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o r i g i n a l a r t i c l e

Development and Validation of a Clostridium difficile Infection
Risk Prediction Model

Erik R. Dubberke, MD, MSPH;1 Yan Yan, MD, PhD;1 Kimberly A. Reske, MPH;1 Anne M. Butler, MS;1

Joshua Doherty, BS;2 Victor Pham, BS;2 Victoria J. Fraser, MD1

objective. To develop and validate a risk prediction model that could identify patients at high risk for Clostridium difficile infection
(CDI) before they develop disease.

design and setting. Retrospective cohort study in a tertiary care medical center.

patients. Patients admitted to the hospital for at least 48 hours during the calendar year 2003.

methods. Data were collected electronically from the hospital’s Medical Informatics database and analyzed with logistic regression to
determine variables that best predicted patients’ risk for development of CDI. Model discrimination and calibration were calculated. The
model was bootstrapped 500 times to validate the predictive accuracy. A receiver operating characteristic curve was calculated to evaluate
potential risk cutoffs.

results. A total of 35,350 admitted patients, including 329 with CDI, were studied. Variables in the risk prediction model were age,
CDI pressure, times admitted to hospital in the previous 60 days, modified Acute Physiology Score, days of treatment with high-risk
antibiotics, whether albumin level was low, admission to an intensive care unit, and receipt of laxatives, gastric acid suppressors, or
antimotility drugs. The calibration and discrimination of the model were very good to excellent (C index, 0.88; Brier score, 0.009).

conclusions. The CDI risk prediction model performed well. Further study is needed to determine whether it could be used in a
clinical setting to prevent CDI-associated outcomes and reduce costs.
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The morbidity, mortality, and financial burden of Clostridium
difficile infection (CDI) are significant.1-9 Primary risk factors
for CDI include receipt of antimicrobials, older age, high
severity of illness, exposure to other patients with CDI, and
receipt of gastric acid suppressants.10-17 Despite the breadth
and depth of knowledge about risk factors available in the
medical literature, healthcare facilities still struggle with out-
breaks of CDI and increasing rates of disease.4-7,9,18-20 Most
CDI prevention and control strategies, such as the use of
contact precautions and environmental decontamination,
emphasize prevention of secondary transmission (ie, the
spread of C. difficile from an infected patient to uninfected
patients).15,21-24 Few data are available on strategies to identify
patients at increased risk for CDI or interventions to prevent
primary transmission of C. difficile and/or subsequent de-
velopment of symptomatic CDI.

Risk prediction modeling has been used in the study of
chronic and infectious diseases to identify important risk fac-
tors and to quantify or rank each factor’s comparative im-
portance in the development of disease.25,26 Unlike risk factor
studies, which identify characteristics that increase a patient’s

risk for disease, risk prediction modeling allows researchers
to “score” patients according to the importance of these char-
acteristics, thereby identifying patients at highest risk for dis-
ease. If applied to CDI prevention in medical facilities, risk
prediction modeling could allow healthcare workers to iden-
tify patients at highest risk for CDI and to intervene before
these patients become ill by modifying either the patients’
individual risk factors or their environment. Risk prediction
modeling of CDI is not well studied.

To our knowledge, only 2 studies have used this method
to identify patients at high risk for CDI, and neither is broadly
generalizable.27,28 The study population used by Garey et al27

was restricted to patients receiving antibiotics, and the models
were developed with data collected from multiple sources,
some of which were available only after hospital discharge.
Tanner et al28 used the Waterlow score, a measure not com-
monly used in the United States, to develop their index. The
Waterlow score is based on patient data at the time of ad-
mission, but the risk of CDI may fluctuate over the course
of a hospitalization, depending on patient characteristics,
clinical events, exposure to C. difficile, and medications re-
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ceived.29 These factors limit the usefulness of the Tanner et
al28 indices on a real-time or prospective basis. The purpose
of our study was to develop and validate a CDI risk prediction
model that could ultimately be employed in real time to
prevent CDIs in a medical facility.

methods

Data were collected electronically on a large, retrospective
cohort of patients hospitalized at Barnes-Jewish Hospital
(BJH) for at least 48 hours during the calendar year 2003.14

Data collected included patients’ demographics, medications
received, and C. difficile toxin assay results; laboratory tests;
International Classification of Diseases, Ninth Revision (ICD-
9) discharge and procedure codes; and hospital ward(s) of
stay. Patients with a history of CDI in the previous 60 days
were excluded because initial analyses indicated that the effect
of this characteristic was substantially higher than that of all
the other variables considered in the analysis. Patients ad-
mitted to bone marrow transplantation (BMT) or leukemia
wards at BJH were also excluded because further analyses
suggested that the risk factors for developing CDI in BMT
and leukemia patients were different from those in other
hospitalized patients. Removal of these patients allowed for
more detailed analyses of the remaining patients. The variable
CDI pressure has been described previously.13 Briefly, this
variable is a modified version of colonization pressure: mean
CDI pressure is measured as each patient’s total exposure to
infectious CDI patients divided by the patient’s length of stay
at risk for CDI. The cohort was analyzed previously for CDI
risk factors by pooled logistic regression; detailed methods
and results of this analysis have been published else-
where.1,2,13,14

Data from this 2003 cohort were used to develop a CDI
risk prediction model. Variables retained in the final risk fac-
tor model developed for the previous study were reviewed to
determine whether the data were available in real time; if not,
an appropriate surrogate variable was substituted. Data for
receipt of mechanical ventilation, which was based on ICD-
9 procedure codes assigned at hospital discharge, was not
available in real time. Admission to an intensive care unit
(ICU) was selected as a surrogate because all BJH patients
who receive mechanical ventilation are initially admitted to
an ICU. No other variable substitutions were necessary.

As the first step in selecting variables for the model, we
used data reduction techniques to combine variables on the
basis of substantive knowledge and statistical methods to
avoid overspecification of the model correlation among re-
lated variables in the model. Principal-component analyses,
corresponding analyses, and cluster analyses were used to
determine whether logical groupings of variables were statis-
tically valid.30 The only grouping retained in the final model
was “high-risk antibiotics” (cephalosporins, clindamycin, and
amoxicillin or ampicillin), designated as a group because risk
for CDI among patients receiving these antibiotics has con-

sistently been reported as high in the literature and because
data analysis confirmed that they could be combined into
one category. In this combined variable, receipt of at least
one of these antibiotics in a single day was considered a single
day of exposure. When the study was planned, a decision was
made to investigate appropriate functional formats for the
continuous variables in the model. The appropriate func-
tional formats of continuous variables were determined by
examining nonparametric regression (smoothing) plots with
a restricted cubic spline function. If possible, these compli-
cated forms were simplified using low-order polynomials or
piecewise linear splines for more robust prediction. Logistic
stepwise regression was used to determine a set of variables
that best predicted the risk of CDI. Potential clinically im-
portant interactions were tested. To facilitate interpretation
of results, odds ratios for the displayed polynomial and piece-
wise linear spline variables compare the odds of developing
CDI for values between the 75th and the 25th percentiles of
each variable.26

The predictive accuracy of the model was determined by
discrimination (C statistic) and calibration (Brier score).30

The C statistic, also known as the area under the curve (AUC),
measures discrimination, the ability of the model to separate
cases from noncases.31 The closer the C statistic is to 1, the
better the discrimination of the model. The Brier score mea-
sures calibration, the closeness of predicted probabilities from
the risk model to the observed outcome (ie, a patient de-
veloping CDI).31 The closer the Brier score is to 0, the better
the calibration of the model. The final model was boot-
strapped 500 times to validate predictive accuracy.32 Briefly,
the bootstrapping methods involved drawing a sample from
the original data and estimating the bootstrap regression co-
efficients with the bootstrap sample. Next, the apparent pre-
dictive accuracy index was calculated by applying coefficients
to the bootstrap sample, and the predictive accuracy index
was calculated by applying the coefficients to the original data.
The bootstrap optimism (difference between apparent and
bootstrap accuracy indices) was calculated, and the process
was repeated 500 times. Finally, the average optimism was
subtracted from the apparent predictive accuracy index to
obtain the bias-corrected predictive accuracy index. A receiver
operating characteristic (ROC) curve was created to assess
which CDI risk cutoffs might be used to initiate an inter-
vention. Statistical analyses were performed with SPSS, SAS,
and R. This study was approved by the Washington University
Human Research Protection Office.

results

The final data set included 35,350 admitted patients, of whom
329 were patients with CDI. Of the admitted patients, 1,275
(3.5%) were excluded because of a previous history of CDI
or because they were BMT patients. Characteristics of the
study population are presented in Table 1. All differences
between patients with CDI and those without CDI were sig-
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table 1. Demographic Characteristics of the Study Population

Characteristic Patients with CDI Patients without CDI

Female sex, proportion (%) of patients 166/329 (51) 20,438/35,021 (58)
White race, proportion (%) of patients 232/329 (71) 21,836/35,021 (62)
Age, years, median (range) 66 (21–99) 56 (12–106)
Modified APS on admission to hospital, median (range) 6 (0–28) 4 (0–31)
CDI pressure, median (range) 1.21 (0–15.64) 0.22 (0–20.39)

note:. All differences were significant at the level. APS, Acute Physiology Score; CDI, ClostridiumP ≤ .05
difficile infection.

nificant ( ). CDI patients were less likely to be femaleP ≤ .05
and more likely to be white than patients without CDI (51%
vs 58% and 71% vs 62%, respectively). Patients with CDI
were older than those without CDI (median ages of 66 and
56 years, respectively) and had a higher acuity of illness on
admission to the hospital (median modified Acute Physiology
Score [APS] of 6 for patients with CDI and 4 for those without
CDI). Patients with CDI had higher mean CDI pressure scores
than patients without CDI (median scores of 1.21 and 0.22,
respectively).

Variables in the final logistic regression model included
age, CDI pressure, previous hospital admissions within 60
days, modified APS,14 days of treatment with high-risk an-
tibiotics, admission to an ICU, receipt of laxatives, receipt of
gastric acid suppressors, receipt of an antimotility drug, and
whether albumin level was low (Table 2). After evaluating
various functional forms of the continuous variables to de-
termine which form best represented the data, age and the
modified APS were modeled as polynomial functions. CDI
pressure and days on high-risk antibiotics were modeled as
spline functions. The number of admissions in the previous
60 days was modeled categorically with three levels (0, 1, and
2 or more admissions). All other variables were modeled as
dichotomous (yes/no) categorical variables. The polynomial
form of the modified APS was not statistically significant in
the final model, but it was retained because it was significant
prior to modification and because of the clinical importance
of severity of illness as a risk factor for CDI. The CDI risk
prediction model demonstrated excellent discrimination and
calibration in the original data set and in the bootstrap sam-
ples (C statistic of 0.88 and Brier score of 0.009 for both;
Figure 1). Our model slightly overestimates the probability
of CDI for patients whose true probability is higher than
0.075. However, 91.98% of our sample have predicted prob-
abilities lower than 0.075, and 99.8% of the sample have
predicted probabilities lower than 0.21. Therefore, the over-
estimation affects only a very small proportion of patients.

Table 3 presents the predicted probabilities of developing
CDI with the sensitivity and specificity of the CDI risk pre-
diction model at different thresholds of CDI risk. For ex-
ample, at the 0.0233 level, the predicted probability of CDI
is 2.3%, the sensitivity of the model is 60%, and the specificity
is 89%. As the predicted probability of developing CDI in-
creases, the sensitivity of the model decreases and the spec-

ificity increases. Figure 2 presents the ROC curve, graphically
depicting the ability of the model to discriminate between
true cases and true noncases. On the basis of these data,
potential thresholds for intervention could be when the prob-
ability of developing CDI reaches 0.023 (2.3% risk of CDI)
or 0.030 (3.0% risk of CDI). At the 0.023 level, the number
of CDI cases prevented over the course of 1 year at BJH
would be up to 198 (60% of the total CDI cases included in
this study), and the number of patients identified as at high
risk for CDI who did not develop the disease would be 3,834.
At the 0.030 level, the number of CDI cases prevented over
1 year would be up to 165 (50% of the CDI cases included
in this study), and the number of patients identified as at
high risk who did not develop CDI would be 2,721.

conclusion

Risk prediction modeling has not been used frequently in
infectious-disease epidemiology, particularly with CDI. In this
study we developed a CDI risk prediction model using readily
available electronic data. The risk assessment provided by our
model was strong, according to statistical measures that eval-
uate model discrimination and calibration. The discrimina-
tion of our model (C statistic, 0.88) was high, which indicates
that the model successfully identified patients who would
develop CDI. Calibration was low (Brier score, 0.009), sug-
gesting that the risk prediction model can accurately estimate
the future probability of the event in question (ie, a patient
developing CDI). Having excellent discrimination and cali-
bration are important characteristics of a CDI risk prediction
index because the incidence of CDI is relatively low. In a low-
incidence setting, the risk of a false positive result is increased
(ie, identifying a patient who will not develop CDI as being
at high risk for CDI). Interventions aimed at preventing CDI
in patients at high risk for CDI should be cost-effective. If
discrimination and calibration are not sufficient, the high
number of false positives will decrease the cost-effectiveness
of any potential intervention.

An intervention using the risk prediction model presented
here and based on estimates of the CDI-attributable cost,
length of stay, and mortality could be cost-effective. Potential
interventions could include preemptive contact precautions,
prophylactic oral vancomycin, or pharmacy-based detailing
to reduce unnecessary medications that increase a patient’s
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table 2. Variables in the Final Logistic Regression for the Clostridium difficile Infection (CDI) Risk Prediction Model

Variable Symbol Odds ratio 95% confidence interval

Agea,b AGE 2.5 1.9–3.3
CDI pressureb,c CP 13.0 8.5–19.9
1 hospital admission in previous 60 days ADMIT60D 1.0 0.7–1.3
2 or more hospital admissions in previous 60 days ADMIT60D 2.7 2.0–3.7
Modified APS on admission to hospitala,b MOD_APS 1.1 0.9–1.4
Days received high-risk antibioticsb,c,d HRABX 1.9 1.6–2.3
Admission to ICU ICUPT 1.6 1.2–2.0
Received laxatives LAX 1.3 1.0–1.7
Received gastric acid suppressor GAS 2.1 1.5–3.0
Received antimotility drug MOTIL 2.1 1.6–2.6
Low albumin (≤3.5 g/dL) on admission to hospital ALBUMIN 1.7 1.3–2.2

note. Equation for the final model:
2Logit (Pr (CDI p 1)) p �11.231076 � 0.050270561 # AGE � 0.00018855342 # AGE � 8.3591798 # CP

� 8.3063656 #max (CP � 0.3, 0) � 0.50361921 #min (ADMIT60D, 2)

2� 0.025235717 # MOD APS � 0.00050038706 # MOD APS � 0.2117423 # HRABX— —

� 0.2163988 #max (HRABX � 5, 0) � 0.4614184 # ICUPT � 0.26031057 # LAX

� 0.75635204 # GAS � 0.72442624 # MOTIL � 0.53639167 # ALBUMIN.

APS, Acute Physiology Score; ICU, intensive care unit.
a Modeled as a polynomial function.
b Third quantile compared to first quantile.26

c Modeled as a spline function.
d Defined as cephalosporins, clindamycin, amoxicillin, or ampicillin.

risk of CDI. Future interventions might include administering
fidaxomicin, nontoxigenic C. difficile, antitoxin monoclonal
antibodies, or C. difficile vaccination. Previous analyses at BJH
indicate that the attributable cost of CDI is $3,240 per case,
the attributable length of stay is 2.8 days, the attributable
mortality is 6%, and the attributable readmission rate is
19.3%.1,2 On the basis of these data, at the 0.023 risk level,
the potential cost savings of preventing 198 CDI cases would
be $641,520; therefore, the maximum cost required for a
“cost-neutral” intervention would be $159 per patient (4,032
patients identified as high risk for CDI). An intervention at
the 0.023 level potentially would prevent 12 deaths, 38 re-
admissions, 18 nursing home or long-term care facility ad-
missions, and 554 patient-days. At the 0.030 risk level, the
potential cost savings associated with preventing 165 CDI
cases would be $534,600; therefore, the maximum cost re-
quired for a cost-neutral intervention would be $185 per
patient (2,886 patients identified as high risk for CDI). An
intervention at the 0.030 level potentially would prevent 10
deaths, 32 readmissions, 15 nursing homes or long-term care
facility admissions, and 462 patient-days.

These calculations are rudimentary and assume that the
interventions will be 100% effective at preventing CDI. If the
intervention is not 100% effective, then the cost per patient
of the intervention would be higher and the decreases in
patient morbidity and mortality would be lower. Conversely,
the intervention may have a greater impact on reducing the
incidence of CDI than estimated, even if the intervention is

not 100% effective at reducing the risk of CDI for individual
patients. The variable with the strongest association with
probability of developing CDI was CDI pressure (Table 2).13

A reduction in CDI incidence will subsequently decrease the
probability of other patients developing CDI, because a re-
duction in the number of patients with CDI will result in
reduced transmission of C. difficile. The reduction in costs
from prevention of CDI is likely greater than that estimated
as well. Reducing length of hospital stay by preventing CDI
will increase the availability of beds for new admissions, de-
crease the number of patients in contact precautions, and
reduce the frequency of an isolated patient “occupying” 2
beds in a semiprivate room.

To the best of our knowledge, only 2 other risk prediction
models for CDI have been published. Garey et al27 developed
2 risk indices for use among patients receiving broad-spec-
trum antibiotics, one based on odds ratio estimates from
logistic regression and the other a simple yes/no index (AUC/
C statistic of 0.733 in the development cohort and 0.712 in
the validation cohort). These AUC/C-statistic values are lower
than that presented in our analysis (0.88). Several explana-
tions for this are possible: our risk index contained more
variables than the Garey et al27 indices, including CDI pressure
(possibly improving model discrimination); we used non-
parametric smoothing and spline techniques to deal with
nonlinearity in continuous variables; our model was based
on probability estimates (not odds ratios or yes/no classifi-
cation); and our risk index was on a continuous scale.
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figure 1. Clostridium difficile infection (CDI) risk prediction
model calibration plot. The calibration plot graphically displays the
agreement between the observed and predicted probabilities. The
dashed line indicates perfect agreement. The lines below the dashed
line indicate that the predicted probabilities are higher than the
actual probabilities.

table 3. Comparison of the Clostridium difficile
Infection (CDI) Risk Prediction Model’s Predicted
Probability, Sensitivity, and Specificity at Different
Levels of CDI Risk

Predicted probability of
developing CDI Sensitivity Specificity

0.0065 0.9027 0.6835
0.0118 0.8024 0.7919
0.0173 0.7021 0.8507
0.0233 0.6018 0.8903
0.0302 0.5015 0.9222
0.0385 0.4012 0.9449
0.0557 0.3009 0.9705
0.0713 0.2006 0.9830
0.0997 0.1003 0.9920

note. These probability values are deciles of the
distribution of predicted probabilities among the
patients.

Tanner et al28 developed a CDI risk prediction scale based
on the Waterlow score, which was originally designed to iden-
tify patients at high risk for bedsores on admission to the
hospital. A model with CDI risk factors plus the Waterlow
score performed best, but its performance was not signifi-
cantly different from that of the model with the Waterlow
score alone (AUC/C statistic, 0.827). A key advantage of the
Tanner et al28 CDI risk prediction scale is ease of use for
hospitals already calculating the Waterlow score; however, the
Waterlow score may not be as widely used in the United
States as the United Kingdom. Another limitation of this
study is a potential lack of specificity among the variables
included in the Waterlow score, such as mobility, below-waist
fracture, and smoking. In addition, the investigators corrected
Waterlow scores that were originally incorrectly calculated by
healthcare workers in the validation cohort. This may have
falsely increased the AUC in the validation cohort and de-
creases the generalizability of their model.

We excluded from the analyses 2 populations at high risk
for CDI at our institution: patients with a history of CDI in
the previous 60 days and patients who have undergone BMT
or who have leukemia. These patient populations have unique
characteristics that interfered with the ability of the model to
predict patients at risk for CDI in the rest of the patient
population. Patients with a history of CDI in the previous
60 days often are admitted to the hospital with CDI or develop
CDI with minimal exposure. This adversely affected the
model’s ability to use these risk factors to identify other pa-
tients at risk for CDI. Hospitalized patients who have leu-

kemia or who have undergone BMT typically have high se-
verity of illness, prolonged hospital stays, and nearly universal
exposure to medications that may predispose them to de-
veloping CDI,33-36 decreasing the usefulness of these exposures
for identifying patients in other populations at risk for CDI.
Preliminary analyses identified these patients as almost uni-
versally at high risk for CDI; this was not true for any other
patient population in our analyses, including general oncol-
ogy patients. BMT patients and patients with a previous his-
tory of CDI are at high risk for CDI in most institutions, and
there is no real practical benefit to including them in a risk
prediction model.

There are several limitations to this study. First, the data
used to develop the model were from 2003. There have not
been any notable changes in CDI epidemiology or risk factors
at our facility since 2003, indicating that the model should
still be valid today. Second, the statistics used to develop the
risk prediction model were complicated, and some of the
variables used in the model are not readily available (eg,
modified APS and CDI pressure), precluding the ability of a
healthcare worker to determine a patient’s CDI risk at the
bedside. However, the CDI risk prediction index utilizes data
available electronically in real time, allowing it to be auto-
matically calculated each day a patient is in the hospital. This
allows for the creation of a more robust risk prediction index
and reduces barriers to determining a patient’s CDI risk.
Finally, this model may appear to require too many infor-
mation technology resources or be too institution specific to
be applied at other facilities. The information technology re-
sources necessary for this project include an electronic clin-
ical-data repository that is updated frequently, can be queried,
and integrates different data sources or types (ie, demographic
data and antimicrobial exposures). Developing this type of
data repository also requires an information technology de-
partment with experience in application development. Al-
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figure 2. Receiver operating characteristic curve for the Clostrid-
ium difficile infection risk prediction model.

though not all healthcare facilities currently have the capa-
bility to combine data from multiple databases in such a
fashion, the expansion of electronic medical records will in-
crease the number of facilities where this approach is possible.
We believe that clinical-data repositories will become more
common in the future as clinicians, hospital administrators,
and other healthcare professionals realize the benefits of read-
ily available electronic data. In addition, any CDI risk pre-
diction index will likely have to be individualized to the
healthcare facility in question. C. difficile strain prevalence
and practices that affect the risk of CDI, such as hand hygiene
and contact precaution compliance and antimicrobial utili-
zation, vary across healthcare facilities, and these differences
will affect the predictive capability of the model. Once this
model has been longitudinally validated, the methods for cre-
ating a CDI risk prediction index, rather than the CDI risk
prediction index itself, would be applied at other healthcare
facilities.

Validated methods to prevent CDI are needed. Current
recommendations to prevent CDI, in general, are not sup-
ported by high-quality evidence, and CDI prevention efforts
are not always successful.23,37 One reason current recommen-
dations may not always be effective is that prevention efforts
are not initiated until after CDI has developed. Preventing
CDI in patients at high risk for it may be an effective strategy.
Our data suggest that risk prediction estimates generated from
a model with readily available electronic data could identify
hospital patients at highest risk for CDI. Theoretically, an
intervention based on the results of this model may result in
considerable financial savings, reduced length of stay, and
prevention of hospital readmissions and long-term care fa-
cility admissions. The next step for this project is longitudinal
validation of the model’s predictive ability among hospitalized
patients. If the predictive accuracy of the model proves as
good in a longitudinal data set as in the development data
set, then interventions could be designed to identify the high-
est-risk patients and to intervene before these patients develop
CDI.
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9. Pépin J, Valiquette L, Cossette B. Mortality attributable to nos-
ocomial Clostridium difficile–associated disease during an epi-
demic caused by a hypervirulent strain in Quebec. CMAJ 2005;
173(9):1037–1042.

10. Dial S, Alrasadi K, Manoukian C, Huang A, Menzies D. Risk
of Clostridium difficile diarrhea among hospital inpatients pre-
scribed proton pump inhibitors: cohort and case-control studies.
CMAJ 2004;171(1):33–38.

11. Dial S, Delaney JA, Barkun AN, Suissa S. Use of gastric acid–
suppressive agents and the risk of community-acquired Clos-
tridium difficile–associated disease. JAMA 2005;294(23):2989–
2995.



366 infection control and hospital epidemiology april 2011, vol. 32, no. 4

12. Dial S, Delaney JA, Schneider V, Suissa S. Proton pump inhibitor
use and risk of community-acquired Clostridium difficile–asso-
ciated disease defined by prescription for oral vancomycin ther-
apy. CMAJ 2006;175(7):745–748.

13. Dubberke ER, Reske KA, Olsen MA, et al. Evaluation of Clos-
tridium difficile–associated disease pressure as a risk factor for
C difficile–associated disease. Arch Intern Med 2007;167(10):
1092–1097.

14. Dubberke ER, Reske KA, Yan Y, Olsen MA, McDonald LC,
Fraser VJ. Clostridium difficile–associated disease in a setting of
endemicity: identification of novel risk factors. Clin Infect Dis
2007;45(12):1543–1549.

15. Gerding DN, Johnson S, Peterson LR, Mulligan ME, Silva J Jr.
Clostridium difficile–associated diarrhea and colitis. Infect Con-
trol Hosp Epidemiol 1995;16(8):459–477.

16. Kyne L, Sougioultzis S, McFarland LV, Kelly CP. Underlying
disease severity as a major risk factor for nosocomial Clostridium
difficile diarrhea. Infect Control Hosp Epidemiol 2002;23(11):653–
659.
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