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INTRODUCTION 
 

 Young animals and humans alike are especially susceptible to cochlear injury due to 

aminoglycoside toxicity and loud noise exposure (Henry, Chole, McGinn & Frush, 1981, Henry, 

1984a).  An early, “critical period” has been identified in which both cause more damage than 

they would to a developed, adult ear (Saunders & Chen, 1982).  This period of vulnerability 

spans a different range of time for different species, but exceeds the period required for 

development and initial function of the inner ear (Henry, 1984a; Henley & Rybak, 1995).  It has 

therefore been postulated to result from slower development of protective or homeostatic 

functions.  Here we consider the genetic foundations of the critical period as manifested in inbred 

mice, and how this intersects with another recently noted phenomenon, namely protection 

against cochlear noise injury by small amounts of aminoglycosides. 

 

Aminoglycoside Ototoxicity  

 Many studies have shown ototoxic effects of aminoglycoside antibiotics (Rizzi & Hirose, 

2007; Li & Steyger, 2009).  These antibiotics are prescribed frequently, and can be very effective 

at treating certain bacterial infections.  Ototoxicity related to aminoglycosides is associated with 

hearing loss and/or vestibular loss due to hair cell death within the endorgans themselves.    

Some aminoglycosides, such as gentamicin, specifically attack vestibular hair cells, while drugs 

like kanamycin (KM), have more of an effect on the cochlear hair cells (Selimoglu, 2007). 

Principal effects are typically on outer hair cells in the basal portion of the cochlea resulting in 

high frequency hearing loss.  All hair cell loss due to aminoglycoside toxicity in mammals is 

permanent in nature (Hirose & Sato, 2011).  Once taken into the cells, aminoglycosdes have the 
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ability to generate toxic levels of reactive oxygen species (ROS) which initiate hair cell death by 

damaging DNA, proteins, and membranes (Selimoglu, 2007; Li & Steyger, 2009).   

 

Noise Injury 

 Intense noise is considered a potent stressor for young animals and has been compared 

with aminoglycosides for its ability to harm the developing cochlea (Selimoglu, 2007).  There 

are a number of parallels in the manner in which these operate.   Acoustic trauma can cause 

widespread damage throughout the cochlea, but, just as for aminoglycosides, the main damage is 

often to the outer hair cells.  Also similar to aminoglycosides, noise causes hair cell death most 

readily at the basal end of the cochlea, often while leaving inner hair cells less affected (Saunders 

& Chen, 1982).  Finally, like aminoglycosides, acoustic overstimulation can promote oxidative 

stress resulting in hair cell death due to apoptosis (Li & Steyger, 2009). 

 

Interactions between Aminoglycosides and Noise Exposure 

 Synergistic interactions between aminoglycosides and noise have been documented.  

Ryan and Bone (1982) found that chinchillas that were administered kanamycin and noise 

simultaneously had more extensive hearing loss than those only exposed to the kanamycin alone.  

Brown , Brummett, Fox & Bendrick (1980) gave guinea pigs daily subcutaneous injections of 

kanamycin at varying amounts followed by a ten-hour noise exposure (115 or 45 dB) for seven 

consecutive days.  They found that the combined administration of kanamycin and acoustic 

exposure led to greater cochlear damage than caused by either agent when given alone. This 

finding as well as many others (e.g., Brummett, Fox & Kempton, 1992) suggests synergistic 

effects.  
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Mouse Models of Noise and Aminoglycoside Injury 

Animal models have played a crucial role in the understanding the mechanisms of 

hearing loss. Mouse models have proven particularly useful because they are genetically 

homogeneous and offer the potential for transgenic studies (Poirrier, Van den Ackerveken, Kim, 

Vandenbosch, Nguyen, Lefebvrea & Malgrange, 2010), as well as mapping of useful phenotypic 

differences.  Due to rapid maturation, the cochlear critical period for both noise and ototoxicity 

can be studied easily in the mouse (Henry & McGinn, 1992).  Hearing-related differences 

between two particular inbred strains (CBA/J and C57BL/6) have been discussed in the literature 

for decades.  CBA/J mice are generally used as a model of good hearing that is particularly 

resistant to presbycusis (age-related hearing loss) (Fernandez, Ohlemiller, Gagnon & Clark, 

2010).  C57BL/6J (B6) mice, however, carry the Cdh23ahl allele that promotes progressive 

hearing loss with aging.  Generally, B6 mice are considerably more vulnerable to noise exposure 

than the same aged CBA/J strain (Henry, 1984a; Ohlemiller & Gagnon, 2007),   yet may be more 

resistant to aminoglycoside toxicity (Wu, Sha, McLaren, Kawamoto, Raphael & Schacht, 2001).  

Differences in noise-induced hearing loss and ototoxicity across inbred strains may reflect 

differences in metabolism, cellular uptake mechanisms, or differential expression of antioxidant 

enzymes (Wu et al., 2001).  

 

Heightened Noise Vulnerability in CBA/J Mice  

CBA/J mice are extremely susceptible to noise-induced permanent threshold shifts 

(NIPTS) at a young age and become less affected as they become older.  It was found that 5 

minutes of 124 dB SPL broadband noise caused a significantly higher threshold shift in 20 day 

old mice compared to 60 and 180 day old CBA/J mice (Henry, 1992).  Fernandez et al. (2010) 
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found that as little as 30 sec of broadband noise exposure (110 dB SPL) caused severe NIPTS 

and moderate hair cell loss in 30 day old CBA/J mice.  A follow-up study (Ohlemiller, Rybak 

Rice, Rellinger & Ortmann, 2011) confirmed that 6 week old CBA/J mice depart notably from 

closely related CBA/CaJ mice at 6 month of age, while the two strains appear similar at 6 

months.   

 

 

 

 

 

 

 

Figure 1:  Mean (+SD) ABR 
thresholds for 30 day old 
CBA/J mice receiving no 
treatment, noise alone, KM + 
noise, and saline + noise.   
 
Reprinted with permission 
from Fernandez et al., 2010 
 

Previous Studies Leading to the Present Question 

Despite a preponderance of evidence supporting synergy of cochlear injury by combined 

noise and ototoxic exposure, it was recently demonstrated by Fernandez et al. (2010) (Figure 1), 

that sub-chronic low-dose kanamycin (KM, 300 mg/kg sc, 2x/day, 10 days) followed by 30 

seconds of high intensity (110 dB SPL) broadband noise dramatically reduced NIPTS and 

subsequent hair cell loss in young CBA/J mice compared to control mice receiving saline and 

noise.  In fact, for the conditions applied, kanamycin completely protected the animals’ hearing 

as measured by ABR.  It was suggested that sub-chronic, sub-toxic exposure to kanamycin elicits 

a form of ‘preconditioning’, a well-established process whereby exposure to a mildly injurious 

stressor affords protection against a later, potentially permanently injurious, stressor (Gagnon, 

Simmons, Bao, Lei, Ortmann & Ohlemiller, 2007).  Apparent preconditioning of the cochlea by 
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KM joins several noxious treatments shown to confer protection against cochlear noise injury.  

These include hypoxia (Gagnon et al., 2007), hyperthermia (Paz, Freeman, Horowitz & Sohmer, 

2004), and noise (Canlon & Fransson, 1995).   

Mechanistic studies of exactly how low-dose KM protects the cochlea first required 

studies that better define the requirements of protection with regard to dosing, age of treatment, 

and genetic background.  Rybak Rice (2009) conducted a follow-up study using CBA/J mice of 

the same age and type of exposure as in the Fernandez et al (2010) study to determine the 

minimal dosing frequency of KM needed to protect from NIPTS.  Mice were injected with KM 

once daily, once every other day, or once every third.  Results indicated all treatment groups 

showed protection from NIPTS.  This study also examined the possibility of KM alone causing 

injury, even as it rendered protection.  A once daily dose of KM with no noise exposure was 

given for 10 days and final ABR testing showed no hearing loss due to KM alone.   

Rosen (2010) conducted several experiments to test the generality of KM 

preconditioning.  The first series sought to identify the minimal effective dosing regimen that 

conferred full protection against noise. Young CBA/J and B6 mice were given either a single 

dose (24 and 48 hours pre-noise exposure), or two doses over 3 days at 72, and 24 hours prior to 

exposure.  It was concluded that more than two KM applications every 72 hours are required to 

achieve full protection.  Rosen (2010) also tested the KM paradigm in older CBA/J mice (2 

months of age) to see if protection was related to the critical period for ototoxicity (≤1 mo in 

mice).  Finally, Rosen (2010) tested genetic background effects on protection by KM and found 

no protection in the B6 mice from the same KM exposure that impressively protected the CBA/J 

mice.  A subsequent study (Ohlemiller, Rybak Rice, Rosen, Montgomery & Gagnon, in press) 

confirmed a complete lack of protection—and even possible direct injury—by KM in B6 mice 
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versus striking protection in CBA/J (Figure 2).  Such strain differences indicate that B6 mice 

probably carry alleles that either promote net injury by KM or impair the engagement of 

protective cascades. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Purpose of the Present Study 

Figure 2:  Mean (+SD) ABR 
thresholds in 6 week old 
C57BL/6J mice receiving KM or 
saline prior to 30 min noise 
exposure. 
 
Reprinted with permission from 
Ohlemiller et al, in press 
 

As summarized above, young CBA/J and B6 mice exhibit strikingly different hearing 

related phenotypes in two regards.  First, CBA/J mice are robustly protected against cochlear 

noise injury by small amounts of KM, while B6 appear either unaided, or harmed.  Second, at 1-

2 months of age, CBA/J mice appear far more vulnerable to noise, in that the ‘threshold’ duration 

for NIPTS is roughly 1.0 minute in CBA/J versus about 3.0-4.0 minutes in B6.  These 

differences suggest that the two strains harbor different alleles at unknown genetic loci that 

determine completely novel traits—early noise vulnerability and kanamycin ‘protectability’.  

The standard approach to genetic analysis of such traits is to generate F1 hybrid mice from the 

two strains possessing the different phenotypes of interest.  If few, highly penetrant, genes are 

involved, the phenotype of the F1 mice will strongly resemble one of the parent strains, defining 

that strain as possessing the dominant phenotype.  If F1 mice essentially recapitulate the 

phenotype of one parental strain, the standard next step toward preliminary mapping of the genes 
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involved is to backcross the F1 mice to the recessive parental strain and then correlate 

phenotypes with genomic markers.   

We posit that young CBA/J and B6 mice carry different alleles at a small number of gene 

loci that are separately responsible for their different responses to kanamycin and different 

sensitivities to noise.  Accordingly, the purpose of this study was to evaluate both noise 

vulnerability and the extent of protection from noise by low-dose kanamycin in 6 week old F1 

hybrids resulting from a cross between CBA/J and B6 mice.  As we show, the F1 mice reveal a 

susceptibility to noise and ‘protectability’ by KM that largely recapulate the characteristics of 

CBA/J mice (Ohlemiller, Rosen & Gagnon, 2010).  That is, CBA/J alleles appear semi-dominant 

over B6 alleles in each case.  These results lay the foundation for preliminary mapping and 

ultimate identification of the genes underlying novel hearing phenotypes. 

 

MATERIALS AND METHODS 
 

Overall Strategy 

 Our experiments consisted of two largely non-overlapping projects.  To establish the 

noise vulnerability of the hybrid mice required the construction of a noise duration dose-response 

curve, whereby both the probability and extent of NIPTS were assessed for each strain as the 

duration of a single noise exposure was varied.  By constructing this relation in 6 wk old F1 

mice, it was then possible to compare the data with similar analyses in CBA/J and B6 mice at the 

same age.  To establish the KM ‘protectability’ of the hybrid mice, it was necessary to expose 

these to noise of a duration known to inflict moderate NIPTS on both CBA/J and B6 mice.  The 

goal was for the F1s to sustain clear NIPTS that could either be exacerbated or reduced by KM 

treatment.  This design required 6 experimental groups [3 strains (B6, CBA/J, F1) x 2 treatments 

(KM, saline)]. 
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Animals 

The study utilized 16 CBA/J, 18 C57BL/6 (B6), and 45 [B6 x CBA/J] F1 hybrid mice.  

All experimental groups included mice of both genders.  Mice were bred from in-house breeding 

pairs that were purchased or derived from breeders purchased from The Jackson Laboratory 

(JAX).  All mice were housed in the Central Institute for the Deaf Animal Colony.  During 

treatment and recordings the mice were housed in the Mechanisms of Cochlear Injury 

Laboratory at Washington University School of Medicine where they had access to food and 

water.  Approximately half of the F1 hybrid mice were used to determine noise vulnerability and 

the remaining mice were all used in the kanamycin/saline paradigm.  All procedures were 

approved by the Animal Studies Committee at Washington University School of Medicine.   

 

Noise Exposure 

 Noise exposures were performed in a foam-lined, single-walled soundproof room 

(Industrial Acoustics, Bronx, NY).  One or two mice were placed inside a 21 x 21 x 11 cm wire 

cage that was mounted on a B&K 3921 turntable.  The cage was suspended between four 

speakers at 0, 90, 180, and 270 degrees azimuth.  Broadband noise between 4 and 45 kHz at 110 

dB SPL was produced and filtered with General Radio 1310 generators and Krohn-Hite 3550 

filters.  The cage was rotated at approximately 0.013 Hz throughout the duration of the exposure 

to assure uniform exposure to each animal throughout the presentation of stimuli.   

For experiments examining overall noise vulnerability of F1s, exposures were varied by 

multiples of two between 0.23 minutes and 3.75 minutes.  The noise duration for the 
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kanamycin/saline study was 30 minutes across mouse strains.  This duration was chosen based 

on previous work (Ohlemiller et al., 2000).   

  

 Auditory Brainstem Response recordings 

Audiometric data were determined from evoked ABRs, a noninvasive measure of 

cochlear function.  ABR testing, like, noise exposures were carried out in a double-walled 

soundproof booth (IAC).  Mice were anesthetized with an intramuscular injection of 80 mg/kg 

ketamine/5 mg/kg xylazine solution.  They were then positioned dorsally in a custom headholder 

with their right ear 7 cm from the sound source.  Body temperature was maintained at 37.5±1°C 

with the use of a controlled heating pad and a rectal probe.  Platinum needle electrodes were 

inserted subdermally behind the right ear (active), at the vertex (reference), and in the back 

(ground).  The left ear was clamped shut to ensure it was not responding to the stimuli and 

recorded thresholds were only from the right ear. 

The ABR threshold at each test frequency was defined as the lowest stimulus level at 

which Wave I was clearly present using a 5 dB step size.  Wave I was used because it is the most 

robust wave of the mouse ABR, and thought to be generated entirely by the cochlear auditory 

nerve activity (Zheng, Johnson & Erway, 1999).  All thresholds were verified by repetition at 

each frequency tested.  Stimuli were 5 ms tonebursts presented at 1,000 repetitions at 5, 10, 20, 

28.3, 40, and 56.6 kHz.  Stimulus presentation and data acquisition used Tucker Davis 

Technologies System II hardware and Biosig 32 software.  A two-way analysis of variance 

(ANOVA) followed by posthoc Bonferroni multiple comparisons tests were applied to test for 

significant ABR threshold differences by experimental group and frequency.  Statistics were 

performed using SigmaStat software. 
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F1 Noise Vulnerability 

Procedures for this aspect of the study involved a baseline hearing assessment, broadband 

noise exposure, a second hearing assessment, and sacrifice for histology.  Mice were divided into 

groups of varying noise durations (see Table 1).  Baseline auditory brainstem responses (ABRs) 

were obtained between 4 weeks post-gestational age and at least 2 days before noise exposure.  

Noise exposures were performed at 6 weeks post-gestational age at specified durations.  A final 

ABR was performed at 8 weeks post-gestational age (2 weeks post noise exposure) to ensure 

changes in hearing were permanent threshold shifts.  Once vulnerability trends were observed, 

mice were added for durations that bracketed the dynamic portion of the noise dose-response.   

In accordance with Ohlemiller et al. (2000), NIPTS was defined as an increase in threshold of at 

least 10 dB at 2 or more test frequencies.  To permit dose-response comparisons between F1 

mice and earlier estimates in CBA/J and B6 mice, data were rendered as probability of NIPTS 

versus noise duration and total amount of NIPTS versus duration.  To compare the amount of 

NIPTS by group and exposure duration, average threshold shifts across frequencies (excluding 

56.6 kHz) were added (Ohlemiller et al., 2011). 

Table 1:  Number of F1 mice per noise exposure group  

Noise Duration in minutes Number of Animals 

0.23 4 

0.47 8 

0.94 8 

1.88 4 

3.75 4 
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Kanamycin Preconditioning 

The mice that received kanamycin were injected subcutaneously twice a day for ten days 

with a 300 mg/kg solution (63.93 mg/mL concentration).  Injections began between 29 and 30 

days post-gestational age and were stopped at either 38 or 39 days post-gestational age.  Mice 

were weighed prior to each injection and received 0.006 cc of the KM/saline solution for every 

gram of body weight.  Injections occurred approximately every twelve hours to maintain a 

chronic drug state. Age and gender matched controls received the same dosage of saline 

subcutaneously in the same amount and at the same time interval as the kanamycin treated mice.  

The drug regimen was well-tolerated as no mice were lost during the course of treatment.  

All mice in this aspect of the study received a baseline ABR one day prior to the onset of 

the injection regimen.  Injections lasted a total of 10 days.  A second ABR was performed on the 

tenth day of injections to observe if there was any effect of injections alone on hearing.  Noise 

exposures were completed the day following final injections.  Final ABRs were completed two 

weeks after noise exposure.  Animals were then sacrificed for histology.    

Table 2:  Number of mice per treatment group 

Mouse Strain   Treatment Number of Animals 

F1 (CBA/J x B6) Kanamycin 9 

F1 (CBA/J x B6) Saline 8 

CBA/J Kanamycin 8 

CBA/J Saline 8 

B6 Kanamycin 9 

B6 Saline 9 
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Sacrifice and tissue processing for histology 

Cochleae were taken to preserve the potential for histologic evaluation (not shown here).  

After final ABR threshold were obtained, mice were overdosed using an intraperitoneal injection 

of sodium pentobarbital at 4 times the surgical dose (240 mg/kg). When no muscular response to 

stimulation could be elicited, mice were transcardially perfused with cold 2.0% 

paraformaldehyde/2.0% glutaraledehyde solution in 0.1 M phosphate buffer. Both cochleae from 

each mouse were quickly harvested and immersed in the same fixative, and extraneous tissue and 

the stapes were removed. All middle ears were inspected for signs of otitis media.  No animals in 

this study presented with the middle ear pathology. 

 

RESULTS 

F1 Noise Vulnerability 
 
 Figure 3 shows that F1 mice were fairly similar to CBA/J in noise vulnerability, as 

indicated by both the total NIPTS (Figure 3A), and probability of NIPTS (Figure 3B).  Figure 3A 

is represents the overall growth in NIPTS by strain and with exposure duration, based on the sum 

of the threshold shifts across frequencies (Total NIPTS in dB).  For F1s, threshold shifts began to 

accumulate rapidly between 0.47 and 0.94 min, which is similar to published data for CBA/Js 

(Ohlemiller et al, 2011).  B6 mice, however, required at least 3.75 min for similar NIPTS.  

Figure 3B compares the growth of the probability of NIPTS across strains.  Like Figure 3A, 

Figure 3B shows that the F1 mice respond similarly to the CBA/Js to noise exposure as seen in 

similar threshold shifts.  These results suggest that the noise vulnerability of young F1 mice, 

while not exactly that of CBA/J far more strongly resembles CBA/J than B6.  Thus CBA/J 

alleles for this trait appear semi-dominant to those in B6. 
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Figure 3:  (A) The sum of 
the proportion of noise 
induced positive threshold 
shift (NIPTS) in CBA/J, F1, 
and C57BL/6J (B6) mice 
following noise exposure to 
110 dB SPL broadband 
noise at varying durations. 
(B) The probability of 
NIPTS by strain. 
 
CBA/J and B6 data replotted 
with permission from 
Ohlemiller et al., in press, 
&Ortmann et al., 2004 
respectively 

 
 
Kanamycin Preconditioning 
 

As shown in Figure 4A, thresholds in both the saline and KM treated mice after noise 

exposure were significantly different than all other conditions (p<0.001), yet ABR thresholds 

post-noise for saline were also significantly different from those in KM treated mice (p<0.001).  

CBA/J mice receiving KM did not exhibit full protection from NIPTS, but did show significant 

protection, especially in the lower frequencies (5-10 kHz) tested.  A potential decrease in the 
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efficacy of KM versus previous work may reflect the much longer duration of noise exposure in 

these mice (30 min versus 30 sec). 

  

 

 

Figure 4(A):  Mean (+SD) ABR thresholds for saline and KM treated 
CBA/J mice.  The first ABR was before treatment, second after injections, 
and third 2 weeks after 30 min noise exposure. 

 

 

 

Figure 3(B):  Mean (+SD) ABR thresholds for saline and KM treated 
C57BL/6J (B6) mice.  The first ABR was before treatment, second after 
injections, and third 2 weeks after 30 min noise exposure. 
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Consistent with previous work, there appeared to be no protection from noise by KM in 

the B6 mice.  Threshold shifts in these mice were not statistically different from mice treated 

with saline after noise exposure (p<0.001).  Moreover, significant (p<0.001) damage also 

appeared to be inflicted by KM, as reflected in a high frequency hearing loss in the second ABR 

thresholds obtained from animals in the KM group specifically the KM average 2 (Figure 4B). 

Figure 4C shows that young F1 hybrids were partially but significantly (p<0.001) 

protected from noise by KM compared to those receiving saline.  Since the F1 phenotype is 

intermediate between that in CBA/J and B6, these findings suggest that ‘protectability’ is a semi-

dominant trait in these two strains.  Notably, F1 mice also did not appear harmed by KM when 

administered alone.  This is seen as the absence of any difference in thresholds between the first 

and second ABRs compared to the significant difference between ABR thresholds in the B6 

mice. 

 

 Figure 4 (C):  Mean (+SD) ABR thresholds for saline and KM treated F1 
mice.  The first ABR was before treatment, second after injections, and 
third 2 weeks after 30 min noise exposure.  
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DISCUSSION 

The purpose of this study was to evaluate both noise vulnerability and the extent of 

protection from noise by low-dose kanamycin in 6 week old F1 hybrids.  The data show F1 

susceptibility to noise and ‘protectability’ against noise is similar to that of CBA/J mice.  While 

the CBA/J phenotype was slightly altered, the phenotype of the F1s was far more like that in 

CBA/J than B6.  This suggests that young CBA/J and B6 mice carry different alleles at a 

potentially small number of gene loci that are separately responsible for their different responses 

to kanamycin and different sensitivities to noise exposure, and that CBA/J alleles are semi-

dominant.  While the number and type of genes remains unknown, these are worth pursuing as 

they establish completely novel phenotypes with probable relevance to human hearing:  

Heightened noise vulnerability early in life and the balance of protection versus injury caused by 

environmental events. 

 

Preconditioning from Kanamycin 

As shown previously and confirmed here, young CBA/J and B6 mice exhibit different 

effects from preconditioning due to KM.  CBA/J mice are significantly protected against 

cochlear noise injury by low-dose, sub-chronic KM, while B6 appear either unaided, or harmed.  

This study probed the limits of ‘protectability’ in the CBA/J mice by providing 60 times more 

noise than used in previous work (Fernandez et al, 2010).  This may explain why the extent of 

protection in both CBA/Js and the F1s was somewhat modest.  The present data study confirms 

apparent ‘non-protectability’ of B6 mice by KM; however, this must remain tentative until more 

dosing levels and schedules are tested.  It may be the case that apparent injury by KM and non-

protectability in B6 are actually two separate phenotypes, mechanistically unrelated.  Arguing 
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against this is the fact that both features became CBA/J-like in the F1 mice.  That is, both 

features co-varied.  This suggests that the lack of protection in B6 reflects two linked processes, 

protection versus injury.  Since preconditioning is based on modest injury engaging innate 

protections, the same cascade that protects CBA/J mice may ‘swing’ toward injury in B6. 

 

Noise Vulnerability  

The CBA/J and B6 strains are very differently vulnerable to noise.  It has been shown 

that CBA/J mice appear approximately 3 times more vulnerable to noise, in that the ‘threshold’ 

duration for NIHL is roughly 1.0 minute in CBA/J versus about 3.0 minutes in the B6.  Our 

study found that the F1 hybrid mice had a more similar NIPTS from differing durations of noise 

to the CBA/J parent strain.  These findings show a semi-dominant inheritance pattern for noise 

vulnerability in the F1 hybrid mice.  

 

Implications for Genes Involved 

 This study explored two characteristics, basic noise vulnerability and KM ‘protectability.’  

These traits markedly differ between CBA/J and B6 mice and likely reflect distinct sets of genes.  

Young CBA/J mice are much more vulnerable to noise than are B6 mice, while KM confers 

protection from noise exposure in the CBA/J, but not B6.  F1 hybrid mice formed from these 

strains resemble the CBA/J mice in both regards, although not fully.  It may therefore be posited 

that polymorphisms at a small number of loci differentiate these strains.  The genes that shape 

these traits may impact the way environmental noise and ototoxins interact to affect the hearing 

of animals and humans.  Natural candidates for preconditioning mechanisms that affect these 

genes include those known to be activated by ototoxins and other stressors, including heatshock 

17 
 



Barden 
 

protein HSP70 which mediates protection by elevation of body temperature (Yoshida, 

Kristiansen & Liberman, 1999), hypoxic preconditioning (Gagnon et al., 2007) suggested a role 

for hypoxia-induced factor HIF-1α , and finally antioxidants, tumor necrosis factor TNFα, 

nuclear factor NFκB, and heme oxygenase HO-1 (Gidday, 2006; Rybak, 2007 ), all of which 

participate in cochlear responses to stress (Rybak, 2007). 

 

Next Steps 

  Appropriate future research should take a two-pronged approach.  The first of these is 

classical genetic, by backcrossing the F1 hybrid mice to the most recessive strain for the 

vulnerability and susceptibility, in this case B6.  A single-gene dominantly inherited trait from 

CBA/J should be seen in approximately half of N2 backcross mice, according to simple 

Mendelian principles.  Even if two or three genes are involved, any clear modes in threshold 

distributions would point to populations bearing particular alleles.  The underlying genes could 

then be preliminarily mapped using genetic markers.  The second method is molecular:  KM and 

or noise should produce different patterns of gene expression in CBA/J and B6.  Gene expression 

analysis using microarrays is increasingly commonplace.  The two methods may ideally point to 

some of the same genes and pathways. 
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