on four gene-level tests (CMC-1, CMC-count, WeightSum1, and WeightSum2).
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This article has been published as part of BMC Proceedings Volume 5
Supplement 9, 2011: Genetic Analysis Workshop 17. The full contents of the
supplement are available online at http://www.biomedcentral.com/1753-
6561/5?issue=S9.
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