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Abstract

Technical advances in lipidomic analysis have generated tremendous amounts of quantitative lipid molecular species data,
whose value has not been fully explored. We describe a novel computational method to infer mechanisms of de novo lipid
synthesis and remodeling from lipidomic data. We focus on the mitochondrial-specific lipid cardiolipin (CL), a polyglycerol
phospholipid with four acyl chains. The lengths and degree of unsaturation of these acyl chains vary across CL molecules,
and regulation of these differences is important for mitochondrial energy metabolism. We developed a novel mathematical
approach to determine mechanisms controlling the steady-state distribution of acyl chain combinations in CL . We analyzed
mitochondrial lipids from 18 types of steady-state samples, each with at least 3 replicates, from mouse brain, heart, lung,
liver, tumor cells, and tumors grown in vitro. Using a mathematical model for the CL remodeling mechanisms and a
maximum likelihood approach to infer parameters, we found that for most samples the four chain positions have an
independent and identical distribution, indicating they are remodeled by the same processes. Furthermore, for most brain
samples and liver, the distribution of acyl chains is well-fit by a simple linear combination of the pools of acyl chains in
phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylglycerol (PG). This suggests that headgroup
chemistry is the key determinant of acyl donation into CL, with chain length/saturation less important. This canonical
remodeling behavior appears damaged in some tumor samples, which display a consistent excess of CL molecules having
particular masses. For heart and lung, the ‘‘proportional incorporation’’ assumption is not adequate to explain the CL
distribution, suggesting additional acyl CoA-dependent remodeling that is chain-type specific. Our findings indicate that CL
remodeling processes can be described by a small set of quantitative relationships, and that bioinformatic approaches can
help determine these processes from high-throughput lipidomic data.
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Introduction

Phospholipids play a crucial role in biological systems. They act as

key components in membrane physiology, bioenergetics, cellular

recognition, and signal transduction [1–3]. While the phospholipid de

novo biosynthesis pathway (the Kennedy pathway) is relatively well

understood, there is still much to know about the remodeling

pathway (the Lands cycle) [4–6]. The Lands cycle involves the

deacylation/reacylation of existing cellular phospholipids to create

new molecular species. Phospholipases, such as PLA1 and PLA2,

remove existing acyl chains to generate lysophospholipids. Various

transacylases or acyltransferases then reacylate the lysophospholipid

with a donor acyl chain, changing phospholipid architecture, which

provides a platform for numerous and diverse functional roles.

Remodeling processes could in principle be complex, as there are an

abundance of acyltransferase, transacylase, and phospholipase

isoforms, which may be sn-1/sn-2 as well as acyl chain selective [6].

Characterization of lipid remodeling mechanisms is crucial to

understanding the functional roles of lipids in biological systems.

Advances in mass spectrometry now allow for the high-

throughput analysis of the cellular lipidome, which is comprised

of numerous lipid classes as well as signaling intermediates [7].

The multidimensional mass spectrometry based shotgun lipido-

mics (MDMS-SL) approach is capable of simultaneously analyzing

hundreds to thousands of lipid molecular species, providing

tremendous amounts of data that can be used to infer mechanisms

of lipid biosynthesis and remodeling in diseased and normal states

[7]. However, bioinformatic tools and models to interpret MDMS-

SL data are sparse [8,9]. The further development of computa-

tional approaches to mechanistically analyze lipidomic data would

be extremely valuable, in particular for analysis of cardiolipin (CL,

1,3-diphosphatidyl-sn-glycerol), a key polyglycerolphospholipid
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critically involved in energy metabolism, apoptosis, and mem-

brane integrity [10].

CL is unique among phospholipids because it contains four fatty

acid (FA) chains and is exclusively found in the inner mitochon-

drial membranes of eukaryotes [10,11]. CL molecular species vary

dramatically during development and among tissues. Abnormal-

ities in these profiles have been associated with changes in cellular

bioenergetics and diseases, including Barth syndrome, diabetes,

heart failure, and cancer [11–16]. The distribution and arrange-

ment of molecular species are thought to be achieved by acyl

remodeling processes and have functional significance. Because

the potential variety of CL species is extremely large (N4 positional

permutations are possible with N types of fatty acids), CL

distributions and identified molecular species have been difficult

to analyze in numerous cases [15]. A systematic computational

approach is in great need for the analysis and understanding of CL

regulation.

CL is de novo synthesized from the condensation of phosphati-

dylglycerol (PG) and cytidine diphosphate-diacylglycerol (CDP-

DAG). The four acyl chains of this immature CL are largely

comprised of shorter and saturated or mono/diunsaturated acyl

chains [12,17,18]. Immature CL species then undergo extensive

remodeling. This can be achieved by an acyl CoA dependent

deacylation-reacylation cycle, or via transacylation using acyl

chains from the sn-2 position of phosphatidylcholine (PC) and

phosphatidylethanolamine (PE) [10]. A limited number of

enzymes involved in CL remodeling, such as CoA:lysocardiolipin

acyltransferase (ALCAT1), monolysocardiolipin acyltransferase

(MLCL AT), tafazzin, and calcium-independent phospholipase

A2 (iPLA2) are known, though the specificities of these enzymes

are not clear. There may also be many other remodeling enzymes

yet to be discovered [18–23], and heterogeneity of lipids within the

membrane may affect their activity [24].

Previously, we observed that the distribution of CL in the

C57BL mouse (B6) brain could be qualitatively explained by a

simple steady state model for CL remodeling [12,25]. The model

assumed random acyl chain incorporation into CL from a pool of

PC (sn-2), PE (sn-2), and PG acyl chains, with each of the four CL

chain positions assumed to be independently and identically

remodeled [26]. Although the model was able to closely fit CL

profiles for the mouse B6 brain, the model has not been formally

described and it is not known whether the behavior is general for

other tissues and diseased states.

In this work, we introduce a rigorous approach to systematically

determine the CL remodeling mechanism in any sample at steady

state. Using high throughput MDMS-SL data and a maximum-

likelihood approach, we analyze 18 types of samples, from mouse

brain, heart, lung, liver, tumor cells, and tumors grown in vitro.

Improving on the assumptions of the simple model above, we built

a two-step process to separately answer for any sample: whether

the four chain positions of CL are independently and identically

remodeled; and how the acyl donors (PC, PE, PG, and acyl CoA)

contribute to CL fatty acid composition. Our method provides a

fast and informative approach for testing hypotheses about CL

remodeling mechanisms.

Results

Characterization of CL profiles across samples
Highly purified mitochondrial lipidomic data were obtained

from [12,27]. 14 mouse brain samples were analyzed, including

two normal strains C57BL/6J (B6) and VM/Dk (VM, which has a

210-fold increase in spontaneous brain tumor formation) [17]; B6

derived astro- cytoma tumor (CT-2A) and ependymoblastoma

tumor (EPEN); VM derived stem cell tumor VM-NM1; and two

microgliomas (VM-M2 and VM-M3). Tumors were grown in vivo

and cell cultures in vitro [28,29]. Two additional cell lines, astrocyte

(non-tumorigenic) and BV2 (microglia), were used as controls. We

also analyzed B6 mouse tissues from heart, lung, and liver. For

each sample, the mass content and distribution of lipid molecular

species (CL, PC, PE, PG) were quantified, with acyl CoA

additionally measured for the B6 brain, heart, lung, and liver

samples (All raw data are in Table S1). The sn-1 and sn-2 acyl

chain designations of diacyl phospholipids (PC, PE, and PG) were

determined by MDMS-SL analysis [30]. In general, CL profiles

are consistent in replicates of a sample, but are diverse among

different samples and tissues. Figure 1 shows a comparison of the

samples B6 brain mitochondria, EPEN brain tumor mitochondria,

and B6 heart mitochondria. The data suggest wide variations in

lipid synthesis and remodeling processes across samples.

Testing of the Independent and Identical Distribution
Model

Our MDMS-SL procedure is capable of detecting more than

100 mass peaks of CL, each containing tens to hundreds of

possible CL isomers. Given the potential complexity of processes

affecting these CL species, we first analyzed the data from the

perspective of CL fatty acid chain concentrations, an approach

that reduces the dimensionality of the problem. As an initial

question, we investigated whether the four acyl chain positions of

CL are independently and identically remodeled. To test this, we

built an ‘‘Independent and Identical Distribution’’ (IID) model, in

which the relative frequency of a CL isomer is the product of the

probabilities of its four fatty acid chains (Methods, Equation 1).

The probability of a CL molecular species is the sum over all

isomers with the same number of total carbons and double bonds

(Methods, Equation 2). The FA distribution at the CL chain

positions, {PCL(a1), PCL(a2), …, PCL(an)} (ai are chain types found

among acyl donors PC sn-2, PE sn-2, PG, and acyl CoA), is

predicted by minimizing the error between the predicted and

observed CL molecular species distribution (Methods, Equation 3).

If IID behavior is consistent with the remodeling processes within

a sample, there should exist a FA distribution that can reproduce

the experimentally observed CL profile when Equation 1 is

applied.

Table 1 shows the least error and Pearson correlation coefficient

between the observed and optimally fit CL distribution. 13/14

mouse brain samples yield r.0.7. A second set of B6

measurements for brain, heart, lung, and liver also yield r.0.9.

The results suggest that in general, the four chain positions of CL

are independently and identically remodeled. To test the

robustness of the IID model, we performed four-fold cross

validation. The correlation coefficients in the cross-validation

were still strongly positive, though somewhat lower than for the

original data. This is not unexpected since each CL peak contains

information about only a few FA chains, and the cross-validation

uses only subsets of the peaks at a time. However all samples and

tissues achieved much higher correlation coefficients compared to

random label-permuted data (t-test p-value,0.05) indicating that

the IID model could accurately describe CL remodeling behavior.

The observed and optimal predicted CL distributions are given for

each sample in Table S2.

The predicted FA compositions of CL for each tissue are shown

in Figure 2 organized into clusters. According to our inference the

predominant FA in mouse brain is 18:1 (,48%). This is in

contrast to heart, liver and lung, for which 18:2 is the predominant

component (,70%). However, 18:1 is reduced in tumor samples,

in particular lower in VM-M2 vitro, VM-M3 vivo, and VM-M3

Inference of Lipid Remodeling
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vitro. We also observed that the level of 16:0 is elevated in tumor

samples and cell cultures (.10%), compared to that in the B6 and

VM brain samples (,2%).

Proportional Incorporation of Acyl Chains from Acyl
Donors

To investigate the formation of acyl chain compositions in CL,

we then tested a ‘‘proportional incorporation’’ model which is a

refinment of the IID model. The proportional incorporation

hypothesis is that that fatty acid incorporation rates are controlled

by the head group of the donor class (PC, PE, PG or acyl CoA)

and that FAs within an acyl donor class are indistinguishable to the

remodeling enzymes. Under such a mechanism FAs would be

incorporated into CL proportionally to their prevalence in the

donor class. If this hypothesis is correct, the number of parameters

in the CL remodeling system can be reduced to the number of acyl

donor classes.

For the brain samples, we investigated a model with weight

parameters WPC, WPE, and WPG (Methods, Equation 6). These

parameters indicate the relative contributions of each lipid class to

CL FA composition in steady state. For each sample, we then

searched for optimal parameter values that could explain the CL

acyl chain composition. Inferred CL acyl compositions and

experimental compositions in acyl donors are in Table S3. We

successfully found weight parameters for 11/14 mouse brain

samples with strong correlation coefficient (r.0.7) and significant

p-values (p,0.05) (Table 2). We also investigated the proportional

incorporation model with an additional acyl CoA weight

parameter for the heart, lung, liver, and additional B6 brain

sample, for which experimental acyl CoA distributions were

available. Among these tissues, liver and brain showed a good fit

(r.0.7) with the proportional incorporation model. Thus the

simple proportional incorporation model describes CL remodeling

in most tissues, despite the varying CL profiles in different

samples/tissues. This suggests that PC and PE transacylation

remodeling has little chain specificity within each class. In brain

and liver, transacylation is the dominant remodeling process, as

the inferred acyl CoA contribution is zero.

In 10/18 samples, PC had the largest contribution to the CL

acyl chain compositions. PE had the largest contribution in only

1/18 samples, and it had the lowest contribution in 13/18. For the

four B6 tissues, our inference suggests that acyl CoA is most

relevant in heart.

Deviations from the Proportional Incorporation Model
For samples where the proportional incorporation model failed

to explain the CL profile (VM-M3 vivo r = 20.1189, VM-M3

vitro r = 0.1829, VM-M2 vitro r = 0.4711, B6 heart r = 0.5069, B6

lung r = 0.5490), a number of explanations are possible. One

possibility is that an additional remodeling enzyme has been

utilized, altering the selectivity on chain types within a donor class.

In order to gain insight into which individual chain types are

under selection, we plotted FA composition residuals in the fit to

the proportional incorporation model (Figure 3). A positive

residual indicates that there is an excess of the chain in CL over

that predicted by the proportional incorporation model, i.e. a

remodeling enzyme may favor that chain type, and vice versa for

negative residuals. In the VM-M3 vivo and VM-M3 vitro samples,

16:0, 18:0 and 22:5 are favored in CL and 18:1 is disfavored. 18:2

is highly favored in B6 heart, lung, and liver, but not in brain.

16:0, 20:4 and 22:6 are slightly disfavored across the four tissues.

This residuals approach may be useful for understanding the

behavior of remodeling enzymes in genetic perturbations.

We also calculated the pair-wise correlation (R2) of residuals,

and hierarchically clustered chain types. As shown in Figure 4, we

found a group of chains {16:0, 18:1, 22:4} that cluster with one

another. This suggests that these chain types respond to the same

selective remodeling enzyme.

Discussion

We have presented a novel, powerful computational method to

infer CL remodeling mechanisms from MDMS-SL data, which

we expect to be critical for understanding CL metabolism. New

mechanistic inference methods are of great importance since

lipidomic data, such as those in the LIPID MAPS projects [31–

33], are becoming increasingly abundant [34,35]. We focused on

Table 1. The independent and identical distribution model
successfully predicts CL distributions.

Sample Error
Pearson
Correlation

Pearson Correlation
in cross validation (p-value)

BV2 vitro 0.0088 0.8465 0.4960.17 (0.0032)

B6 0.0010 0.9845 0.9660.01 (4.0E-05)

CT2A vitro 0.0053 0.9158 0.7760.04 (1.4E-05)

Astrocyte vitro 0.0061 0.9206 0.4660.27 (0.018)

EPEN vitro 0.0043 0.9205 0.7560.03 (0.0018)

VM M2 vitro 0.0067 0.8451 0.6560.05 (0.0075)

VM M3 vivo 0.0158 0.7416 0.3660.09 (0.0012)

VM M3 vitro 0.0192 0.5804 0.3160.09 (0.0068)

VM NM1 vivo 0.0126 0.8828 0.3660.10 (0.0031)

VM NM1 vitro 0.0059 0.8908 0.7360.12 (0.00037)

VM 0.0143 0.8437 0.6660.09 (0.00019)

EPEN vivo 0.0080 0.8736 0.5860.12 (0.00062)

VM M2 vivo 0.0150 0.7722 0.6060.06 (0.00034)

CT2A vivo 0.0213 0.7245 0.3960.20 (0.019)

B6 brain 0.0014 0.9745 0.9160.01 (4.0E-06)

B6 heart 0.0007 0.9969 0.7860.16 (0.00054)

B6 lung 0.0030 0.9813 0.9360.01 (9.0E-06)

B6 liver 0.0002 0.9997 0.9960.00 (3.6E-08)

Quality of fit was assessed by squared-error between the fit and observed CL
distributions (column 2) as well as the Pearson correlation r of the fit and
observed CL data (column 3). 17/18 samples show r.0.7. The 4th column
shows Pearson correlation of the fit and observed CL distributions in four-fold
cross-validation (mean 6 standard deviation). P-values compare the cross-
validation correlation values to correlations calculated on CL data with the
labels randomly permuted (1-tail t-test). All samples achieved p-value ,0.05
indicating that the IID model could correctly describe the CL remodeling
system.
doi:10.1371/journal.pone.0021170.t001

Figure 1. CL profiles are similar within biological replicates, but vary among samples/tissues. CL species are labeled along the x-axis by
mass/charge ratio (m/z), and the y- axis shows MDMS-SL measured concentrations. C57BL/6J (B6) mouse brain mitochondria (A), EPEN brain tumor
mitochondria (B), and B6 heart mitochondria (C) are shown as examples. The three replicates of each sample have similar CL distributions, but the
three tissues have distinct CL profiles.
doi:10.1371/journal.pone.0021170.g001
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synthesis and remodeling primarily within one class of lipids, CL,

taking advantage of the accuracy of MDMS-SL identification of

individual CL molecular species. In contrast, prior lipid

computational analyses have tended to focus on broader

characterizations of lipid pathways, such as the relative

concentrations of lipid classes [36] or signal transduction leading

to lipid changes [37]. Our focus on CL allowed us to investigate a

mechanistic model having a very small number of fit parameters,

Figure 2. Comparison of CL FA compositions between 14 mouse brain samples (A) and 4 B6 mouse tissues (B). 18:1 is predominant in
brain (,40%), while its percentage is reduced in some tumor samples (e.g. VM-M2 vitro, VM-M3 vivo VM-M3 vitro). 18:2 is predominant in heart, lung,
and liver (,70%).
doi:10.1371/journal.pone.0021170.g002
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which enabled us to robustly determine and cross-validate the

remodeling behavior in each sample.

Although CL displays tissue- and sample-specific distributions,

17/18 samples can be explained by the IID model. The proportional

incorporation model also fits 11/14 brain samples as well as the extra

B6 brain and liver samples, which is surprising given the model’s

simplicity. The success of the proportional incorporation model

suggests that in these tissues, the headgroups on acyl donors are the

main determinants of contribution to CL, rather than selectivity on

individual acyl chains. This is consistent with previous studies

indicating that the activities of remodeling enzymes such as PLA2

are determined by interactions on the bilayer surface rather than the

hydrophobic interior [38]. We also observe that PC in general

contributes more to CL than the other donor classes. Although the

mechanism for this is unclear, the classical surface dilution model

[24] suggests this may be an indication of domains within the

mitochondrial membrane of greater PC concentration, to which

remodeling enzymes may bind more easily. If there is selectivity on

the acyl chains, we speculate this may more commonly arise within

acyl CoA-related mechanisms. This is because the proportional

incorporation model works well even for many tissues for which acyl

CoA data were not available, This is consistent with PC and PE

contributing proportionally while acyl CoA is subject to more

specific regulation.

Interestingly, when we did observe deviation from the IID

behavior, these deviations had certain regularities. For example,

the CL peaks at 80:14 and 80:15 are consistently underestimated

in the BV2 vitro, VM M3 vitro, VM, and CT2A vivo samples (Figure

S1). The regularity of such deviations suggests there are

remodeling mechanisms that can distinguish the four positions

or which involve positional dependencies.

One simple way the chain positions could be distinguished is by

their sn-1 or sn-2 chemistry. We examined this by modifying the

IID model to an ‘‘independent and differential distribution’’ (IDD)

model that distinguishes sn-1 vs. sn-2 positions. However, this

modification provided little improvement in the fit. Only the VM-

NM1 vivo sample showed significant improvement (p-value ,0.05;

see Methods). This suggests that the unusual peaks at 80:14 and

80:15 are controlled by dependencies between positions, rather

than independent but differential behavior. This unimportance of

sn-1/sn-2 chemistry is surprising given that remodeling reactions

acting on diacyl phospholipids (PC, PE, PG, PI) have a bias for the

sn-2 position [39].

A minor caveat to our CL analysis is that it is based on the

concentrations of CL peaks as defined by the number of carbons and

double bonds among the acyl chains. Some lipidomic measurement

methods such as MDMS-SL provide additional information about

species distributions within each peak. Such information is irregular

and with different uncertainties across peaks, making it difficult to use,

but future methods may benefit from it.

Also, the model we have described here pertains to steady-state

behavior. This is appropriate since all of the samples we have analyzed

are under steady-state conditions. Therefore enzyme specificities

impact our model as they would affect equilibrium constants in typical

chemical systems (see Methods). Parameter inference for the dynamics

of remodeling is a valuable future goal, and we have previously

described software for simulating dynamic cardiolipin remodeling

[27]. However, optimal solution of the dynamic problem is beyond the

scope of this paper, as it requires experimental timecourse data and is

also a more challenging statistical inference problem.

Because of the tradeoff between complexity and robustness of

the inferred model [40], we have studied simplified models which

Table 2. Proportional incorporation model: inferred remodeling parameters and performance.

Sample WPG WPC WPE WAC Pearson p-value (Pearson) Error p-value (Error)

BV2 vitro 0.4471 0.3021 0.2508 - 0.8608 0.0132 0.052 0.0154

B6 0 1 0 - 0.8936 0.0024 0.0494 0.0024

CT2A vitro 0 1 0 - 0.9117 0.0041 0.0361 0.0038

Astrocyte vitro 0.0956 0.9044 0 - 0.8868 0.0064 0.0538 0.0075

EPEN vitro 0.2767 0.7128 0.0105 - 0.9072 0.0012 0.0304 0.0008

VM M2 vitro 0.3741 0.3641 0.2619 - 0.4711 0.1468 0.1089 0.2433

VM M3 vivo 0 0.7419 0.2581 - 20.1189 0.8255 0.2201 0.9722

VM M3 vitro 0 0.4694 0.5306 - 0.1829 0.4544 0.1572 0.6088

VM NM1 vivo 0.2284 0.7716 0 - 0.9428 0.0002 0.0451 0.0016

VM NM1 vitro 0.06 0.94 0 - 0.8619 0.0143 0.0464 0.0091

VM 0.4823 0.481 0.0367 - 0.7726 0.0143 0.1105 0.0111

EPEN vivo 0.4261 0.3887 0.1852 - 0.9384 0 0.0258 0

VM M2 vivo 0.5701 0 0.4299 - 0.9249 0.0004 0.0211 0.0002

CT2A vivo 0.6631 0.0262 0.3108 - 0.8498 0.0038 0.0532 0.0029

B6 brain 0.2869 0.7131 0 0 0.8893 0.0042 0.0415 0.0039

B6 heart 0 0.2212 0 0.7788 0.5069 0.2267 0.3358 0.2313

B6 lung 0 1 0 0 0.5490 0.1724 0.2624 0.1647

B6 liver 0 1 0 0 0.7859 0.0157 0.2889 0.0131

The optimal remodeling weights inferred via the proportional incorporation model are given for each sample for PC, PE, and PG, as well as for acyl CoA for the four
tissues where acyl coA data were available. The quality of fit was assessed by Pearson correlation r and squared-error between the fit and observed CL acyl compositions
(columns 6 and 8). Most samples were successfully fit by the proportional incorporation model (r.0.7). P-values were assessed by comparing to results for label-
permuted PC, PE, PG, and acyl CoA FA data (columns 7 and 9).
doi:10.1371/journal.pone.0021170.t002
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are approximations of the behavior of CL. Aside from a

generalization to handle dynamic data, further refinements may

include parameters for more nuanced distinctions among donor

classes. Such distinctions may be important for understanding

individual enzymes such as tafazzin, which influences the transfer

of chains from PC to CL [23]. Other important factors may

include the relative positions of PC, PE, and PG in the CL

remodeling pathway [10,41,42], molecular symmetry preferences

[43,44], or transfer of lipids among membranes. Through careful

consideration of such refinements, we expect that our mechanistic

inference method will generalize to other classes of lipids,

providing a broad approach to analyzing diseases associated with

alterations of lipid metabolism.

Methods

Sample Datasets
To compare CL remodeling between normal and pathological

states, we analyzed 14 mouse brain samples, described in [12].

The samples were C57BL/6J (B6) and VM/Dk (VM) inbred mice;

an astrocytoma (CT-2A) and an ependymoblastoma (EPEN) that

are chemically induced from syngeneic B6 brain; two micro-

gliomas (VM-M2 and VM-M3) and a stem cell tumor (VM-NM1)

that arose spontaneously from the syngeneic VM brain; and two

brain cell lines: astrocyte (non-tumorigenic) and BV2 (microglia).

For each of these brain and brain tumor samples, three biological

replicates were performed. To compare CL remodeling across

tissues, we studied brain, heart, lung, and liver from C57BL/

6J(B6) wild-type male mice (4 months of age), each with four

biological replicates [27].

MDMS-SL quantification of mitochondrial lipids
Extraction and quantification of the mitochondrial lipidome for

these samples were previously described in [12,27]. Briefly, tissue

and tumor samples were harvested from mature male mice or cell

cultures, and mitochondria were isolated and purified. An aliquot

of purified mitochondria was transferred to a disposable culture

borosilicate glass tube. Internal standards were added based on the

Figure 3. FA residuals reveal potential enzyme selectivity. The y-axis shows the residual between the FA composition best describing the CL
data and the fit to this FA composition by the proportional incorporation model. A positive residual suggests enzyme preference. Box statistics are
shown for 14 brain samples (A) and 4 B6 mouse tissues (B) with median and 25th and 75th percentiles.
doi:10.1371/journal.pone.0021170.g003
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protein concentration (in nmol/mg mitochondrial protein). Lipids

from each mitochondrial homogenate were extracted by a

modified Bligh and Dyer procedure. Each lipid extract was

reconstituted with mitochondrial protein in chloroform/methanol.

The lipids extracted were flushed with nitrogen, capped, and

stored at 220uC. Each lipid solution was diluted prior to infusion

and lipid analysis. Lipid molecular species were identified and

quantified by high resolution MDMS-SL, which is described in

detail in [30]. MDMS-SL allows for sn-1/sn-2 acyl chain

determinations for diacyl species because sn-1 and sn-2 carbox-

ylate groups fragment at differing rates in the mass spectrometry

procedure. CL, PC, PE, PG, and acyl CoA (where available)

concentrations were normalized to probability distributions and

averaged among replicates.

Independent and identical distribution model
All of our models assume that data reflect steady state behavior

[27]. Although remodeling is dynamic, we are able to model

steady-state behavior in the same way that chemical equilibria can

be modeled without knowledge of individual reaction rates.

The IID model posits that four CL chain positions (sn-1, sn-19,

sn-2, sn-29) are independently and identically remodeled. There-

fore each position is assumed to have the same FA distribution.

The concentrations of each FA chain are the parameters to be

inferred for each sample. We implemented a maximum-likelihood

approach to infer these parameters. Let V~fa1,a2, � � � ,ang be all

of the possible chain types in CL. The possible chain types are

assumed to be those observed within the acyl donors PC, PE, and

PG (and acyl CoA when available) in the sample.

Given the FA composition parameters in CL fPCL(a1),
PCL(a2),:::,PCL(an)g, the IID probability of the CL isomer with acyl

chain ai at position sn-1, aj at position sn-19, ak at position sn-2, and ah

at position sn-29 is defined by Equation 1:

P(asn1
i ,asn10

j ,asn2
k ,asn20

h )~PCL(ai)PCL(aj)PCL(ak)PCL(ah) ð1Þ

MDMS-SL measures the total concentration of CL molecular

species with c carbons and d double bonds in the acyl chains. The

corresponding IID probability is summed from the isomers

matching c and d, as given by Equation 2:

yc:d~
X

isomers

P(asn1
i ,asn10

j ,asn2
k ,asn20

h ) ð2Þ

The FA distribution can be found by a maximum likelihood

approach which compares yc:d with the experimentally derived

relative concentrations m̂mc:d . The likelihood of observing the data

(for all CL species, S = 1..N) given the model and parameters is

assessed by the error between the predicted and observed CL

distributions, Equation 3:

Figure 4. Hierarchical clustering of FAs suggests co-regulation. For each pair of FAs, we calculated the squared correlation of their residuals
(data vs. proportional incorporation model) in the 14 brain samples. FAs were then hierarchically clustered. The chains {16:0, 18:1, 22:4} show stronger
clustering, suggesting they may respond to the same remodeling enzyme.
doi:10.1371/journal.pone.0021170.g004
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E~
X

species

(yS{m̂mS)2 ð3Þ

Minimizing the error function is equivalent to maximizing a

likelihood function in which deviations from the experimental

value are distributed according to a Gaussian probability function.

We assume the variance associated with each Gaussian to be

identical, which is reasonable since this is determined by the

measurement uncertainty of the general MDMS-SL procedure for

CL. The optimal FA compositions are those that yield the

minimum error between the predicted and observed CL

distributions, as described in Equation 4:

fP̂PCL(a1),P̂PCL(a2),:::,P̂PCL(an)g~ arg min
P

E PCL(a1),fð

PCL(a2),:::,PCL(an)gjm̂m1,m̂m2, . . . ,m̂mNÞ
ð4Þ

We searched for optimal parameter values iteratively using

the Matlab function lsqcurvefit, with an initial condition of

uniform probabilities (PCL(a1)~PCL(a2)~:::~PCL(an)~
1

n
),

and under the constraints that PCL(a1),PCL(a2),:::,PCL(an)w0

and
Pn
i~1

PCL(ai)~1.

Least error and Pearson correlation between the optimal

predicted and observed CL probability distributions were used

to evaluate the performance of the model. These gave similar

results. We set a threshold correlation coefficient of 0.7 to decide

whether the model explained the sample data.

Four-fold cross-validation
The measurable CL molecular species were randomly divided into

four disjoint subsets of equal size. Three subsets were used to train the

model and the last was used for testing. The training-predicting

procedure was repeated four times, each time leaving out a different

subset. We then merged the predictions for the four test subsets and

compared the resulting predicted CL distribution to the observed data

using Pearson correlation coefficient. For the calculations of Table 1,

the correlation was calculated in three separate runs, where in each run

the subsets of the CL data were divided by a different randomization.

Label permutation test
We performed a permutation test to assess the significance of

the IID model’s performance. For each sample, we generated a

randomized version of the data by permuting the labels on CL

concentrations. Our null hypothesis was that there is no

dependency between the features (FA compositions) and the

labeled values (CL species concentrations). We performed four-

fold cross validation on the randomized dataset and repeated this

procedure three times using different randomized labeling. A t-test

was used to assess significance of the correlation coefficient for the

original data.

Independent and differential distribution model
This model tests whether sn-1/sn-19 and sn-2/sn-29 positions of CL

are differentially remodeled, maintaining the assumption that the four

positions of CL are independent. It is similar to the IID model, except

having distinct FA compositions: P1
CL(a1),P1

CL(a2),:::,P1
CL(an) for sn-

1/sn-19 positions and P2
CL(a1),P2

CL(a2),:::,P2
CL(an) for sn-2/sn-29

positions. The probability of the CL isomer with ai at position sn-1, aj

at position sn-19, ak at position sn-2, and ah at position sn-29 is defined

by Equation 5:

P(asn1
i ,asn10

j ,asn2
k ,asn20

h )~P1
CL(ai)P

1
CL(aj)P

2
CL(ak)P2

CL(ah) ð5Þ

The parameter set fP1
CL(a1),P1

CL(a2),:::,P1
CL(an),P2

CL(a1),P2
CL

(a2),:::,P2
CL(an)g is optimized in the same manner as for the IID

model. To compare the IDD and IID, we consider the results of

the four-fold cross-validation for each model. For a given sample,

we perform the four-fold cross validation for both IDD and IID in

three runs each. Cross-validation requires a random data splitting,

so for each run we split the data differently using a random

number generator. The observed correlation in the cross-

validation is an indication of the robustness of the model. To

quantify IDD vs. IID we compare the distribution of correlation

scores (see Methods: four-fold cross-validation) for the three runs

of the two models, using a t-test.

Proportional incorporation model
The model assumes FAs from an acyl donor class are

incorporated into CL at rates proportional to their prevalence

within the donor class. This is equivalent to assuming that there

are no chain-type specificities of remodeling enzymes, i.e.

transacylases that transfer acyl chains from PC and PE would

have specificity for only the PC/PE head group and not the length

or saturation of the acyl chain. In this model, the relative

concentration of acyl chain ai in CL is a weighted sum of the

relative concentrations of the chain in each donor class (Equation

6). For PC and PE, we allow only their sn-2 acyl chains to

contribute to the acyl chain pool, consistent with prior literature

[45–47]. The weight parameters fWPC ,WPE ,WPGgindicate their

relative contributions to CL, representing the overall effect of

phospholipid concentration and transacylase/phospholipase activ-

ities [48]. For example, if the affinity weights are WPC = 0.5,

WPE = 0.25, and WPG = 0.25, this means that of all the acyl chains

making up the CL species distribution, 50% originate from PC

(sn-2) and 25% are derived from each of PE (sn-2) and PG.

PCL(ai)~WPCPPC(ai)zWPEPPE(ai)zWPGPPG(ai) ð6Þ

The optimal parameter values can be found by constrained

linear regression. The weight values are related to the observed CL

concentrations via:

PPC(a1) PPE(a1) PPG(a1)

PPC(a2) PPE(a2) PPG(a2)

M M M

PPC(an) PPE(an) PPG(an)

2
6664

3
7775.

WPC

WPE

WPG

2
64

3
75~

P̂PCL(a1)

P̂PCL(a2)

M

P̂PCL(an)

2
66664

3
77775
ð7Þ

Here the relative concentrations of acyl chains in each of PC sn-2,

PE sn-2, and PG (PPC ,PPE andPPC ) are experimentally deter-

mined. The acyl distribution within CL (P̂PCL) is predicted using

the IID model, since experimental measurements for it were not

readily available. We use Matlab function lsqlin to infer optimal

parameter values, which minimizes the error C:x{dk k2
, with

constraints WPC ,WPE ,WPG§0 and WPCzWPEzWPG~1. The

residual for a given chain is defined to be that chain’s component

of (d{C:x).

For B6 brain, heart, lung, and liver analysis, we additionally

include acyl CoA as an acyl donor, with weight parameter WAC
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(Equation 8):

PCL(ai)~WPCPPC(ai)zWPEPPE(ai)zWPGPPG(ai)zWACPAC(ai) ð8Þ

To assess the significance of model behavior, for each sample,

we randomly permuted PC, PE, and PG FA compositions (each

column of C), and generated 10000 different random datasets. An

empirical p-value was assigned for the correlation coefficient of the

true data based on the distribution of coefficients in the random

datasets.

Note that all of the models we have described are consistent

with a dynamical system at steady state. To clarify this

relationship, we describe the corresponding dynamic system for

the Proportional Incorporation model, The IID and IDD models

are analogous. The dynamic model is similar to one we previously

described in [27]. Under a model in which all four acyl chain

positions behave equivalently, the dynamics of acyl chain type a in

CL are given by the equation:

d½a�CL

dt
~4(1{c)½KPC ½PC�½CL�(PPC(a){PCL(a))

zKPE ½PE�½CL�(PPE(a){PCL(a))�

z4c½CL�(PPG(a){PCL(a))

ð9Þ

KPCandKPE are rate constants for the transfer of acyl chains

from PC or PE sn-2 chains into CL, respectively. c is the

degradation rate constant for CL. PPC(a) is the fraction of PC

chains that can be transferred into CL that are of type a (with

similar definitions for PPE(a) and PPG(a)). PCL(a) is the fraction of

all CL chains that are of type a. Since we have assumed that the

total concentration of CL (½CL�) is in steady state, this obviates the

need for an explicit synthesis rate constant KPG .

The probability of chain type a in Cardiolipin is:

PCL(a)~
½a�CL

4½CL�~

(1{c)KPC ½PC�PPC(a)z(1{c)KPE ½PE�PPE(a)zcPPG(a)

(1{c)KPC ½PC�z(1{c)KPE ½PE�zc

ð10Þ

This is equivalent to Equation 6, where

WPC~
(1{c)KPC ½PC�

(1{c)KPC ½PC�z(1{c)KPE ½PE�zc

WPE~
(1{c)KPE ½PE�

(1{c)KPC ½PC�z(1{c)KPE ½PE�zc

WPG~
c

(1{c)KPC ½PC�z(1{c)KPE ½PE�zc

ð11Þ

To further clarify the methods, we have provided a supple-

mentary file providing a walk-through of the methods as applied to

toy data (Methods S1).

Supporting Information

Figure S1 Trends of deviation from the IID model.
Certain CL species appear to consistently deviate from the IID

model, notably 80:14 and 80:15 (marked with *). (A) BV2 vitro

(r = 0.8465), (B) VM M3 vitro (r = 0.5804), (C) VM (r = 0.8437) and

(D) CT2A vivo (r = 0.7245).

(TIF)

Table S1 PC, PE, PG, acyl CoA, and CL concentrations
as measured by MDMS-SL.
(XLS)

Table S2 Observed and model-predicted cardiolipin
distribution for 14 samples and B6 tissues.
(XLS)

Table S3 Inferred CL acyl compositions and experimen-
tal compositions in acyl donors PG, PC sn-2, PE sn-2, and
acyl CoA.
(XLS)

Methods S1 Example illustrating the mathematical
methods described in the paper.
(DOC)
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