Transportation group works to cut single-person auto use

Washington University's Transportation Management Association (TMA) is working to alleviate congestion on the area's overburdened roadways and mitigate St. Louis' air pollution problem. The TMA, located on the Medical Campus, fosters the use of car-pooling, mass transit and other forms of ride-sharing among School of Medicine faculty and staff.

"The mission is to reduce the number of work-related single-occupancy vehicle trips to and from the Medical Center by encouraging employees to rideshare, whether that be by car-pooling, van-pooling, biking, walking, bus or taking MetroLink — which is one of the most environmentally friendly means of transportation in terms of air quality," said Susan Dreier, TMA coordinator.

Funded by a federal grant, the TMA established in spring 1996, offers several transportation alternatives. They provide vans for van-pooling, offer Bi-State Development Agency bus schedules, map out bus routes for users and encourage the use of the MetroLink light-rail system. They also are working to create bicycle storage improvements on the Medical Campus.

A number of TMA incentive programs help attract users. Registered car-poolers receive parking discounts and preferential parking spots. The Guaranteed Ride Home Program ensures that car- and van-poolers who must leave work early or stay late receive as many as six free cab rides home each year. A plan to expand that program to mass transit users should be up and running in a few months. And each month, seven free cab rides are given to those who stay late.

Innovative incentive programs, such as the Free Cab Rides for faculty members who stay late, have produced mice with limited movement, according to Steven Blair, assistant director of research services at the TMA. Blair said the TMA is working to create an environmental awareness program.

The TMA, located on the Medical Campus, fosters the use of car-pooling, mass transit and other forms of ride-sharing among School of Medicine faculty and staff.

"The mission is to reduce the number of work-related single-occupancy vehicle trips to and from the Medical Center by encouraging employees to rideshare, whether that be by car-pooling, van-pooling, biking, walking, bus or taking MetroLink — which is one of the most environmentally friendly means of transportation in terms of air quality," said Susan Dreier, TMA coordinator.

Funded by a federal grant, the TMA established in spring 1996, offers several transportation alternatives. They provide vans for van-pooling, offer Bi-State Development Agency bus schedules, map out bus routes for users and encourage the use of the MetroLink light-rail system. They also are working to create bicycle storage improvements on the Medical Campus.

A number of TMA incentive programs help attract users. Registered car-poolers receive parking discounts and preferential parking spots. The Guaranteed Ride Home Program ensures that car- and van-poolers who must leave work early or stay late receive as many as six free cab rides home each year. A plan to expand that program to mass transit users should be up and running in a few months. And each month, seven free cab rides are given to those who stay late.

Innovative incentive programs, such as the Free Cab Rides for faculty members who stay late, have produced mice with limited movement, according to Steven Blair, assistant director of research services at the TMA. Blair said the TMA is working to create an environmental awareness program.

The TMA, located on the Medical Campus, fosters the use of car-pooling, mass transit and other forms of ride-sharing among School of Medicine faculty and staff.

"The mission is to reduce the number of work-related single-occupancy vehicle trips to and from the Medical Center by encouraging employees to rideshare, whether that be by car-pooling, van-pooling, biking, walking, bus or taking MetroLink — which is one of the most environmentally friendly means of transportation in terms of air quality," said Susan Dreier, TMA coordinator.

Funded by a federal grant, the TMA established in spring 1996, offers several transportation alternatives. They provide vans for van-pooling, offer Bi-State Development Agency bus schedules, map out bus routes for users and encourage the use of the MetroLink light-rail system. They also are working to create bicycle storage improvements on the Medical Campus.

A number of TMA incentive programs help attract users. Registered car-poolers receive parking discounts and preferential parking spots. The Guaranteed Ride Home Program ensures that car- and van-poolers who must leave work early or stay late receive as many as six free cab rides home each year. A plan to expand that program to mass transit users should be up and running in a few months. And each month, seven free cab rides are given to those who stay late.

Innovative incentive programs, such as the Free Cab Rides for faculty members who stay late, have produced mice with limited movement, according to Steven Blair, assistant director of research services at the TMA. Blair said the TMA is working to create an environmental awareness program.

The TMA, located on the Medical Campus, fosters the use of car-pooling, mass transit and other forms of ride-sharing among School of Medicine faculty and staff.

"The mission is to reduce the number of work-related single-occupancy vehicle trips to and from the Medical Center by encouraging employees to rideshare, whether that be by car-pooling, van-pooling, biking, walking, bus or taking MetroLink — which is one of the most environmentally friendly means of transportation in terms of air quality," said Susan Dreier, TMA coordinator.

Funded by a federal grant, the TMA established in spring 1996, offers several transportation alternatives. They provide vans for van-pooling, offer Bi-State Development Agency bus schedules, map out bus routes for users and encourage the use of the MetroLink light-rail system. They also are working to create bicycle storage improvements on the Medical Campus.

A number of TMA incentive programs help attract users. Registered car-poolers receive parking discounts and preferential parking spots. The Guaranteed Ride Home Program ensures that car- and van-poolers who must leave work early or stay late receive as many as six free cab rides home each year. A plan to expand that program to mass transit users should be up and running in a few months. And each month, seven free cab rides are given to those who stay late.

Innovative incentive programs, such as the Free Cab Rides for faculty members who stay late, have produced mice with limited movement, according to Steven Blair, assistant director of research services at the TMA. Blair said the TMA is working to create an environmental awareness program.
Kodner elected president of American Society of Colon and Rectal Surgeons

Ira J. Kodner, M.D., professor of surgery at the School of Medicine, has been elected president of the American Society of Colon and Rectal Surgeons (ASCRS). Kodner, director of the colon and rectal surgery section at the School of Medicine and Barnes-Jewish Hospital, is renowned for his surgical skills and for his research into cancer of the colon and rectum. He has published more than 100 scientific articles relating to diseases of the colon and rectum.

Kodner has received many honors for his accomplishments in medicine and teaching, including the American Cancer Society Award for Leadership and the School of Medicine’s Distinguished Alumni Scholarship. He recently was named Physician of the Year by the St. Louis Crohns’ and Colitis Foundation.

Kodner joined the ASCRS in 1978 and served on its executive council for five years. He also is a past president of the American Board of Colon and Rectal Surgery and a past director of the American Board of Surgery. He currently serves as a examiner for both surgical boards.

Born in Mayfield, Ky., he earned both his bachelor’s and medical degrees at Washington University. Following residencies at Jewish Hospital in St. Louis, he joined the School of Medicine faculty in 1976 as a clinical instructor of surgery.

Scientists generate mice with Duchenne muscular dystrophy

For the first time, scientists have developed mice with realistic symptoms of Duchenne muscular dystrophy, a devastating muscle disease that usually kills those affected by age 20. This work could greatly advance the search for better treatments, the researchers said. "The only effective way to develop new therapies is to test them in an experimental animal with symptoms of the disease," said Joshua R. Sanes, Ph.D., who led the team. Sanes is a professor of anatomy and neurobiology at the School of Medicine.

The mouse, described in a recent issue of Cell, develops muscle wasting and heart disease and dies by early adulthood. "This is the first animal suitable for studying the effects of a Duchenne-type skeletal muscle and the heart," said R. Mark Grady, M.D., an instructor in pediatric cardiology and lead author of the paper. "That’s important because these children would die of heart failure as young adults even if their muscles were cured. So it would be a mistake to look for a treatment for just the muscle symptoms."

Duchenne muscular dystrophy is the most common form of muscle disease, affecting mostly boys. Between 20 and 30 out of every 100,000 boys born in the United States this year will develop Duchenne, and 3 out of every 100,000 have it right now. There currently is no effective therapy, though steroids sometimes are used to slow the relentless progression of the disease.

Symptoms usually begin between the second and fourth years of life. A child starts to fall and have difficulty getting up. By late childhood or early adolescence, the muscles of the calves and the thighs start to waste away. By adolescence, the muscles of the chest and shoulder blades also are wasting, patients eventually need a ventilator and often die from respiratory disease.

The disorder results from a defect in the gene for an enormous protein called dystrophin, which forms a structural scaffold in muscle fibers. Scientists who want to study new therapies for dystrophin deficiency in an experimental animal had to rely on a mouse called mdx, which has a natural mutation in the gene. But mdx mice have fairly normal muscles as young children and heart problems, and they don’t get progressively sicker or die young. One possible explanation is that the muscle protein called utrophin, which is very similar to dystrophin, is protective in the mdx mouse and enough of this protein to stabilize muscle when dystrophin isn’t there to do the job. But the larger muscle fibers of humans would deteriorate in the absence of dystrophin, even when utrophin levels were normal.

Grady began testing this idea in 1996 by breeding the Duchenne mouse from a mouse, creating a creature that also had few symptoms. But when the team bred this utrophin-deficient mouse with the mdx mouse, they obtained the mouse described in Cell. Lacking both utrophin and dystrophin, this animal ends up in the same predicament as children with Duchenne. Its symptoms include decreased activity, a waddling gait, stiff limbs, curvature of the spine and death by early adulthood.

The researchers used a variety of tests to determine the underlying causes. By viewing muscle samples under the microscope as the mice matured, they found that the muscles were not degenerated and degenerated again, replacing itself with connective tissue. So the mouse had the same type of muscle wasting as children with Duchenne.

Electrophysiological tests showed that the muscles of the double mutant were not nearly as strong as those of normal mice or mice that lacked only utrophin or dystrophin. In fact, they generated only about half as much force when their nerves were stimulated.

The researchers also observed damaged muscle cells in parts of the mutant mice that were not present in the hearts of the other mice. So the double mutant develops severe heart disease, like patients with Duchenne.

In addition, the researchers said they used to learn more about the mechanisms of Duchenne. The world also suggests a new strategy for treatment. "Other researchers recently showed that you could make mdx into a symmetrical cell by making it synthesize huge amounts of utrophin," Sanes said. "But the double mutant shows that just removing normal, small amount of utrophin makes mdx very sick. So turning up the level of utrophin by just a modest amount might make Duchenne patients rather healthy."
Washington People

Waterston decipher releases human blueprints

WHEN Bob Waterston decided to go to medical school all those years ago, an engineering degree at Princeton, there were few role models. One he had taken no biology courses. Two: He hadn't fulfilled the foreign language requirement. The third: He was an only child in Waterston. He and his wife went to Europe for biology classes in German, a language they had only just begun to study. Waterston has never strayed on challenge. In the middle of his medical degree at the University of Chicago, he decided to work as a molecular biologist for a long extended family—his mother, who was a nurse, and his father, who was a professor of biology. After jogging with his oldest daughter, he became a marathon runner. As he runs, he imagines himself as one of the heroes of a human genome. His genome is systematically finding human gene function.

The team is contributing to an international effort called the Human Genome Project, which is systematically finding human gene function by spelling out the order of the genetic letters in our DNA. Sequencing the DNA—the genetic code of other organisms also is part of the plan because experiments with genetically similar creatures can reveal human gene function.

This expensive project is essential, Waterston explains, because biologists currently are working with all the information on the table. "One can only hope that we'll have a good understanding of how genes contribute to all aspects of human health, well-being and behavior," Waterston said. "Eventually, that will be the genetic alleviation of many inherited diseases."

From pediatrics to genetics

Genes were not on Waterston's mind when he went to medical school in 1965 to become a pediatrician. But he found himself drawn to the study of basic science, the area of his Ph.D. studies. So, after finishing his medical degree, he signed up for a postdoctoral fellowship with Sydney Brenner, Ph.D., a geneticist at Cambridge University in England. Even a subsequent residency at Children's Hospital in Boston didn't tempt him back into pediatric care.

Since the 1960s, Brenner had studied the development of Caenorhabditis elegans, a graceful nematode worm named Caenorhabditis elegans, which lives in soil, and he had several mutants that moved in an awkward manner. Fascinated with the exquisite order of proteins in muscle cells, Waterston decided to explore the muscle defects in these mutants.

Joining the School of Medicine as an assistant profes-
sor in 1976, he continued to study C. elegans, whose muscles are surprisingly similar to those of humans. His group has since defined the role of a major protein called myosin in muscle assembly and contraction. It also has located about 25 muscle genes and their proteins. "Eventually, it became clear that, to understand the many genes involved in myosin in muscle assembly and contraction, it also has located about 25 muscle genes and their proteins. We're working with all the information on the table. One can only hope that we'll have a good understanding of how genes contribute to all aspects of human health, well-being and behavior," Waterston said. "Eventually, that will be the genetic alleviation of many inherited diseases."

During the first year, the St. Louis group sequenced 40,000 of the worm's 100 million nucleotide base pairs — its genetic letters. But they were constantly testing ways to speed up sequencing. Advances in computer software and increasing mechanization of the biochem-

...by the middle of the next century, we'll have a good understanding of how genes contribute to all aspects of human health, well-being and behavior."

Robert H. Waterston, M.D., Ph.D., (right) works with Richard K. Wilson, Ph.D., research associate professor of genetics and co-director of the Genome Sequencing Center.

"A few years ago, two or three small companies were trying to restrict access to large amounts of genomic data. That was a wake-up call," Waterston pointed.

Public access to genomic data

Waterston and Sulston's views on public access to genomic data also have helped shape the Human Genome Project's strategy. "This information is for future discoveries, so we should get the information to as many people as possible," Waterston said. "A few years ago, two or three small companies were trying to restrict access to large amounts of genomic data. That was a wake-up call," Waterston pointed.

The upshot was that, in 1994, Merck & Co. Inc. funded Washington University's efforts to sequence snippets of human gene copies, agreeing that the data should go to a publicly accessible database at the National Library of Medicine in Bethesda, Md. The center also sends raw data straight from its sequencing machines to its own Web site each day, sometimes with spectacular results. On Nov. 23, 1995, it posted the se-

...by the middle of the next century, we'll have a good understanding of how genes contribute to all aspects of human health, well-being and behavior."

Robert H. Waterston, M.D., Ph.D., (right) works with Richard K. Wilson, Ph.D., research associate professor of genetics and co-director of the Genome Sequencing Center.

...by the middle of the next century, we'll have a good understanding of how genes contribute to all aspects of human health, well-being and behavior."

Robert H. Waterston, M.D., Ph.D., (right) works with Richard K. Wilson, Ph.D., research associate professor of genetics and co-director of the Genome Sequencing Center.

...by the middle of the next century, we'll have a good understanding of how genes contribute to all aspects of human health, well-being and behavior."

Robert H. Waterston, M.D., Ph.D., (right) works with Richard K. Wilson, Ph.D., research associate professor of genetics and co-director of the Genome Sequencing Center.

...by the middle of the next century, we'll have a good understanding of how genes contribute to all aspects of human health, well-being and behavior."

Robert H. Waterston, M.D., Ph.D., (right) works with Richard K. Wilson, Ph.D., research associate professor of genetics and co-director of the Genome Sequencing Center.

...by the middle of the next century, we'll have a good understanding of how genes contribute to all aspects of human health, well-being and behavior."

Robert H. Waterston, M.D., Ph.D., (right) works with Richard K. Wilson, Ph.D., research associate professor of genetics and co-director of the Genome Sequencing Center.

...by the middle of the next century, we'll have a good understanding of how genes contribute to all aspects of human health, well-being and behavior."

Robert H. Waterston, M.D., Ph.D., (right) works with Richard K. Wilson, Ph.D., research associate professor of genetics and co-director of the Genome Sequencing Center.
Exhibitions

Visits. Room 100 Brown Hall. 935-6350.

of Architecture. Sponsored by the Women’s University art collections.

Friday, Oct. 31

7:30 p.m. Paderstics Grand Rounds, “The Politics of Aging in a Diverse Society.” Fernando Roebuck and Co. and recipient of award. Room 199 Cupples I Hall. 935-5610.

2 p.m. American Jewish Congress Annual Newman brunch to benefit the Specialized Education Program. Lords and Their Utility as Therapeutics.” Dennis Riley, Monsanto Co. Room 311 McMillen Lab. 935-6530.

“NIH Principles and Guidelines for the Use of Animals in Research.” Troy Davis, Ford Foundation's所做的work. Room 311 McMillen Lab. 935-6530.

Thursday, Nov. 6

2 p.m. American Jewish Congress Annual Newman brunch to benefit the Specialized Education Program. Lords and Their Utility as Therapeutics.” Dennis Riley, Monsanto Co. Room 311 McMillen Lab. 935-6530.

“NIH Principles and Guidelines for the Use of Animals in Research.” Troy Davis, Ford Foundation's所做的work. Room 311 McMillen Lab. 935-6530.

Thursday, Nov. 6

2 p.m. American Jewish Congress Annual Newman brunch to benefit the Specialized Education Program. Lords and Their Utility as Therapeutics.” Dennis Riley, Monsanto Co. Room 311 McMillen Lab. 935-6530.

“NIH Principles and Guidelines for the Use of Animals in Research.” Troy Davis, Ford Foundation's所做的work. Room 311 McMillen Lab. 935-6530.

Thursday, Nov. 6

2 p.m. American Jewish Congress Annual Newman brunch to benefit the Specialized Education Program. Lords and Their Utility as Therapeutics.” Dennis Riley, Monsanto Co. Room 311 McMillen Lab. 935-6530.

“NIH Principles and Guidelines for the Use of Animals in Research.” Troy Davis, Ford Foundation's所做的work. Room 311 McMillen Lab. 935-6530.
Vietnam's internationally renowned Thang Long Water Puppet Theater brings its unique puppetry techniques to Edison Theatre Friday and Saturday, Oct. 31 and Nov. 1, as part of the OVATIONS! Series.

Water puppet theater performs at Edison

Angels, dragons, phoconites and other mythical creatures will dance, dive and swim on the Edison Theatre stage when Vietnam's internationally renowned Thang Long Water Puppet Theater helps celebrate Edison's 25th annual OVATIONS! Series. The performances, ideal for family audiences, are at 8 p.m. Friday, Oct. 31, and 2 and 8 p.m. Saturday, Nov. 1.

Originaly performed on the surfaces of ponds and paddly fields in Vietnam's Red River Delta, the 1,000-year-old art of water puppetry (in Vietnamese, mua loi nuoc) remained little known outside rural Vietnam until the 1960s, when the North Vietnamese government began supporting it as a national art form.

Its main practitioners were farmers and fishermen who found water to be an excellent medium for puppetry, not only concealing the puppets' rods and string mechanisms, but also providing special effects like waves and splashes. For the Edison Theatre performances, a tank of water will be installed on stage.

Puppetry techniques were jealously guarded secrets, protected by village guilds and passed from father to son, though not to daughters because they might marry outside the village and take the prized information with them. Even today, certain maneuvers are referred to only by code.

Founded in 1969 by the Hanoi People's Committee, the Thang Long Water Puppet Theater consists of 12 puppeteers, eight musicians, five technical personnel and Artistic Director Le Van Nho. Their large, intricately decorated puppets are hand-carved from water-resistant tree poison and range from 2 to 4 feet in height. Stories are set to the strains of traditional Vietnamese folk music and can range from everyday scenes of fishing and farming to ancient myths and legends, often including effects like smoke or fireworks.

Vietnam's premier water puppet troupe, the Thang Long, has performed worldwide. The troupe was brought to the United States by Vu Duc Voong, president of San Francisco's Southeast Asian Chamber of Commerce, who, with Truman in 1960 to attend Washington University's College of Arts and Science, School of Law and the George Warren Brown School of Social Work. Edison Theatre is one of only six U.S. venues for Thang Long's current tour.

Tickets are $23; $18 for senior citizens, faculty and staff, and $12 for students. Tickets are available at the Edison Theatre Box Office, 935-6543, or through Metrotix, 744-3030. For more information, call 935-6543.

Vietnams Thang Long Water Puppet Theater brings its unique puppetry techniques to Edison Theatre.

The University's nationally recognized policy expert on aging, Fernando Torres-Gil at 1:10 p.m. Thursday, Nov. 6, in the Brown Lounge of Anheuser-Busch Hall.

Bears beat Rochester

Washington University won its 1997 homecoming game with a 32-9 victory over the University of Rochester Saturday at Francis Field. Current Record: 4-3 (2-1 AAU) This Week: 7 p.m. Saturday, Nov. 1, vs. Case Western Reserve University (UA), Francis Field. **Men's soccer wins two**

The men's soccer team beat Emory University, 2-0, and New York University, 2-1, last week in the Metro Atlantic. Current Record: 9-5 (3-3 UA) This Week: 11 a.m. Saturday, Nov. 1, vs. Case Western Reserve University (UA), Francis Field.

Women's soccer on streak

The 13th-ranked women's soccer team remained unbeaten in its last seven games (6-0-1) by winning three home games last week over Fonthouse College, New York University and Emory University. Current Record: 13-3-1 (4-2-1 UA) This Week: 1:30 p.m. Saturday, Nov. 1, vs. Case Western Reserve University (UA), Francis Field. **Volleyball wins classic**

The third-ranked volleyball team won the championship at the NAIA-caliber College of St. Francis Classic in Joliet, Ill., last weekend. The Bears were champions in the UA Championship in New York this past weekend. Current Record: 28-6 (8-0 UA) **Runners to compete**

The men's and women's cross country teams compete Sunday in the UA Championship at Brandeis University in Walchum, Mass.
Green Lights Program cuts energy use

Washington University has given the green light to a program to decrease energy use and reduce pollution. Through voluntary participation in the Environmental Protection Agency's (EPA) Green Lights Program, the lights in buildings on the Hilltop Campus are being replaced with energy-efficient bulbs. The change means brighter lights, longer bulb life and significant annual savings in future years.

"We're one of St. Louis' largest energy users," said Ed McMullin, manager of the University's energy program. Consideration of the cost savings coupled with the environmental benefits led the University to sign a Memorandum of Understanding with the EPA, officially introducing the program to campus in March 1996, McMullin said. Since then, the University has upgraded six buildings. They are:

- Library and Bixby, Brown, Cripples II, Green and Reubenke halls. The upgrades will result in an annual savings of more than 1 million kilowatt hours, a 211-kilowatt reduction in demand and an annual electrical cost savings of $61,741. The six buildings represent 10 percent of the 3.8 million square feet of upgradeable area on campus.
- The recently renovated South Brookings Hall use the new lights.
- Expect some fast and furious room delights, dilemmas and diplomacy for parents.
- For more information, call 935-7447.

For example, Anheuser-Busch Hall and the recently renovated South Brookings Hall use the new lights.

The EPA-sponsored program began five years ago in response to concerns over global warming and reducing the country's dependence on foreign energy sources. In collaborating with the EPA, participants agree to upgrade their facilities with energy-efficient lighting. The EPA provides program partners with a variety of technical support tools and services, such as product information and training workshops, to make the process easier and more cost-effective.

The new lighting system is a combination of bulbs and ballasts. The lights, called F-8 lamps, are 3-lust watt fluorescent bulbs. They use an electronic ballast that acts as a power transformer, producing electricity at a higher frequency. Electronic ballasts combined with F-8 lamps are 30 percent more efficient than standard fluorescent systems and 20 percent more efficient than old fluorescent magnetic ballast systems. To the human eye, the only perceptible difference is that the light is brighter.

Using the lights also decreases pollution. In the United States, 30 percent to 40 percent of energy use is for lighting, said Larry Downey, the University's Green Lights implementation director. Creating that power can produce pollutants, but because the new lighting system has a lower energy demand, less power needs to be generated, thereby reducing pollution, Downey said.

Washington University is one of more than 120 colleges and universities throughout the country that have joined the Green Lights Program. As Thaman said, "We're just doing our part."

Economist and Sierra Club official debate

"Is Environmental Protection Too Important to Trust to the States?" is the topic of a debate sponsored by Washington University's Center for the Study of American Business at 1:30 p.m. Thursday, Oct. 25, in the Bryan Moot Courtroom, Anheuser-Busch Hall.

Maxine I. Lapeze, J.D., professor of environmental policy and regulation at the School of Engineering and Applied Sciences, will moderate the debate between P.J. Hill, Ph.D., a Wheaton (Ill.) College economics professor who has written extensively on environmental, and Kenneth Mifflk, a legislative lobbyist for the Sierra Club.

Hill is the George Bennett Professor of Economics at Wheaton and a senior associate at the Center for Environmental Policy, Bozeman, Mont. He is co-editor of two books on environmental issues: "Environmental Federalism" and "Eco-Sanity: A Common-Sense Guide to Environmentalism."

Miflkill is program director for the Ozarks Marine Club of the Sierra Club. As a consultant on issues of clean air, clean water and land stewardship, Mifflid serves on various Missouri task forces and working groups. With an open forum to speak on his areas of expertise, the public will include an opportunity for questions from the audience.

For more information, call the Center for the Study of American Business at 935-4839.

Weekend gives parents taste of campus life

Washington University relaxation Thursday, Oct. 30 — Parents Weekend 1997 begins the next morning! The three-day program, which kicks off with an 8:30 a.m. registration Friday, Oct. 31, is aimed at giving parents an opportunity to learn more about their children's lives at Washington University. The schedule is packed with a wide array of activities, ranging from "open" classes to campus and city tours to art, music, fashion shows and sports events.

On the agenda for Saturday, Nov. 1, is an introduction to the members of the School of Veterinary Medicine and the Yale University Center for the Study of American Business at 11 a.m., in the Bryan Moot Courtroom, Anheuser-Busch Hall. Each lecture is free and open to the public.

For more information, call 935-7447.
Introducing new faculty members

The following are among the new faculty members on the Hilltop and medical campuses. Others will be introduced periodically in this space.

Susan T. Arnold, M.D., assistant professor of radiology and of pediatrics, joined the School of Medicine faculty in 1994 as an instructor in anatomy. A member of the University's Comprehensive Epilepsy Program, she provides medical care for children with epilepsy, interprets electrical measurements of the brain, and evaluates patients for epilepsy surgery. She also co-directs the pediatric neurology resident teaching clinic. Arnold obtained a bachelor's degree in psychology from Wesleyan University in 1984 and a medical degree from the University of Pittsburgh. He arrived at the School of Medicine in 1996 from the University of Michigan Medical Center in Ann Arbor, where he completed his fellowship training in gastroenterology. He currently is a member of investigating teams studying recurrent hepatitis C and acute liver failure. Caldwell received a bachelor of science degree in biology and a teacher credential, both from the California State Polytechnic University in Pomona, where he was named Outstanding Alumnus in 1990. Duncan received a doctorate in education from The Claremont Graduate University in 1994, having completed an eight-year career as a public school science teacher in northern California. His current research focuses on adolescent language and literacy as these practices inform the moral and political lives of black youth. He is on the editorial advisory board of the Journal of Literacy Research and is a contributor to a recent issue of the Journal of Negro Education that focuses on the education of black children and youth in California.

For the Record

Anne H. Cross, M.D., assistant professor of neurology, has received a three-year $483,137 grant from the National Institutes of Health for a project titled "I Cell Activation and Memory in Mumps EAE!". The David L. Tandy Foundation in Fort Worth, Texas, has renewed its contribution of $1,000 to the John M. Olin School of Business for awards in business ethics.

An article by Leila Sadat Wesler, J.D., LL.M., D.E.A., associate professor of law, titled "Application of the Nuremberg Principles by the French Court of Cassation: From Truffaut to Barbie and Back Again," was cited by the International Criminal Tribunal for the Former Yugoslavia in its decision convicting Dusko Tadic of crimes against humanity, as well as other crimes. Her article, "The Proposed Permanent International Criminal Court: An Appraisal," was published in the Cornell International Law Journal.

On assignment

Garudatta M. Parulkar, Ph.D., professor of computer science and director of the Applied Research Laboratory, chaired the Fourth Institute of Electrical and Electronics Engineers' Workshop on High Performance Communications Systems, held this summer in San Bi, Greece. About 60 worldwide participants met to examine such topics as internetworking, quality of service, multimedia, global high speed communication, wireless and mobility, communication middleware, multicast and traffic engineering.

Russell Roberts, Ph.D., adjunct associate professor of business economics and director of the Management Center, recently moderated a forum sponsored by the Center for Market Processes on whether the United States should renew its membership status for the European Union. The forum was held in Washington, D.C., for about 50 congressional aides. Panelists included Joseph Coh, president of the Trade Policy Institute; William Lah, J.D., adjunct fellow at the Center for the Study of American Business at Washington University; David R. Henderson, law professor at George Mason University; and James Lilly, former U.S. ambassador to China.

Speaking of

Martha Storandt, Ph.D., professor of psychology in Arts and Sciences, gave an invited address titled "What's Aging? What's Dementia?" at the annual conference of the American Psychological Association, held in August in Chicago.

To press

Robert Weninger, Ph.D., chair and professor of German studies and languages and professor of comparative literature, both in Arts and Sciences, and Brigitte Roescher, Ph.D., assistant professor of German, co-edited a volume titled "Wendezeiten/Zeitenwenden: Positionenbestimmungen zur Deutschsprachigen Literatur 1945-1995." The volume includes 13 papers given by leading German and American scholars at the 13th St. Louis Symposium on German Literature, hosted by the Department of Germanic Languages and Literatures in spring 1996.

Campus Artists

Ray Coil, 79, retired lawyer and professor

Ray Northcott Coil, a retired lawyer and professor of engineering law at Washington University in 1991 and served on the university's Board of Directors. He was a member of the Board of Directors of the Washington University in St. Louis, and was involved in the development of the university's medical schools and programs.

Survivors include his wife, "Pepper" Coil of Sedona; two sons, Richard Coil of Scottsdale, Ariz., and Guy Coil of Champaign, Ill.; a brother, James Coil of Atlanta, and five grandchildren. A memorial service was held Oct. 22 in Sedona.

Wacky Olympics

Sophomore Alexandra Farkouh, representing Kappa Kappa Gamma sorority, puts the finishing touches on freshman Liz Connolly, of Student Union, in the joust event at the Wacky Olympics, held Wednesday, Oct. 22, in front of the Women's Building. The Wacky Olympics were staged in connection with Homecoming activities.
The euro is topic of conference

including a larger number of faculty but also involving staff active in gifts and grants management, financial management and information systems. A special project team will help with this aspect of the review. The project team, which is accountable to the steering committee, includes Cicero and 10 administrators who currently provide research support services to the administrative, scholarly or University level.

The comments and follow-up interviews will be submitted to the steering committee in January. Each administrator will provide assistant professor of chemistry in Arts and director of the Chemistry Department.

"If a case for change emerges from this review, Cooper & Lybrand will be asked to suggest a process by which research support services might be enhanced," Cicero said. "Paul Michael Lutzeler, Ph.D., the Rosa Perlmutter Professor in Arts and Sciences, will be the new vice chancellor for research, effective September 1.

The Assessment Steering Committee Ricardo Cicero, chair, and the project team include:

Research Support Services Assessment Steering Committee Ricardo Cicero, Ph.D. (chair), vice chancellor for research; Linda B. Cutler, assistant professor, psychology; Kenneth F. Kelton, Ph.D., professor, physics; Denise A. McCartney (project manager), administrative assistant; Douglas D. Milbrath, M.D., Ph.D., professor, pathology and medicine; Michael I. Miller, Ph.D., professor, chemical engineering; and Debora Blumenstein, director, computer and biomedical computing; Deborah C. Moulton, director, information technol-