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Abstract

Because of the low frequency of rare genetic variants in observed data, the statistical power of detecting their
associations with target traits is usually low. The collapsing test of collective effect of multiple rare variants is an
important and useful strategy to increase the power; in addition, family data may be enriched with causal rare
variants and therefore provide extra power. However, when family data are used, both population structure and
familial relatedness need to be adjusted for the possible inflation of false positives. Using a unified mixed linear
model and family data, we compared six methods to detect the association between multiple rare variants and
quantitative traits. Through the analysis of 200 replications of the quantitative trait Q2 from the Genetic Analysis
Workshop 17 data set simulated for 697 subjects from 8 extended families, and based on quantile-quantile plots
under the null and receiver operating characteristic curves, we compared the false-positive rate and power of
these methods. We observed that adjusting for pedigree-based kinship gives the best control for false-positive rate,
whereas adjusting for marker-based identity by state slightly outperforms in terms of power. An adjustment based
on a principal components analysis slightly improves the false-positive rate and power. Taking into account type-1
error, power, and computational efficiency, we find that adjusting for pedigree-based kinship seems to be a good
choice for the collective test of association between multiple rare variants and quantitative traits using family data.

Background
Because of the limitation of single-nucleotide polymorph-
ism (SNP) array-based genotyping technology in detecting
rare genetic variants, genome-wide association scans
usually focus only on common variants analysis. Advances
in DNA sequencing technologies in recent years, however,
have allowed the identification and genotyping of rare var-
iants with substantially higher accuracy and rapidly
decreasing cost, which makes it practicable to detect rare
variants in relatively large populations and thus enables
association scans of these variants for human complex dis-
eases. Facilitated by these technologies, investigators have

recognized rare variants as one important factor that con-
tributes to human complex-disease-related traits and
interest in them is increasing [1-8].
Statistically, because of the extremely low frequency of

rare variants in populations, the power of detecting dis-
ease-associated individual rare variants usually is poor.
To increase the power, investigators have proposed a
useful strategy in which multiple rare variants are col-
lapsed into one variant; then, the collective effect of mul-
tiple rare variants is tested rather than individual rare
variants. Different collapsing methods have been devel-
oped [9-14]. Besides the statistical methods, family data
provide another additional resource that may add more
power in the association analysis of rare variants, because
functional rare variants for a specific trait could be more
enriched in some families than in populations. However,

* Correspondence: qunyuan@wustl.edu
Division of Statistical Genomics, Washington University School of Medicine,
4444 Forest Park Boulevard, St. Louis, MO 63108, USA

Zhang et al. BMC Proceedings 2011, 5(Suppl 9):S35
http://www.biomedcentral.com/1753-6561/5/S9/S35

© 2011 Zhang et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:qunyuan@wustl.edu
http://creativecommons.org/licenses/by/2.0


when family data are used for association analysis, both
population structure and familial relatedness between
individuals need to be addressed and adjusted to obtain
unbiased statistical results. Although linkage-based and
transmission-based methods are commonly used for the
analysis of family data with no need for adjusting for
population structure and familial relatedness, they are
not applicable to collapsing tests of the collective effect
of multiple rare variants. Therefore most of the previous
studies of collective tests of rare variants were focused on
binary traits from case and control data, and methods for
detecting rare variants collectively associated with quanti-
tative traits using family data have not been well
established.
To exploit advantages from both collective tests and

family data, we propose to combine a collapsing strategy
with the framework of the unified mixed model (UMM)
[15] for the association analysis of rare variants and
quantitative traits. The UMM methods were developed
primarily for common variant analysis in genome-wide
association scans; most of them, however, have not been
investigated and validated in the context of rare variants.
Here, we borrow the idea from the UMM and present a
comparison of several possible methods under the frame-
work of the UMM, with an emphasis on statistical prop-
erties of collective association tests of multiple rare
variants and quantitative traits using family data.

Methods
Models
To adjust for both population structure and familial
relatedness in association analyses, we use the following
linear mixed model:
Y = Xb + Qv + Zu + e, (1)
where Y is the quantitative trait of interest, X is the

genotype data, b is the fixed effect(s) of genotype(s)
under the test, Q is the population structure variables, v
is the fixed effects of Q, u is the random polygenic effects
of individuals, Z is the design matrix of u, and e is the
random residual error.
Equation (1) was originally proposed as the UMM for

association analysis of common variants [15], in which Q
and Z were incorporated to adjust for population struc-
ture and familial relatedness, respectively, and X was
usually the genotype data for individual SNPs. Here, we
propose to combine the UMM with a collapsing test of
rare variants by replacing X with the collapsing variable
of multiple rare variants from a given genetic unit. There
are different ways to collapse multiple rare variants; here,
we choose Li and Leal’s method [10].
Our goal is to compare six different methods under the

framework of the UMM for the collapsing test: (1) a sim-
ple regression with no adjustment for population structure
and familial relatedness, denoted REG; (2) adjustment for

population structure using principal components of geno-
types, denoted PC; (3) adjustment for familial relatedness
using a pedigree-based kinship matrix, denoted KIN; (4)
adjustment for population structure and familial related-
ness using the PC and KIN methods, denoted PC-KIN; (5)
adjustment for familial relatedness using a marker-based
identical-by-state kinship matrix, denoted IBS; (6) adjust-
ment for population structure and familial relatedness
using the PC and IBS methods, denoted PC-IBS. More
details about the six methods are presented in Table 1.

Data and computation
We used the 200 replications of data of 697 subjects from
8 extended families simulated from Genetic Analysis
Workshop 17 (GAW17) [16]. We chose the quantitative
trait Q2 to compare the methods and as the target trait
(i.e., Y in the models). For each gene, we collapsed the
genotypes with minor allele frequency (MAF) less than
0.01 into a binary (1 or 0) variable according to the pre-
sence or absence of at least one rare variant in a subject,
based on Li and Leal’s method [10]. We then used this
binary variable as the collective predictor variable of
interest (i.e., X) in the models.
We obtained the top 10 eigenvectors for the 697 sub-

jects using Eigenstrat 2.0 [17] using all SNPs with MAF >
10% and then fitted these eigenvectors into the PC-related
models (PC, PC-KIN, and PC-IBS) as fixed-effect popula-
tion structure covariates (i.e., Q). Using the R package Kin-
ship 1.10-23 (http:// cran.r-project.org/web/packages/
kinship), we obtained the kinship matrix from the pedigree
information and fitted it as Z into the models. Using 5,000
randomly selected makers with MAF > 0.05 and the R
package EMMA 1.1.2 [18], we obtained the IBS matrix
and then fitted it as Z into the models.
To estimate parameters and perform significance tests,

we used SAS 9.2 for the REG and PC models, Kinship
1.10-23 for the KIN and PC-KIN models, and EMMA
1.1.2 for the IBS and PC-IBS models. Quantile-quantile
(Q-Q) plots under the null and receiver operating char-
acteristic (ROC) curves were investigated and compared
between the six models.

Results
We compared the six selected methods in terms of two
important statistical properties, false-positive rate (FPR)
and power, by visualization of Q-Q plots and ROC
curves.
Q-Q plots (Figure 1) show that the REG model ignor-

ing population and family structure in the data results
in a significant FPR. Both the KIN and IBS models
reduce FPR significantly, whereas the KIN model slightly
outperforms the IBS model. The effects of adjusting for
population structure using principal components in all
models are insignificant.
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According to the ROC curves (Figure 2) and in terms
of detecting the collective effect of multiple rare variants
in a gene, the IBS model has the best power and the REG
model the lowest; the KIN model is close to the IBS
model. Adjustment for principal components for most
analyses slightly increases the power.

Discussion and conclusions
By combining FPR and power, we find that the KIN and
IBS models outperform other methods for the rare variant
collective association test. The two methods have pros and
cons. The KIN model is computationally more efficient
than the IBS model but needs pedigree information. The
IBS model requires no extra pedigree information but may
be computationally intense when the sample size is large.

Therefore the KIN model should be a good choice when
pedigree information is available, especially for studies
with large sample size and strong family structure.
The result of PC adjustment for rare variant analysis is

inconsistent with that for common variant analysis [17].
An important reason could be that the top 10 eigenvectors
we used capture only about 15% of the variation of geno-
types. Another possible reason is that the GAW17 variant
data are from only one chromosome (and some selected
genes), and the principal components based on these var-
iants may not be able to represent the genetic background
well.
The collapsing method we used here assumes that all the

casual variants from a gene have the same effect direction,
which may not be true. Some effect direction-sensitive

Table 1 Six methods for comparison

Method Model Detail

REG Y = Xb + e Ignoring population structure and familial relatedness, with no adjustment

PC Y = Xb + Qv + e Top 10 eigenvectors from principal components analysis are used as the input of Q

KIN Y = Xb + Zu + e Kinship matrix based on pedigree data is used as Z to define covariance structure of u

PC-KIN Y = Xb + Qv + Zu + e Combining PC and KIN methods

IBS Y = Xb + Zu + e IBS matrix based on genotype data is used as Z to define covariance structure of u

PC-IBS Y = Xb + Qv + Zu + e Combining PC and IBS methods

Figure 1 Q-Q plots for six different methods. Q-Q plots of −log10 scaled p-values for six different methods based on 1,940 genes from 697
subjects (8 extended families) and 200 replications of quantitative trait Q2 simulated by GAW17 under the null hypothesis. Red curves, observed;
black curves, expected.
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methods can be used, but they usually require a permuta-
tion test. Because permutation will destroy family structure,
it is still an open question of how to perform the permuta-
tion test on family data.
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