Washington University Record, January 15, 1998

Follow this and additional works at: http://digitalcommons.wustl.edu/record

Recommended Citation
http://digitalcommons.wustl.edu/record/780

This Article is brought to you for free and open access by the Washington University Publications at Digital Commons@Becker. It has been accepted for inclusion in Washington University Record by an authorized administrator of Digital Commons@Becker. For more information, please contact engeszer@wustl.edu.
Equipment failures, weather end Solo Spirit trip in Russia

It was a long ride — 7,300 miles — and it was exciting, but Steve Fossett’s quest to fly his balloon around the world ended prematurely in a Russian wheat field at 5:27 a.m. (CST) Monday, Jan. 5, near Krasnodar, a community close to the Black Sea.

Fossett, a Washington University alumnus and trustee and an international community close to the Black Sea.

Equipment failures, weather end Solo Spirit trip in Russia

Framed by the Gateway Arch symbolizing the exploration of the American West, another ballooning feat: It was the second-longest balloon flight in aviation history, exceeded only by his own epic 1997 journey of 10,161 miles from St. Louis to India.

Technical difficulties contributed to the Krasnodar landing. A malfunctioning in-cabin heater that dropped nightly capsule temperatures into the teens and a faulty mechanism in one of two Solo Spirit 6-7 burner, both improved versions of the 1997 equipment, that left Fossett and his crew to pass over Libya, a country from which he had not yet received overflight permission. He changed his course to avoid Libya, but in so doing encountered very light winds that slowed his speed so as low as 20 miles per hour.

It was the malfunctioning heater and burner, both improved versions of the 1997 equipment, that left Fossett and his team most perplexed.

Continued on page 8

Harvard physician named head of surgery department

Wells to be director of College of Surgeons

Timothy J. Eberlein, M.D., the Richard E. Wilson Professor of Surgery at Harvard Medical School and vice chairman for research in the Department of Surgery at Brigham and Women’s Hospital, has been named head of the Department of Surgery and Brigham and Women’s Hospital, has been named head of the Department of Surgery and Brigham and Women’s Hospital, effective Jan. 1, 1998.

Eberlein succeeds Samuel A. Wells Jr., M.D., professor of surgery, who had served as head of surgery since 1981. Wells, renowned for research and clinical expertise in oncology and endocrinology, developed the first genetic test for a particular form of thyroid cancer. A simple surgery can prevent the disease.

Kasthuri is new Rhodes Scholar; to study neuroscience at Oxford

Narayanan “Bobby” Kasthuri, a School of Medicine student, is one of 32 Americans to receive a Rhodes Scholarship to Oxford University, England, this year. He will begin his studies in the fall.

“I’m very excited and definitely honored,” said Kasthuri. “But I haven’t really sat down and thought about what it will mean and what it will be like to move to another country for three years.”

Kasthuri is the 18th Rhodes Scholar from Washington University. Awarded on the basis of academic excellence, integrity, leadership ability and athletic prowess, the scholarships provide two to three years of study and include tuition and a stipend. Kasthuri will pursue a doctorate in neuroscience.

He currently has a Howard Hughes Medical Scholarship and is studying for a master of arts degree in the University’s M.A./M.D. program. He is working with Jeffrey Lichtman, M.D., Ph.D., professor of neurobiology, on visualizing changes at the junctions between developing nerve and muscle cells in mice.

Lichtman described Kasthuri as wonderfully inquisitive. “He’s got a very good mind and he asks very difficult questions,” he said.

At the medical school, Kasthuri has volunteered with the Students Teaching AIDS to Students program, the Perinatal Project and the Pediatric Outreach Program.

“A result, I mostly associated moving here with getting to be with my parents again,” Kasthuri said. “I didn’t think about how the United States might be different.” He perfected his English by watching cartoons.

“I think my childhood was pretty normal,” he added. “I played a lot of sports, and I hated school like everyone else.” After attending high school in New Jersey, Kasthuri graduated from Princeton University in 1996 with a degree in molecular biology and public policy.

Kasthuri attributes much of his academic success to his parents, who always placed a lot of emphasis on education and doing well. Scientifically, he credits a molecular biologist he worked with at Princeton and Lichtman.

Lichtman, he said, has a good sense of humor and is very accessible. Kasthuri

Continued on page 8

Allergic diseases

Scientists have identified a genetic mutation that appears to make people more susceptible to allergies.

Exploring connections

Neurobiologist Joshua Sanes, Ph.D., leads his field in probing the ways nerve cells connect in synapses.

Solo Spirit

Ballonist Steve Fossett captures world attention in his attempt to fly non-stop around the globe.
Scientists identify strong genetic link to allergies

Alergic diseases are among the major causes of illness and disability in the United States, affecting as many as 40 million to 50 million Americans. Researchers have found for some time that allergies have a genetic link, but information about which genes are responsible has been limited. Now, School of Medicine scientists have identified a genetic mutation that appears to make people more susceptible to allergies.

“This is one of the strongest associations so far between any particular gene and allergies,” said Tatal A. Chatila, M.D., an associate professor of pediatrics and senior author of the study, which appeared in the Dec. 11, 1997 issue of The New England Journal of Medicine. “We have found that if you have this mutation, you are 10 times more likely to be allergic.”

In the short term, this finding will help scientists to identify highly susceptible individuals, Chatila said. The discovery also could lead to more targeted medical treatments for allergies.

The immune system normally defends the body against invading agents, such as bacteria and viruses. But sometimes it confuses other foreign substances, such as dust mites and certain foods, with harmful intruders. When some people first come into contact with such antigens, the immune systems mobilize to respond. First, they generate large amounts of an antibody—a disease-fighting protein—called immunoglobulin E (IgE). The IgE molecules then attach themselves to mast cells in tissues and basophils in blood. When an allergen encounters the IgE antibody, it attaches to the antibody like a key fitting into a lock. This signal tells the mast cell or basophil to release — and in some cases to produce — powerful inflammatory chemicals like histamine, prostaglandins and leukotrienes. The production of these chemicals in various parts of the body, such as the respiratory system, initiates an allergic reaction, such as is seen in asthma. IgE is key to this process because it triggers the chain of events that leads to symptoms.

Another key protein is interleukin-4, which induces immune cells to make IgE. Chatila and his colleagues studied the receptor for interleukin-4. Using techniques called single-strand polymorphism analysis and DNA sequencing, they searched for variations in the gene for one of the sub-units of the interleukin-4 receptor. Then they determined how common the variant was in patients with severe allergic inflammatory disorders and in healthy adults.

One variant occurred at high frequency in patients with allergic disorders; another was found at the tail end of the interleukin-4 receptor, Chatila and his colleagues discovered. The consequence, they showed, was that the receptor becomes hyper-responsive when stimulated with interleukin-4.

Environmental factors also play a role in determining whether an individual develops allergies. Previous studies have established that avoiding particular allergens in childhood substantially decreases the risk. Breast feeding also helps guard against developing allergies. Previous studies have shown that if a mother breast feeds her baby, the baby’s risk of developing allergies decreases by 50 percent.

The discovery is an important first step. “We know the process by which some people develop allergies is not random but is genetically determined,” Chatila said. “This study helps clarify the basis for this genetic predisposition.”

In addition to Chatila, other authors of this study are lead author Garji R. Hershey, M.D., Ph.D., now at the University of Cincinnati School of Medicine; Michael F. Friedrich, now at Loyola University School of Medicine; and Matthew L. Thomas, Ph.D., and Laura A. Esswein, M.D., at the medical school.

Diane Duke

Editor: Betsy Rogers, (314) 935-6600, Campus Box 6105
Associate vice chancellor, executive director
University Communications: Judith Jasper
Executive editor: Susan Killenberg
Editor: medical news: Diane Duke, 284-4111, Medical School Box 9380
Assistant editors: Marla Evans, 935-5325
David Moenzer, 935-5297

President's Press Office

Record (USPS 600-430) ISSN 1047-3050. Published daily, except Saturdays, by the Board of Trustees, Washington University, One Brookings Drive, St. Louis, MO, 63130. Periodicals postage paid at St. Louis, MO, and at additional mailing offices.

Address changes and corrections: Postmaster: Send to Mail Processing Group, Washington University, Campus Box 1006, One Brookings Drive, St. Louis, Missouri 63130-1006.

Hilltop Campus employees: Send to Office of Public Affairs, Washington University, Campus Box 1184, One Brookings Drive, St. Louis, Missouri 63130.

Circulation: 14,613.

Medical Campus employees: Send to Powell ISM, Washington University, Campus Box 1358, One Brookings Drive, St. Louis, Missouri, 63130.


Washington University in St. Louis
McManus showed that signals in the synaptic part of the basal lamina tell the tip of a regenerating axon to stop growing and turn into a postsynaptic nerve terminal.

To explore the nature of these signals, Sanes moved to the University of California at San Francisco in 1978, finishing his postdoctoral studies with neurochemist Zach W. Hall, Ph.D.

"Josh thinks and writes in an exceptionally clear and well-organized way, so that always seems to have a sure sense of what the important questions are, even when others do not," said Hall, who now is director of the National Institute of Neurological Disorders and Stroke in Bethesda, Md. "That coupling, with his high scientific standards and his broad knowledge, has made him a wonderful resource to his colleagues, as well as a major influence in our field."

Sanes joined the Washington University School of Medicine in 1980 as an assistant professor of physiology and biophysics. Dale Purves, M.D., formerly at the medical school and now chair of neurobiology at Duke University Medical Center, was instrumental in recruiting Sanes. "Josh had been a stand-out graduate student and had gone on to do imaginative and important postdoctoral work," Purves said. "His ability to tackle a range of complex issues so successfully bespeaks a thorough grounding in both anatomy and energetics. Josh's accomplishments in the subsequent two decades have certainly justified the perception that he would turn out to be a major figure in neuroscience."

By the early 1980s, Sanes was purifying basal laminal proteins and showed that motor axons recognize them in culture systems. He also started to explore how nerve axons in the heads of normal animals home in on posterior muscle fibers rather than those toward the animal's front end. "The idea was to use the neuromuscular junction as a way to study the cellular and molecular basis of how axons choose one muscle over another," Sanes said. "These studies are still in progress, and Sanes is focusing on signaling molecules called ephrins."

In 1983, the course of Sanes' career was changed by the arrival of John Merlie, Ph.D., professor of pharmacology. Merlie was studying the development of the postsynaptic membrane, particularly the sarcolemmal receptors, which are studded under the postsynaptic terminal like pins in a pincushion. "We started to work together closely because we both shared the company and had similar interests but complementary skills," Sanes explained. "Since then, the concept of the neuromuscular junction as an organ of the brain is put together, while John got interested in recognition molecules."

Sanes and Merlie identified a new signaling molecule in the basal lamina that now is named laminin-82. After cloning the gene, they inactivated it in mice, preventing the animals from making laminin-82 protein. In 1995, Sanes and Merlie reported in the journal Nature that the laminin-82-deficient mice formed neuromuscular synapses that were not functionally abnormal. "So we learned that amino acid 82 is one of the signals that muscles use to direct motor axons," Sanes said. "But we also learned that there must be others." Sanes helped Merlie show that muscle fibers selectively synthesize acetylcholine receptors in regions of postsynaptic membrane opposite nerve terminals. To explore the role of these other muscle proteins, the collaborators genetically attacked other components—proteins called rapsyns, dystrophins, and utrophins.

Junctions between nerve cells Three to four years ago, Sanes decided to apply the findings from the neuromuscular junction to synapses between neurons, hoping eventually to explore key functions of the brain. He therefore embarked on studies of neuron-to-neuron synaptic circuits in the midbrain and autonomic nervous system. "There is reason to believe that these synapses will resemble the neuromuscular junction," Sanes said. "The molecules may be different, but the principles are likely to be the same."

Away from the lab, Sanes' priority is his family. He and his wife have an 11-year-old son, Jesse, and a 9-year-old daughter, Milla. He spends the rest of his time reading contemporary American fiction or performing administrative duties. He heads the neuroscience graduate program for the medical school and sits on editorial boards of nine journals, including Cell, Neuron, the Journal of Cell Biology and the Journal of Neuroscience. He is associated with the Brain and Behavior Research Foundation and has been a councilor for the Society for Neuroscience. He is associate editor of Developmental Dynamics and is on the boards of the National Institute of Neurological Disorders and Stroke, where he reviews neurobiological research performed at the National Institutes of Health.

Unlike an axon zeroing in on a muscle fiber, Sanes doesn't know exactly where he's heading next. "The studies of postsynaptic development are so complex, as well that they have taken up most of our time," he said. "We will continue those but also will try to get back to specificity and recognition. Those topics are closest to my heart."
Joycelyn Elders leads off Spring Assembly Series Jan. 21

Former U.S. Surgeon General Joycelyn Elders will open Washington University’s Spring 1998 Assembly Series at 11 a.m. Wednesday, Jan. 21, with the Chancellor’s Fellowship Convocation. “Lessons from History: Human Dignity, Private Morality and the African-American Community.” Her lecture will take place in Graham Chapel.

The Assembly Series, now in its 77th year, offers five lectures to the Washington University community and the general public. These lectures are planned and supported by Student Union, academic departments and other groups, as well as the Assembly Series Committee. Unless otherwise noted, the lectures begin at 11 a.m. in Graham Chapel.

Elders became U.S. surgeon general in 1993 after being nominated by President Bill Clinton and confirmed by the American to hold that post. In December 1994, she resigned from the position in order to continue her career in medicine.

Currently, Elders is serving as a pediatric endocrinologist at the University of Arkansas Medical Center in Little Rock, where she has been a professor since 1978. Her studies have focused on growth in children and the treatment of hormone-related illnesses, and she has published articles in a variety of medical research publications.

At age 18, Elders graduated from Philander-Smith College. She then entered the U.S. Army as a first lieutenant and received training as a physical therapist. Elders graduated from the University of Arkansas Medical School in 1960 and completed a pediatric residency and endocrinology fellowship there.

Elders’ appearance will kick off an Assembly Series Lecture that features 17 speakers from the fields of science, religion, politics, the arts and academia. Included on the spring slate are:

• Jan. 28 — U.S. Supreme Court Justice Antonin Scalia will deliver a lecture on “Interpreting the Constitution.” (Public seating will be limited.)
• Feb. 4 — Albert Raboteau, a religious scholar from Princeton University, will lecture on “The Search for a Common Ground: Howard Thurman.”
• Feb. 11 — Juanita J. Horts, the recipient of the 1996 Noble Peace Prize, will deliver the Cultural Celebration Lecture, titled “Human Rights: Democracy and the Rule of Law in the Anta Pacific Region.”

Joycelyn Elders

• Feb. 19 — The Eliot trio, three musicians from the St. Louis Symphony Orchestra, will present “A Musical Conversation with Missouri’s Literary Leader.”

The commencement begins with a 4 p.m. lecture by Alvin Poussaint, M.D., in Graham Chapel. Poussaint is a clinical professor of psychiatry at Harvard Medical School who has been a professor of psychology at the Wayne State University and serves as director of the Children’s Center at the Judge Baker Children’s Hospital in Brookline, Massachusetts. He is an expert on race relations in America and served as script consultant to the television program “The Cosby Show.”

The celebration continues with the 7 p.m. program “Thirty Years: The Dream and Washington University — Past, Present and the Future.” The program, sponsored by the Martin Luther King Jr. Advisory Committee, also will take place in Graham Chapel.

The retrospective program will include readings by students, testimonials from members of the Class of 1968 and speakers from the communities of James McLeod, dean of the College of Arts and Sciences and vice chancellor for students. Also included will be a greeting from Chancellor Mark S. Wrighton, gospel music performances and readings from King’s speeches.

For more information, call 935-5285.
Elizabeth Plater-Zyberk, an award-winning architect and planner for work on the forefront of urban and community design, will deliver the keynote address Thursday, Jan. 22, for the Mayors' Institute on City Design: Midwest, hosted by the School of Architecture and Urban Design Center.

Plater-Zyberk, a professor and director of the institute; Iain Buchan, director of the school for Architecture and Urban Design; and Cynthia Weese, FAIA, dean of the School of Architecture, said, "This three-day institute, which provides a closed forum for invited mayors to discuss city design strategies, with urban designers and other faculty, staff and students involved in reforming the physical environment."

Professors from the University of Washington College of Architecture and Community Design, will deliver the keynote address Thursday, Jan. 22, for the Mayors' Institute on City Design: Midwest, hosted by the School of Architecture and Urban Design Center.

Plater-Zyberk, a professor and director of the institute; Iain Buchan, director of the school for Architecture and Urban Design; and Cynthia Weese, FAIA, dean of the School of Architecture, said, "This three-day institute, which provides a closed forum for invited mayors to discuss city design strategies, with urban designers and other faculty, staff and students involved in reforming the physical environment."

The keynote address will kick off the three-day institute, which provides a closed forum for invited mayors to discuss city design strategies, with urban designers and other faculty, staff and students involved in reforming the physical environment. The forum, which is sponsored by the National Endowment for the Arts, is the fifth year the school's Research Institute has held this forum.

The keynote address will kick off the three-day institute, which provides a closed forum for invited mayors to discuss city design strategies, with urban designers and other faculty, staff and students involved in reforming the physical environment. The forum, which is sponsored by the National Endowment for the Arts, is the fifth year the school's Research Institute has held this forum.

The keynote address will kick off the three-day institute, which provides a closed forum for invited mayors to discuss city design strategies, with urban designers and other faculty, staff and students involved in reforming the physical environment. The forum, which is sponsored by the National Endowment for the Arts, is the fifth year the school's Research Institute has held this forum.
From the Washington University community to global news media to millions of Web surfers at their home computers, Steve Fossett's Solo Spirit adventure stirred interest and captured the imagination of people worldwide as he sought to be the first to fly non-stop around the Earth in a balloon.

"If the sheer will of millions of supporters could keep him aloft, there would be no doubt of his success," wrote one woman to the University's Solo Spirit Web site.

And a 9-year-old girl had this message for Fossett: "My name is Katherine and I am writing to say how brave I think you are. I hope you do not run out of gas."

An older correspondent wrote: "In years to come I will remember New Year's Eve not as a prelude to 1998 but the beginning of a marvelous adventure shared round the world. I am deeply grateful to Mr. Fossett for allowing me to be an observer... few of us have the courage to live so completely."

There was intense media interest. Reporters and camera crews crowded around the balloon enclosure at Busch Stadium Dec. 31 as Fossett, an alumnus and University trustee, prepared to launch. After lift-off, they moved over to the University, where Fossett's mission control and media center were up and running in Room 300 above the Brookings Hall archway. The Associated Press, Reuters, United Press International and Agence France-Presse wire services filed stories throughout the trip, giving international coverage to the venture.

The British Broadcasting Corp. followed the flight with avid interest, along with broadcast services from Australia, Belgium, New Zealand, South Africa, Germany and Turkey. The New York Times, National Geographic, Washington Post, Chicago Tribune and Chicago Sun-Times, ABC, NBC, CBS, CNN, PBS, National Public Radio, the St. Louis Post-Dispatch and local television and radio all gave Solo Spirit comprehensive coverage.

About 300 alumni, faculty, staff, students and other spectators made it to Busch Stadium in time to see the lift-off, which occurred well ahead of the launch window earlier predicted. As the flight unfolded, some 500 alumni in St. Louis and around the world continued to follow it via frequent e-mail updates from the office of Laura Ponte, senior director of alumni relations.

On the Internet, the Solo Spirit Web site received an astounding 750,000 to 850,000 "hits" every day, and University Webmaster Gail Wright sifted through about 1,500 daily e-mail messages to the Web site.

Media advisories and alerts to the University community went out quickly New Year's Eve morning when Fossett confirmed that he would launch that evening. By midday, the press had begun to gather at Busch Stadium. Fossett, with Solo Spirit as his backdrop, spoke with reporters about 4 p.m. Members of the University community and the general public had been invited to the stadium at 5 p.m. for a planned lift-off between 6 and 9 p.m.

Many came earlier — a fortunate development because the launch window opened unexpectedly around 5, and Fossett, seizing the opportunity, lifted off at 5:04. Even some camera crews were caught off guard and missed the first few moments of the flight.

Solo Spirit rose in gentle winds, however, and lingered over the stadium for several minutes in the photos by Joe Angeles and David Kilper

Fossett checks the burners under his balloon as he prepares to launch. The science payload is at top right.
...throughout the morning. Mission Control Director Alan Blount directed Solo Spirit toward Moscow. About 2:30 a.m. CST Monday, Jan. 5, several hours after Fossett launched the balloon in rural southwestern Russia, his team worked around the clock tracking his flight, pursuing overflight permissions and relaying data to him via satellite e-mail and phone. Students and faculty from the Department of Earth and Planetary Sciences helped out.

On the other side of a low barrier, the media team from the Office of Public Affairs, led by Associate Vice Chancellor Judith M. Jasper, fielded inquiries and requests for updates from reporters 24 hours a day. Phones, computers and fax machines were rarely idle as the press called in from distant time zones.

The staccato pace picked up even more at times. On Friday, Jan. 2, reporters and camera crews crowded into the room for a hastily called briefing to announce that rapidly changing weather patterns were shifting toward the north and west and threatened to crowd into the room for a hastily called briefing to announce that Fossett was having problems with the capsule heater. Fossett later reported that at 9:30 a.m. CST Sunday, the team announced that Fossett was having problems with the capsule heater. Fossett later reported that his team worked across the Black Sea. At midday on Sunday, there was no indication of a suitable place to land and end the around-the-world flight.

Midday Saturday, Chief Engineer Tim Cole announced that Fossett had received the necessary Libyan permission. By then he was flying well to the north of the Mediterranean Sea, missing Libya.

On the other side of a low barrier, the media team from the Office of Public Affairs, led by Associate Vice Chancellor Judith M. Jasper, fielded inquiries and requests for updates from reporters 24 hours a day. Phones, computers and fax machines were rarely idle as the press called in from distant time zones.

On Friday, Jan. 2, reporters and camera crews crowded into the room for a hastily called briefing to announce that rapidly changing weather patterns were shifting toward the north and west and threatened to crowd into the room for a hastily called briefing to announce that Fossett was having problems with the capsule heater. Fossett later reported that his team worked across the Black Sea. At midday on Sunday, there was no indication of a suitable place to land and end the around-the-world flight.

Midday Saturday, Chief Engineer Tim Cole announced that Fossett had received the necessary Libyan permission. By then he was flying well to the north of the Mediterranean Sea, missing Libya.

Though Fossett had hurdled those obstacles, new ones confronted him. At 9:30 a.m. CST Sunday, the team announced that Fossett was having problems with the capsule heater. Fossett later reported that at 9:30 a.m. CST Sunday, the team announced that Fossett was having problems with the capsule heater. Fossett later reported that:

-Alan Blount announced at 8:55 a.m. that he had a confirmed report of Fossett's safe landing. Then, at 11 a.m., Fossett phoned into mission control and, through a speaker-phone conference call linked to media worldwide, described his landing and took reporters' questions.

Alumni kept informed throughout the flight via the Web site, news reports, an alumni hotline and an electronic mail update system that Ponte devised. About 500 in this country and as far away as Europe and Asia requested the e-mail updates.

John Kourik of St. Louis (B.S., 1948), an engineer and a balloon enthusiast, attended the launch and found all the preliminaries deeply absorbing. "Just watching it is fascinating to me," he said. Kourik was grateful to be able to stay in touch throughout the flight. "I really appreciated the e-mail messages," he said, complimenting Ponte and the University on their efforts on behalf of alumni. Ponte said she had received many return e-mails expressing appreciation for the service. "People really felt that they were part" of the adventure, she said.

Floyd Crowder, who received a bachelor's degree from the University in 1955 and a law degree in 1957, was thrilled to be at the launch. "I was participating in the commencement of a historic event," he said. Crowder was deeply impressed by the sight of Fossett riding solo in his balloon's small gondola. "This is a man with lots of grit," he remarked. "Floating across the Atlantic in that gondola takes a lot of courage — and ability." Asked if he hopes Fossett will try again, Crowder replied: "Of course! And I hope he's the first to make it."

Webmaster Wright said her e-mail correspondence came from a vast cross-section of the public. "There were many school-children," she said, "probably a fifth of the total. Some of them weren't even old enough to type; their parents or teachers typed it for them. She said there were many eloquent messages from people who were inspired by the venture. "They were wonderful to read," she said. Though Fossett didn't receive these messages while he was aloft, all of them have been printed out and will be bound and presented to him.

Chancellor Mark S. Wrighton greeted Fossett during the Monday conference call. "We're grateful for your safety," Wrighton told Fossett, "and for being part of this wonderful and exciting adventure."

On a practical note: Ponte's office has a limited supply of Solo Spirit handwarmers still available, and she will be happy to send them to anyone who has a campus mailbox. To request a pair, e-mail Alumni_Relations@notes.wustl.edu.

"— Betsy Rogers

Reporters and cameras crowded the media center (foreground), the ground crew works in mission control (right) and spectators occupy the gallery above Room 300 Brookings Hall before a Jan. 3 news conference.

Mission Control Director Alan Blount (left) and Recovery Director Joe Ritchie await word of Fossett's safe landing and ponder the journey's end.
Eberlein appointed head of surgery – from page 1

arguably be characterized as the best department of surgery in the country. It may be my privilege to work with Dean Peck and the initiative, creativity and independence written and oral communications permits, with assistance from the School of Medicine in planning and implementing the School's strategy; dealing with faculty regarding accreditation; scheduling classes, preparing examinations and handling student and faculty grievances; familiarity with billing and payment procedures.

Department Secretary 9981. Major: General. Responsible for maintaining up-to-date and accurate employee information. 

requirements: certificate or associate's degree, preferably in computer science, four years of experience in word processing, and proficient in Microsoft Word and Excel. 

Application Processor 980190. Requires one year of experience in processing mail and answering phones. 

Construction Accountant 980183. Requires a bachelor's degree, preferably in accounting, and five years professional experience. 

Financial Position.