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Abstract: Levels of activation of MAP kinase pathways and effects of inhibiting 
these pathways were examined in chick utricular epithelial cultures in order to 

determine the role of these pathways in proliferation. 
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Introduction 

The sensory epithelia of the avian inner ear have the capacity to regenerate after acoustic 

trauma or ototoxic injury (Cotanche, 1987; Cruz et al., 1987).  Such regeneration is primarily the 

result of renewed supporting cell proliferation (Tsue et al., 1994; Warchol, 2007).  The human 

inner ear lacks the ability to regenerate hair cells, and thus is permanently damaged by 

ototoxicity, aging, acoustic trauma, and other epithelial insults.  Understanding the cellular 

signaling pathways involved in supporting cell proliferation is fundamental to developing 

treatments. This study examines the contribution of mitogen-activated protein kinases (MAPKs) 

toward the initiation of regenerative proliferation in chick utricular epithelia. 

 

Mechanisms of hair cell regeneration 

Proliferation of supporting cells gives rise to new hair cells in both the auditory and 

vestibular organs (reviewed by Matsui et al., 2005; Stone & Cotanche, 2007). Following hair cell 

injury, supporting cell proliferation rates increase and the daughter cells produced through 

mitosis differentiate into replacement hair cells or supporting cells.  Auditory nerve fibers then 

connect to the new hair cells, leading to nearly complete functional recovery.  

Hair cell regeneration may also occur through direct transdifferentiation of supporting 

cells.  Roberson et al. (2004) reported that the earliest replacement hair cells (which are evident 

4-6 days after gentamicin injection) are created via direct transdifferentiation.  However, 

proliferation soon predominates as the primary means of regeneration.  By ten days following 

gentamicin treatment, most regenerated hair cells are derived from supporting cell proliferation. 

Proliferation has an advantage over direct transdifferentiation in that the ratio of hair cells 

to supporting cells is maintained.  While transdifferentiation produces more immediate recovery, 
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one supporting cell is lost with the creation of every new hair cell.  With proliferation, daughter 

cells may become hair cells or supporting cells, allowing the sensory epithelium to maintain its 

balance of hair cells and supporting cells.   

Limited regeneration through supporting cell proliferation has also been reported in 

mammalian utricles following aminoglycoside ototoxicity (Warchol et al., 1993). While this 

finding provides hope for regeneration as a therapeutic target, more research is needed to 

determine the mechanisms by which regenerative proliferation occurs.  Currently, little is known 

about the cell cycle control factors related to supporting cell proliferation. 

 

Overview of mitogen-activated protein kinases 

Mitogen-activated protein kinases (MAPKs) are a family of enzymes that phosphorylate 

proteins, initiating cell-signaling cascades involved in cell-cycle entry. MAPKs are activated by 

upstream kinase cascades located in the cytoplasm.  These typically involve three protein kinases 

organized by a scaffold protein.  Each kinase in the cascade phosphorylates the next, culminating 

in activation of the MAPK.  Once activated, the MAPK may phosphorylate various proteins and 

transcription factors, including those involved with cell-cycle control (Darnell, 2003).   

There are three avian and mammalian MAPK pathways: extracellular signal-regulated 

kinase (ERK), c-Jun NH2-terminal kinase (JNK), and p38.  Each pathway contributes to specific 

cellular responses.  The particular response elicited by pathway activation is dependent on 

several variables, including the intensity and duration of stimulation, the specific MAPK isoform 

activated, the scaffold protein utilized, the pathway location within the cell, possible interaction 

between MAPK pathways, and activity of other molecules within the cell (reviewed by Krishna 

& Narang, 2008). 
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The extracellular signal-regulated kinase (ERK) subfamily is activated by a variety of 

stimuli, including growth factors, hormones, and neurotransmitters.  The ERK cascade is 

involved in proliferation, cell cycle control (particularly G1-S phase transition), and 

differentiation (reviewed in Rubinfeld & Seger, 2005).  Transient ERK activation promotes 

proliferation, while sustained activation induces differentiation (reviewed in Chambard et al., 

2007).   

The c-Jun NH2-terminal kinase (JNK) subfamily is activated in response to cellular 

stress, reactive oxygen species, cytokines, and growth factors.  Its primary role is in stress-

induced apoptosis, though it has also been implicated in proliferation, differentiation, and cell 

survival (reviewed in Vlahopoulos & Zoumpourlis, 2004).  Ten JNK isoforms have been 

identified. 

Six isoforms of p38 have been identified.  Like JNK, the p38 subfamily is involved with 

inflammatory responses and cell death.  Activation occurs in response to cytokines and 

extracellular stress.  p38 plays a role in apoptosis, inflammation, cytokine production and 

differentiation (reviewed in Ono & Han, 2000).  This pathway has also been associated with cell 

cycle arrest at the G1-S phase transition (reviewed in Zhang & Liu, 2002).   

 

Purpose of the present study 

While it is widely understood that the MAPK pathways play a role in cellular 

proliferation, there has not been a comprehensive comparison of the respective contribution of 

each kinase towards the regulation of proliferation in the avian inner ear.  The aim of the study is 

to identify the relative activation of the three MAP kinase pathways and quantify changes in 

proliferation after blocking each pathway.  The resulting data will contribute to growing 
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knowledge about the proliferative pathways in chick sensory epithelia.  As the mechanisms of 

this process are discovered, researchers will be closer to developing treatment strategies for 

pathologies in the human inner ear. 

 

 

MATERIALS AND METHODS 

 

Preparation of epithelial cultures 

 Utricles were removed from chicks at 14-21 days post-hatch and incubated in 

thermolysin.  The sensory epithelia were removed using a 30-gauge needle, then transferred to 

fibronectin- or laminin-coated culture wells containing Medium-199 with Earle’s salts and 10% 

fetal bovine serum.  The epithelia were cut into 10-12 small pieces.  The cultures were incubated 

at 37°C for three days, rinsed with Medium 199, and incubated an additional three days.   

 

ERK, JNK, and p38 Pathway Quantification 

The number of cells with activated forms of each kinase was assessed using 

immunocytochemistry.  Data for each MAP kinase was obtained from eight separate cultures. 

Cultures were briefly rinsed with Medium-199, fixed for fifteen minutes in 4% 

paraformadehyde, and rinsed with phosphate buffered saline (PBS) five times over fifteen 

minutes.  Prior to immunolabeling, cultures were treated for two hours with blocking solution 

that consisted of PBS with 0.2% Triton X-100 and 5% normal horse serum.  Cultured supporting 

cells were labeled with rabbit anti-ERK (1:250, Cell Signaling Technologies, Beverly, MA, 

USA), rabbit anti-phospho-c-Jun (1:100, Cell Signaling Technologies), or rabbit anti-p38 (1:500, 
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Cell Signaling Technologies) antibodies in 2% normal horse serum and 1 mL 0.2% Triton-X (in 

PBS) were applied, and cultures were incubated overnight at 4°C. 

The next day, cultures were rinsed five times over fifteen minutes with PBS.  Secondary 

antibodies, consisting of cy3 anti-rabbit (1:500, GE Healthcare, Buckinghamshire, UK), 

Phalloidin (1:40, Invitrogen, Eugene, OR, USA), and DAPI (1:500, Sigma, St. Louis, MO, USA) 

in 0.2% Triton-X (in PBS) were applied over two hours at room temperature.  Cultures were 

rinsed five times over fifteen minutes with PBS, and then coverslipped with 9:1 glycerol/PBS 

solution.   

 

BrdU Immunocytochemistry 

BrdU immunocytochemistry was used to examine the effects of inhibiting each MAP 

kinase pathway on supporting cell proliferation.  In each experiment, four wells of dissociated 

chick utricular epithelia were treated with a small molecule inhibitor, and four wells acted as a 

control group.  U0126 (10 μm, Calbiochem, La Jolla, CA, USA) was used to block ERK, 

SB203580 (20 μm, Calbiochem) to block p38, and SP600125 (10 μm, Calbiochem) to block 

JNK.   

Cultures were incubated at 37°C for twenty hours. Each well was then treated with 3 

μl/ml bromodeoxyuridine (BrdU, Sigma) to label cells in the S-phase of the cell cycle.  Cultures 

were then incubated at 37°C for four hours.  This procedure was repeated with three sets of 

cultures for each inhibitor, so that a total of twelve treated wells and twelve controls were 

obtained for each condition.   

Cultures were rinsed with Medium-199 and fixed in 4% paraformadehyde for 15 

minutes.  Cultures were rinsed with PBS five times over fifteen minutes and treated with 100 μL 
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of 1N HCl for fifteen minutes to denature DNA.  Cultures were then rinsed with PBS five times 

over fifteen minutes and treated for two hours with blocking solution containing 5% normal 

horse serum in 0.2% Triton-X (in PBS).  Primary antibodies, consisting of 1:50 Anti-BrdU (BD 

Biosciences, San Jose, CA, USA) and 2% normal horse serum in 0.2% Triton-X (in PBS) were 

applied, and cultures were incubated overnight at 4°C. 

The next day, cultures were rinsed five times over fifteen minutes with PBS and treated 

with secondary antibody (1:500 Alexa 488 anti-mouse (Invitrogen) and 1:500 DAPI in 0.2% 

Triton-X (in PBS)) over two hours at room temperature.  Cultures were rinsed five times over 

fifteen minutes with PBS, then coverslipped with 9:1 glycerol/PBS solution.   

 

Imaging 

Images were obtained using a Nikon Eclipse TE2000-S immunofluorescence microscope 

equipped with a Q Imaging Retiga 1300 camera.  Four to six images were obtained for each well 

using QCapture v2.8.1 software.  Labeled cells were quantified using Image-Pro Plus v2.5.1.29 

software.  After quantification of the labeled cells in each image, the proliferation index for each 

treatment was calculated by dividing the number of BrdU-labeled cells by the number of DAPI-

labeled cells.  Statistical significance was assessed using a 2-tailed T-test, and was compared 

across treatment conditions.   
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RESULTS 

Pathway Quantification
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Immunofluorescent microscopy revealed varying levels of 

cell density throughout each well.  Images were obtained from 

regions bordering high-density zones, with attempt to minimize 

the amount of overlapping cells and maintain uniform cell density 

for each image.    

Graph 1: Levels of expression of ERK, 
p-c-Jun, and p38. 

Quantification of cells that were immunolabeled for 

activated members of the MAPK pathway revealed high levels of 

expression of ERK activation (98.83%, Figure 1A).  Phospho-c-Jun was expressed in 5.66% of 

cells (Figure 1B), and p38 expression was rare (0.34%, Figure 1C).   

Fig 1A: ERK expression. Nuclei 
labeled with DAPI (blue), cytoplasm 
expressing ERK labeled with cy3 
(red). 

Fig 1B: p-c-Jun expression.  Nuclei 
labeled with DAPI (blue), nuclei 
expressing p-c-Jun labeled with cy3 
(red). 

Fig 1C: p38 expression. Nuclei 
labeled with DAPI (blue), nuclei 
expressing p38 labeled with cy3 
(red). 

 

Inhibiting these pathways had varying effects upon proliferation.  Cultures treated with 

U0126 to block ERK contained 8.78 ± 5.25 BrdU+ cells/100,000 μm2 (Figure 2A), while control 

cultures contained 21.66 ± 10.78 BrdU+ cells/100,000 μm2 (Figure 2B).  This treatment resulted 

in a statistically significant reduction in proliferation indices from 6.15% to 2.73% (p<0.001) 

(Graph 2).  
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Cultures treated with SP600125 to block JNK contained 19.2 ± 8.98 BrdU+ cells/100,000 

μm2 (Figure 3B), compared to 26.97 ± 11.31 BrdU+ cells/100,000 μm2 in control wells (Figure 

3A).  Blocking JNK had a statistically significant effect on proliferation, reducing the percentage 

of BrdU-labeled cells from 11% to 7.66% (p<0.001) (Graph 3).   
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There was no statistically significant difference in proliferation between cultures treated 

with SB203580 to block p38 and control cultures (Graph 4).  Control cultures contained 17.87 ± 

8.52 BrdU+ cells/100,000 μm2 (Figure 4A), while treated cultures contained 20.72 ± 10.26 

BrdU+ cells/100,000 μm2 (Figure 4B). 
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Proliferation of chick utricular epithelial cultures in control and MAPK-inhibited conditions.  DAPI labeling (blue); 
BrdU labeling (red).  Fig 2A: control culture, Fig 2B: ERK-inhibited.  Fig 3A: control culture, Fig 3B: JNK-
inhibited.  Fig 4A: control culture, Fig 4B: p38-inhibited. Graphs 2, 3, and 4: Proliferation indices for control and 
treated cultures in ERK-, JNK-, and p38-inhibited conditions, respectively. 
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DISCUSSION 

 Hair cell regeneration in the inner ear occurs primarily through proliferation of 

supporting cells.  MAP kinases are known to be involved in cellular proliferation, but their role 

in the inner ear is not yet understood.  The purpose of this study was to examine the contribution 

of each MAP kinase pathway toward proliferation in chick utricular epithelia.  The results 

obtained suggest ERK and JNK are key mediators in regulating this proliferation.  Future 

research should further clarify the role of these kinases, as they have potential to become 

therapeutic targets for mammalian hair cell regeneration. 

 

ERK 

High levels of ERK expression were found in cultures of dissociated chick utricular 

epithelia.  Blocking ERK with U0126 significantly reduced proliferation.  This result supports 

findings by Witte et al. (2002), which reported that treating cultures with U0126 significantly 

reduced proliferation of chick supporting cells.  Other ERK inhibitors, PD98059 and apigenin, 

also reduced S-phase entry in these cultures (Witte et al., 2002).   

ERK inhibitors may also decrease proliferation of supporting cells in the avian basilar 

papilla (Bell and Oberholtzer, in press).  In this study, researchers used forskolin to induce 

proliferation of auditory supporting cells in cultures treated with ERK inhibitors and control 

cultures.  ERK-inhibited cultures had significantly fewer BrdU-labeled cells.  Thus ERK may be 

important for proliferation in both the auditory and vestibular organs. 

3A 
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JNK 

Phospho-c-Jun was expressed less frequently than ERK, and blocking JNK also reduced 

proliferation.  JNK has been found to play a role in proliferation of other cells types, including 

human breast cancer cells (Mingo-Sion et al., 2004), rat hepatocytes (Schwabe et al., 2003), KB-

3 human carcinoma cells (Du et al., 2004), and murine and human B-lymphoma cells (Gururajan 

et al., 2005).  In each of these studies, inhibition of JNK with SP600125 reduced proliferation. 

Studies of JNK in the inner ear have primarily focused on its role in apoptosis.  Inhibition 

of JNK has been demonstrated to reduce hair cell death and hearing loss resulting from 

ototoxicity (Bodmer et al., 2002; Ylikoski et al., 2002; Sugahara et al., 2006), acoustic trauma 

(Wang et al., 2003; Coleman et al. 2007), and electrode insertion trauma (Eshraghi et al., 2007).  

JNK may be involved in both proliferation and apoptosis in the inner ear.  Its role may depend on 

a variety of factors, including the time course of activation and cross-talk with other pathways. 

The duration of MAPK pathway stimulation influences the cellular response (reviewed in 

Krishna & Narang, 2008).  Within the JNK pathway, the length of activation may influence 

whether proliferation or apoptosis results.  In a study of T-cells, Chen et al. (1996) found that 

transient JNK activation promoted proliferation, while prolonged activation resulted in increased 

apoptosis.  It is possible that similar effects occur in supporting cells. 

Cross-talk between JNK and ERK has been demonstrated to be responsible for 

proliferation of VEGF-stimulated bovine aortic endothelial cells (Pedram et al., 1998).  This 

study demonstrated that, following VEGF stimulation, ERK activates upstream kinases in the 

JNK pathway, leading to activation of JNK.  While ERK is necessary for JNK activation, it is 

JNK that is ultimately responsible for the majority of proliferation of these cells (Pedram et al., 

1998).  Further study is needed of MAPK pathway interaction in the inner ear. 
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p38 

Expression of p38 was comparatively low, and blocking p38 did not have a significant 

effect on proliferation.  Although this suggests p38 does not have a primary role in avian 

supporting cell proliferation, this MAPK may still be a target for therapies aiming to ameliorate 

hair cell damage.  A recent study by Tabuchi et al. (in press) implicates p38 in mammalian 

cochlear outer hair cell fate following acoustic overexposure.  Acoustic overexposure activated 

p38 in murine cochlear hair cells, and inhibiting p38 with SB203580 diminished ABR threshold 

shifts following this insult.  Similarly, Wei et al. (2005) found that gentamicin induced an 

upregulation of p38 in murine outer hair cells, and p38-inhibition with SB203580 protected hair 

cells from ototoxicity.  Thus, while p38 may not be involved in supporting cell proliferation, 

further study of this kinase is warranted. 

 

Conclusion 

Together, these results suggest that ERK and JNK play key roles in the proliferation of 

chick utricular epithelia, while p38 alone does not regulate proliferation.  Additional research 

involving multi-kinase inhibition is needed to establish whether these kinases together have 

additive or synergistic effects.  Cross-talk between pathways should be examined, as well as the 

effects of duration of pathway activation.  Future research should examine similarities and 

differences in the roles of the MAPK pathways in the chick basilar papilla.  Finally, MAPK 

activation should be studied in the mammalian inner ear to determine whether differences in 

these pathways may be responsible for reduced proliferation.  A better understanding of these 

kinases may lead to therapies for hair cell damage in the human ear. 
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