Park gift strengthens ties to Asia

By Barbara Rea

Some of the most interesting years in alumna Helen Ette Park's life were spent in Asia. It's not surprising, then, that her bequest to the University provides generous support for her alma mater's Asia initiatives. Park's gift of more than $10 million will help the University expand its connections in the international arena in a number of important ways. The funds will support scholarships for Asian students, strengthen the University's existing International and East Asian Studies programs, establish new programs to support interdisciplinary scholarship and research, and award grants to faculty for conferences, research and travel.

"One of Washington University's primary goals is to prepare our students for living and working in an expanding international community," said Chancellor Mark S. Wrighton. "Thanks to the generosity of Helen Ette Park and to her lifelong interest in the connections we make with Asia, Washington University is developing programs that expand and enhance our students' knowledge of language, literature, culture, economics and politics in Asia. The connections we make will be vital to the University's future success and will strengthen our role as a global leader."

Edward S. Macias, Ph.D., executive vice chancellor and dean of Arts & Sciences, is chair of the University's International Relationships Committee. "Asia is a major focus, and developing strategic relationships with institutions in Asia will be critical to establishing partnerships with the best students and scholars in those countries," he explained. Macias and the committee have formulated a strategic plan for the Asian initiative, and he has been spearheading many of the proposed projects. These sweeping initiatives will be felt in all schools and by students and faculty alike for years to come. Park's presence also is felt each day on the South 40, where 136 students live in the Helen Ette Park House. The student residence was dedicated in 1991 to honor her commitment and major contributions here.

Park's long and interesting life

Last year the generosity of faculty and staff allowed the University to surpass its $400,000 goal, raising more than $420,000. This year's goal is $425,000, according to Chancellor Mark S. Wrighton, who addressed the campaign kickoff breakfast Aug. 31 at Whitley more. "I think our students have a wide range of services the United Way provides for the St. Louis community and here in the University community," Wrighton said. "The support of the 9,900 University employees is key to the success of the 2000 campaign, and I hope we saw an overall attendance of 140 attended the meeting and took part in a question-and-answer session after the presentation.

Specifically, the new structures,

will be:

- The Uncas A. Whitaker Hall for Biomedical Engineering, slated for construction next year.
- The new earth and planetary sciences building, which will free up space for the biological department in McDonnell Hall.
- The Visual Arts and Design Center and the renovation of the three existing buildings — Givens, Steinberg and Ruby halls — at the southeast corner of the campus, to provide expanded space for programs in art, architecture, art history in Arts & Sciences and the University's prized art collection;
- a new building for electrical engineering and computer science at the corner of Skinker and Milbrook boulevards;
- a new building for engineering administration and support services and
- a sixth building for mechanical, civil and chemical engineering.

The development will make room in existing engineering buildings for a variety of Arts & Sciences programs, relieving overcrowding in their current quarters.

New chemotherapy approach holds great promise against disease

By Brian Schwall

Imagine a day when a cancer patient can have a blood or biopsy sample fed into a DNA diagnostics machine, which takes the disease-state DNA results and within hours comes up with a diagnostics machine, which takes the biopsy sample and develops a DNA-based approach to disease. This innovative approach would facilitate the selective destruction of harmful cancer or viral cells, which has always been the less-than-realized purpose of chemotherapy. All throughout history, the development of drugs has been based on trying to find a molecule toxic to the pathogen or organism you want to kill," Taylor observed. But, he noted, recent advances in mapping the human genome and developing DNA chips have provided opportunities to determine the exact genetic composition of specific diseases such as cancer. "Once you know the sequence of a nucleic acid such as DNA or RNA, it's very easy to make a molecule that binds specifically to that sequence by making use of Watson/Crick base-pairing rules," he explained. "So the beauty of nuclear acids is that they present a trivial way of targeting any specific sequence you want." Current experimental approaches are based on binding to and then attacking the disease-specific nucleic acid sequences in an attempt to inactivate cancerous cells by interfering with their genetic codes. But it's difficult to predict the outcome of attacking a particular disease-specific nucleic acid sequence. Also, when attacking the genetic material directly, undesirable collateral damage can arise because sequences other than those targeted can be damaged.

Taylor and his group have developed an entirely different approach to disease-specific chemotherapeutic agents. They came up with a medicare acid-triggered catalytic drug release saw DNA, page 2

Inside: Engineering outreach program lifts K-12 lab experiments into space

By Brian Schnall

Helping hands Sophomores Michael Ewens and Megan Madaras (foreground) were among 790 students who turned out for the University's second annual Service First outreach initiative. Ewens and Madaras joined about 250 students working with Operation Brightside to clean up 40 blocks in North St. Louis. Other students helped teachers prepare classrooms in three elementary schools and cleaned and landscaped Interstate 44 embankments for the Garden District Commission.

Medical News: International team looking for genes involved in depression

Washington People: Helen Piwnica-Worms, Ph.D., plumbs mysteries of cell-cycle control

Plans for east end of campus unveiled

By Betsy Rogers

"This is not about being bigger, but being better," said James E. McLeod, dean of the College of Arts & Sciences and vice chancellor for students, announcing new plans for the east end of the Hilltop Campus at a public forum for neighbors Aug. 29 in Steinberg Hall Auditorium. "Our undergraduate student body will remain about the same. McLeod and Steven B. Hoffman, assistant vice chancellor for students and director of operations, unveiled plans for $200 million in new construction — six new buildings — between now and about 2007, including a new campus for the School of Engineering and Applied Science, the Visual Arts and Design Center (VADC) adjacent to Steinberg Hall and a new building for the Department of Earth and Planetary Sciences in Arts & Sciences. About 140 attended the meeting and took part in a question-and-answer session after the presentation.

Specifically, the new structures,

- The Visual Arts and Design Center and the renovation of the three existing buildings — Givens, Steinberg and Ruby halls — at the southeast corner of the campus, to provide expanded space for programs in art, architecture, art history in Arts & Sciences and the University's prized art collection;
- a new building for electrical engineering and computer science at the corner of Skinker and Milbrook boulevards;
- a new building for engineering administration and support services and
- a sixth building for mechanical, civil and chemical engineering.

The development will make room in existing engineering buildings for a variety of Arts & Sciences programs, relieving overcrowding in their current quarters.
System that they've shown works in an in-vitro model system. Instead of using the disease-specific nucleic acid or a target, the nucleic acid is used as a trigger to cause the release of a cytotoxic agent. The basic idea is to use a disease-specific nucleic acid sequence to bring together a prodrug component—an active form of a drug that has no therapeutic value until it is converted into the active form—and a catalytic component capable of releasing the drug from the prodrug. To make the prodrug component, a catalyst, the nucleic acid is used to attack synthetic DNA that recognizes the other include a DNA sequence. When the catalytic and prodrug components are present in the presence of the DNA sequence, the drug is released. "Basically, we are using the nucleic acid unique to the cancerous DNA as a template to bring together the prodrug and the catalytic agent," Taylor explained. "Instead of using the nucleic acid as a target for the action of a drug, we use nucleic acid as a trigger. It's better to use genetic information as a trigger than any other kind of information," he added.

Mary described the method in a paper delivered at the August annual meeting of the American Chemical Society in Washington D.C. The paper will be published later this year in the Journal of the National Academy of Sciences. "Only in the presence of the specific sequence unique to the cancer or virus can these two, prodrug and catalyst, be brought together so that the catalyst can snip off the drug," Taylor said. "If there is no specific sequence of the cancer or virus, the drug will not be released, nor the catalytic agent can get together. Thus, healthy cells are unaffected."

Taylor said it could take many years to develop a therapy based on his method, but he is confident the prodrug component provides another direction, one that could rapidly respond to viral diseases such as HIV as fast as they mutate. He said the catalyst/prodrug system could expand beyond the horizons of anti-viral and anti-cancer therapy to other diseases. "The beauty of the system is that you can use it for any infectious disease or cancer," Taylor said. "We're only going to have to go out and search the world for new drugs."

Dream News Briefs

be held for a transit commuter prize package, which includes a year's worth of free transit passes, a weekend getaway and restaurant certificates. For more information visit the website (www.cmt-stl.org/clean/ week.html).

Volunteers sought for depression study

People ages 35 to 74 who are or have been heavy smokers could be eligible for lung cancer screening at the School of Medicine. Lung Screening Study is designed to determine the value of spiral CT and chest X-rays to detect lung cancer. Participants will receive a low-dose radiation spiral CT scan (computerized X-ray) or a single-view chest X-ray. They might be asked to fill out a brief questionnaire six months later. There will be no charge for the screening and the results will be shared with participants and their attending physicians. The Lung Screening Study begins soon; all participants will be chosen by Oct. 31. For more information, call toll-free 866-362-5656 and press 5.

...and lung screening

People ages 35 to 74 who are or have been heavy smokers could be eligible for lung cancer screening at the School of Medicine. Lung screening study is designed to determine the value of spiral CT and chest X-rays to detect lung cancer. Participants will receive a low-dose radiation spiral CT scan (computerized X-ray) or a single-view chest X-ray. They might be asked to fill out a brief questionnaire six months later. There will be no charge for the screening and the results will be shared with participants and their attending physicians. The Lung Screening Study begins soon; all participants will be chosen by Oct. 31. For more information, call toll-free 866-362-5656 and press 5.

by Tony Fitzpatrick

When Space Shuttle STS-106 is launched from the Kennedy Space Center Friday, Sept. 8, it will be carrying the hopes and ambitions of more than 300 St. Louis area students, ranging in age from kindergarteners through 12th-graders, on a journey of an outreach program involving Washington University undergraduates and student researchers. Carefully packaged inside a 60-pound Genie (a special gas) can will be an array of items ranging from bubblegum and mildly fruity brands from Glentmide Elementary School in Clayton to a 3.5-foot model of the Aria-1 satellite from Mary Institute Country Day School, Ladue, to student hair samples and netting hamburgen from Sacred Heart Elementary School, Florissant. In all, 45 different experiments will go aloft in the GAS Can's remains—782, also known as the Ara-1.

Aria-1 is a national project allowing K-12 students in the St. Louis area to design, build and fly experiments in space. Undergraduates in the School of Engineering in the School of Science (SEAS), under the supervision of Keith Taylor, associate professor of computer science, and Michael Stewart, Ph.D., assistant professor of mechanical engineering, designed the GAS Can, which will house programs for this flight. Ara-1 is also known as the Aria-1. The GAS Can project is a national project allowing K-12 students in the St. Louis area to design, build and fly experiments in space. Undergraduates in the School of Engineering in the School of Science (SEAS), under the supervision of Keith Taylor, associate professor of computer science, and Michael Stewart, Ph.D., assistant professor of mechanical engineering, designed the GAS Can, which will house programs for this flight.

The purpose of the Aria-1 is to encourage students in science, engineering and technology by involving them in hands-on space science before they make long-term career decisions. The project is sponsored by the U.S. Air Force Research Laboratory. The project is sponsored by the U.S. Air Force Research Laboratory.

"The beauty of the system is that you can use it for any infectious disease or cancer," Taylor said. "We're only going to have to go out and search the world for new drugs."

Up, up and away

Engineering outreach program puts K-12 experiments in space

"I'm having lots of fun with this project," said one student. "It's a chance to put your engineering skills to the test. And that's so much different than explaining things in a paper. I've never been a science 'nerd' in person and can't wait." Aria-1, 2 will go up on STS-102, sponsored by McDonnell Douglas Corp. in 2001. Bennett said he is counting on more students and schools to participate in the project. Aria-1 and Aria-2 are co-sponsored by the U.S. Air Force Research Laboratory.

The Missouri schools participating in Aria-1 are: Ladue Elementary School, Ladue Elementary School, Ladue Junior High School, Hazelwood West High School; Mary Institute Country Day School; Creative Learning, Rockwood School District; and Sacred Heart Elementary School, Ladue.

"This has been just a great experience," said one student. "I'm having lots of fun with this project. It's a chance to put your engineering skills to the test. And that's so much different than explaining things in a paper. I've never been a science 'nerd' in person and can't wait." Aria-1, 2 will go up on STS-102, sponsored by McDonnell Douglas Corp. in 2001.

Up, up and away

Engineering outreach program puts K-12 experiments in space

The Lung Screening Study is designed to determine the value of spiral CT and chest X-rays to detect lung cancer. Participants will receive a low-dose radiation spiral CT scan (computerized X-ray) or a single-view chest X-ray. They might be asked to fill out a brief questionnaire six months later. There will be no charge for the screening and the results will be shared with participants and their attending physicians.

News Briefs

be held for a transit commuter prize package, which includes a year's worth of free transit passes, a weekend getaway and restaurant certificates. For more information visit the website (www.cmt-stl.org/clean/week.html).

Volunteers sought for depression study

People ages 35 to 74 who are or have been heavy smokers could be eligible for lung cancer screening at the School of Medicine. Lung screening study is designed to determine the value of spiral CT and chest X-rays to detect lung cancer. Participants will receive a low-dose radiation spiral CT scan (computerized X-ray) or a single-view chest X-ray. They might be asked to fill out a brief questionnaire six months later. There will be no charge for the screening and the results will be shared with participants and their attending physicians. The Lung Screening Study begins soon; all participants will be chosen by Oct. 31. For more information, call toll-free 866-362-5656 and press 5.

...and lung screening

People ages 35 to 74 who are or have been heavy smokers could be eligible for lung cancer screening at the School of Medicine. Lung screening study is designed to determine the value of spiral CT and chest X-rays to detect lung cancer. Participants will receive a low-dose radiation spiral CT scan (computerized X-ray) or a single-view chest X-ray. They might be asked to fill out a brief questionnaire six months later. There will be no charge for the screening and the results will be shared with participants and their attending physicians. The Lung Screening Study begins soon; all participants will be chosen by Oct. 31. For more information, call toll-free 866-362-5656 and press 5.

...and lung screening

People ages 35 to 74 who are or have been heavy smokers could be eligible for lung cancer screening at the School of Medicine. Lung screening study is designed to determine the value of spiral CT and chest X-rays to detect lung cancer. Participants will receive a low-dose radiation spiral CT scan (computerized X-ray) or a single-view chest X-ray. They might be asked to fill out a brief questionnaire six months later. There will be no charge for the screening and the results will be shared with participants and their attending physicians. The Lung Screening Study begins soon; all participants will be chosen by Oct. 31. For more information, call toll-free 866-362-5656 and press 5.
By DEBORAH

If we can identify genes that make people susceptible, it will revolutionize our understanding of the disease and guide the design of new drugs to prevent or treat this debilitating disorder.

THOMAS REICH

Study suggests best follow-up tests for prostate cancer risk

Researchers working at the School of Medicine as part of a multi-institutional study have identified an enzyme that enables the tuberculosis bacterium to persist despite counterattacks of the immune system. This finding could open the door to better drugs to treat the chronic stage of the disease.

Persistence is one of the hallmarks of this organism,” said David G. Russell, Ph.D., senior author of the paper published in the Aug. 17 issue of Nature. “It's a very serious problem.”

When the study was performed, Russell was a professor of molecular microbiology at the medical school. Now he is professor and chair of microbiology and immunology at the College of Veterinary Medicine, Cornell University.

The tuberculosis bacterium, Mycobacterium tuberculosis, is the world’s most deadly infectious organism, killing 3 million people a year. It is one of several cells called macrophages, which normally destroy harmful microbes, ingest the bacteria. But M. tuberculosis is able to survive in and grow inside macrophages for years. Russell and his colleagues suspected this was made possible by a protein called the glycylate shunt, a biochemical pathway that allows bacteria to use compounds containing only two carbon atoms as food. Isocitrate lyase (ICL) is a key enzyme in this pathway.

To test this idea, collaborators John D. McKinnon of the Rockefeller University and William R. Jacobs Jr. of the Howard Hughes Medical Institute at Albert Einstein College of Medicine genetically deprived M. tuberculosis of its ability to make ICL. They then infected one group of mice with the mutant strain and a second group with the normal strain. During the early, acute phase, both host groups developed the infection at the same rate. Later, however, the mutant bacteria were steadily eliminated while the normal strain persisted. Only the mice in the second group developed inflamed and enlarged lungs.

In another part of the study, researchers learned that M. tuberculosis produces ICL at a much greater rate in active macrophages than in resting ones. The mutant bacterium also was much less able to survive in and grow inside macrophages. Therefore, it appears that M. tuberculosis must use the glycylate shunt to survive when macrophages become activated.

This is the first demonstration that a metabolic pathway of an infectious agent can be targeted by the immune status of a host,” Russell said. “If we can identify genes that make people susceptible, it will revolutionize our understanding of the disease and guide the design of new drugs to prevent or treat this debilitating disorder.”

THOMAS REICH

Finding offers hope for treatment of tuberculosis

Researchers working at the School of Medicine as part of a multi-institutional study have identified an enzyme that enables the tuberculosis bacterium to persist despite counterattacks of the immune system. This finding could open the door to better drugs to treat the chronic stage of the disease.

Persistence is one of the hallmarks of this organism,” said David G. Russell, Ph.D., senior author of the paper published in the Aug. 17 issue of Nature. “It's a very serious problem.”

When the study was performed, Russell was a professor of molecular microbiology at the medical school. Now he is professor and chair of microbiology and immunology at the College of Veterinary Medicine, Cornell University.

The tuberculosis bacterium, Mycobacterium tuberculosis, is the world's most deadly infectious organism, killing 3 million people a year. It is one of several cells called macrophages, which normally destroy harmful microbes, ingest the bacteria. But Mycobacterium is able to survive in and grow inside macrophages for years. Russell and his colleagues suspected this was made possible by a protein called the glycylate shunt, a biochemical pathway that allows bacteria to use compounds containing only two carbon atoms as food. Isocitrate lyase (ICL) is a key enzyme in this pathway.

To test this idea, collaborators John D. McKinnon of the Rockefeller University and William R. Jacobs Jr. of the Howard Hughes Medical Institute at Albert Einstein College of Medicine genetically deprived Mycobacterium of its ability to make ICL. They then infected one group of mice with the mutant strain and a second group with the normal strain. During the early, acute phase, both host groups developed the infection at the same rate. Later, however, the mutant bacteria were steadily eliminated while the normal strain persisted. Only the mice in the second group developed inflamed and enlarged lungs.

In another part of the study, researchers learned that M. tuberculosis produces ICL at a much greater rate in active macrophages than in resting ones. The mutant bacterium also was much less able to survive in and grow inside macrophages. Therefore, it appears that M. tuberculosis must use the glycylate shunt to survive when macrophages become activated.

This is the first demonstration that a metabolic pathway of an infectious agent can be targeted by the immune status of a host,” Russell said. “If we can identify genes that make people susceptible, it will revolutionize our understanding of the disease and guide the design of new drugs to prevent or treat this debilitating disorder.”

THOMAS REICH

Study suggests best follow-up tests for prostate cancer risk

Researchers working at the School of Medicine as part of a multi-institutional study have identified an enzyme that enables the tuberculosis bacterium to persist despite counterattacks of the immune system. This finding could open the door to better drugs to treat the chronic stage of the disease.

Persistence is one of the hallmarks of this organism,” said David G. Russell, Ph.D., senior author of the paper published in the Aug. 17 issue of Nature. “It's a very serious problem.”

When the study was performed, Russell was a professor of molecular microbiology at the medical school. Now he is professor and chair of microbiology and immunology at the College of Veterinary Medicine, Cornell University.

The tuberculosis bacterium, Mycobacterium tuberculosis, is the world's most deadly infectious organism, killing 3 million people a year. It is one of several cells called macrophages, which normally destroy harmful microbes, ingest the bacteria. But Mycobacterium is able to survive in and grow inside macrophages for years. Russell and his colleagues suspected this was made possible by a protein called the glycylate shunt, a biochemical pathway that allows bacteria to use compounds containing only two carbon atoms as food. Isocitrate lyase (ICL) is a key enzyme in this pathway.

To test this idea, collaborators John D. McKinnon of the Rockefeller University and William R. Jacobs Jr. of the Howard Hughes Medical Institute at Albert Einstein College of Medicine genetically deprived Mycobacterium of its ability to make ICL. They then infected one group of mice with the mutant strain and a second group with the normal strain. During the early, acute phase, both host groups developed the infection at the same rate. Later, however, the mutant bacteria were steadily eliminated while the normal strain persisted. Only the mice in the second group developed inflamed and enlarged lungs.

In another part of the study, researchers learned that M. tuberculosis produces ICL at a much greater rate in active macrophages than in resting ones. The mutant bacterium also was much less able to survive in and grow inside macrophages. Therefore, it appears that M. tuberculosis must use the glycylate shunt to survive when macrophages become activated.

This is the first demonstration that a metabolic pathway of an infectious agent can be targeted by the immune status of a host,” Russell said. “If we can identify genes that make people susceptible, it will revolutionize our understanding of the disease and guide the design of new drugs to prevent or treat this debilitating disorder.”

THOMAS REICH

Study suggests best follow-up tests for prostate cancer risk

Researchers working at the School of Medicine as part of a multi-institutional study have identified an enzyme that enables the tuberculosis bacterium to persist despite counterattacks of the immune system. This finding could open the door to better drugs to treat the chronic stage of the disease.

Persistence is one of the hallmarks of this organism,” said David G. Russell, Ph.D., senior author of the paper published in the Aug. 17 issue of Nature. “It's a very serious problem.”

When the study was performed, Russell was a professor of molecular microbiology at the medical school. Now he is professor and chair of microbiology and immunology at the College of Veterinary Medicine, Cornell University.

The tuberculosis bacterium, Mycobacterium tuberculosis, is the world's most deadly infectious organism, killing 3 million people a year. It is one of several cells called macrophages, which normally destroy harmful microbes, ingest the bacteria. But Mycobacterium is able to survive in and grow inside macrophages for years. Russell and his colleagues suspected this was made possible by a protein called the glycylate shunt, a biochemical pathway that allows bacteria to use compounds containing only two carbon atoms as food. Isocitrate lyase (ICL) is a key enzyme in this pathway.

To test this idea, collaborators John D. McKinnon of the Rockefeller University and William R. Jacobs Jr. of the Howard Hughes Medical Institute at Albert Einstein College of Medicine genetically deprived Mycobacterium of its ability to make ICL. They then infected one group of mice with the mutant strain and a second group with the normal strain. During the early, acute phase, both host groups developed the infection at the same rate. Later, however, the mutant bacteria were steadily eliminated while the normal strain persisted. Only the mice in the second group developed inflamed and enlarged lungs.

In another part of the study, researchers learned that M. tuberculosis produces ICL at a much greater rate in active macrophages than in resting ones. The mutant bacterium also was much less able to survive in and grow inside macrophages. Therefore, it appears that M. tuberculosis must use the glycylate shunt to survive when macrophages become activated.

This is the first demonstration that a metabolic pathway of an infectious agent can be targeted by the immune status of a host,” Russell said. “If we can identify genes that make people susceptible, it will revolutionize our understanding of the disease and guide the design of new drugs to prevent or treat this debilitating disorder.”

THOMAS REICH
Acclaimed poet to give reading

Pjot Mari Jo Bang, professor of "Apology for Want" (1997), will read from her work at 8 p.m. Tuesday, Sept. 12, for the Creative Writing Program Reading Series in Arts & Sciences. Bang recently joined the faculty as an assistant professor in the Department of English in Arts & Sciences, where she will teach courses in creative writing.

The reading is free and open to the public and takes place in Harle Lounge, Room 201 Dancker Hall.

"For Apology for Bang," their first collection of poems, won the Bakwin Award (sponsored by the Bread Loaf Writers' Conference of Middlebury College) and the Green Lakes Colleges Association New Writers Award. Her poems, which are noted for their freshness and dark sense of elegance, have appeared in numerous magazines and journals, including The New Yorker, The New Republic, Paris Review, The Nation and Poets & Writers Review.

Bang grew up in St. Louis and holds degrees in sociology, photography and creative writing from Northwestern University, University of London and Columbia University in New York, respectively. During the 1999-2000 academic year she was a Hodder Fellow at Princeton University. She has two books forthcoming in 2001: "Loose in Love" from the Grove/Atlantic Press, and "The Difficult Domain: Extremity of the Isle of Swans" from the University of Georgia Press.

A book signing will follow the reading, and copies of Bang’s works will be available for purchase. For more information, call 953-7130.

By Lisa Otten

Those who teach can in fact do, a fact more than proven over the last five years by W. a. u. o. "The University's Annual" "Dance Close-Up 2000" concert, which showcases outstanding dance talent from the Performing Arts Department in Arts & Sciences. This year’s concert, as well as all future performances, will be related to the theme of "dance as metaphor," that those who teach can truly teach very well indeed — by including for the first time some of the University's most distinguished dance alumni.

A total of 33 dancers from across the United States will perform 16 original works in two different programs at 8 p.m. Friday, Sept. 15 and 16, at Edison Theatre. Seven faculty and nine alumni choreographers will contribute to the concert, which considered the unofficial kick-off of the current school year's professional dance season.

"The beginning of a new millennium is indeed the right time to celebrate the achievements of dance alumni as well as the current lively state of the arts at Washington University," said Mary Joan Cowell, PBLJ, associate professor and coordinator of the Dance Program in Arts & Sciences, who serves as the show's artistic director.

Perhaps the best-known returning choreographer is gra- pho- rapher David Dorfman (BU '77), creator of Dorfman Dance, who will perform a recent work entitled "What I Know About Care." Dorfman has performed extensively in New York, and throughout New England, South America, Great Britain and Europe. His many awards include two New York Fellowships for the Arts Fellowships, an American Choreographer Award, the first Paul Taylor Fellowship and a New York Dance and Performance Award.

Other notable returnees include Albina Colettiburg (LA '80), founder of St. Louis' ATRIEK Dance Co.; Chad Parker Garcia-Trias (LA '94), founder of Brida's Dance Project; Susan Ca (LA '79), co-founder of St. Louis' Viggo Dance Co.; Allisson Green (FA '83), co-founder of Allisson Green Dance in New York; Le Mith Tsim Dance in New York City, and Probert Studio (LA '78), of the Georgia Stead Company in Minneapolis, and Robin Lee (LA '77), a founding member of Urban Bush Women.

Faculty artists include Cowell, Dorfman, director of the Master of Fine Arts in Dance program, and head of lab, molecular vertebrates and developmental biology. "Looking at these dances — and at the work typical of our dance alumni — it's clear that the choreographers love ideas as well as movement," Cowell noted, pointing out that the University's strong liberal arts tradition encourages a certain intellectual adventurousness.

"The idea becomes the 'motor' that drives the work, whether it's the cultural content of an African or Indian dance, a theme embedded completely in movement or a concept that also demands some intellectual work," Cowell added.

Tickets are $15 each evening for the general public and Washington University faculty, staff and undergraduate students. Combined tickets for both evenings may be purchased for $25 and are available only at the theater box office, 935-6143, or through MetroTix, 540-3333.
Bears sweep foes

Greg Lake tossed three touchdown passes and the defense surrendered just 34 total yards as the football team opened the 2000 season with a 57-0 win over Westminster State, Sept. 2, at Francis Field. The victory was the 11th straight-season opening win for the Bears in the fourth season opening-shotout in the last five years.

Women's soccer wins

The women's soccer team got the 2000 season started on the right foot as the Bears posted a 2-1 overtime win over Maryville University Sept. 1. The Bears were kept scoreless until the 79th minute, 2 seconds mark, when freshman Kim Raess scored her first career goal on an assist from Jessica

Click to tie the score at 1-1. From there it was on to overtime, where junior Betsy Frey broke the Bears lead by heading in a Trisha Young corner kick.

Men rebound

After dropping a heartbreaker against Rockford College to open the season, the Bears first opening-day loss since 1988, the men's soccer team rebounded with a 1-0 win in overtime over Principia College. WU's defense did a solid job for the first 90 minutes, and freshman Steven Binskas' goal 8:14 into the first overtime period was enough. A cross from Casey Lien gave the Bears the lead.

Volleyball team 3-1

The Bears started out the season on the right foot. Sept. 1, dropping a five-game match to St. Olaf College, but then immediately redeemed themselves in the nightcap. Facing defending national champion Central College, WU ended the hosts' 66-match win streak with a commanding 3-1 victory over the Dutch. In the first match Sept. 2, WU quickly disposed of Gustavus Adolphus College in three games. In the final match of the weekend, WU prevailed over the University of Wisconsin-River Falls 3-2.

Runners strong

The women's cross country team placed all seven of its runners in the top ten in the season-opening American Intercollegiate Runners Association on Saturday, Sept. 2.

and was moved into a movie starring Antonio Banderas and Adan Acosta. His most recent novel, "Empress of the Splendid Season," is also receiving positive reviews. This month Hijuelos will be honored at the Kennedy Center in Washington, D.C., as part of the National Hispanic Heritage Awards in an event on NBC-1TV. Hijuelos received both bachelor's and master's degrees from the City University of New York. For more information, visit the Assembly Website. Page 8 or call 935-6759.

C can improve anti-poverty strategies. Business, expanded opportunities for individuals building up to benefit more people.

The George Warren Brown School of Social Work at Washington University in St. Louis, in collaboration with the Federal Reserve Bank of St. Louis, will offer a conference this fall titled "Inclusion in Asset Building: Research and Policy." Sept. 21-23, coordinated by Michael Sherraden, Ph.D., center director and the Benjamin Youngfalld Professor of Social Development, and Lisa Marcus, Ph.D., assistant professor of social work.

The conference will open with a video- taped speech by President Clinton, an advocate of Individual Development Accounts (IDAs), pioneered by Sherraden, IDAs serve as a means of extending matches to low- and moderate-income families to encourage savings and asset building. The savings can be used for investment in higher education, home ownership, small business development and retirement.

Using data from its ongoing research project on IDAs at 14 sites nationwide, the CSD has been providing analyses of asset-building strategies to the Clinton administration. "The data show that low-income IDA participants save a mean of $35 per month, and the very poovaan save almost as much as others," Sherraden said. "These results are consistent with an institutional theory of saving, wherein a program with expectations, information, incentives, access and facilitation may be as important as individual characteristics, even income, in determining saving behavior."

Supported by a grant from the Ford Foundation, the conference will include leading experts presenting papers on asset building from various perspectives and from practical public policy perspectives. Open to invited participants, the symposium is part of the school's 75th anniversary celebration.

9 a.m. University College public policy symposium. "The Bernard Becker Institute for Public Policy Research Conference: Assets and the Poor: Sherraden's "Poor Asset Accumulation in Structured and Subsidized for many low-to-moderate-income households, primarily via retirement accounts and home ownership, with subsidies in the form of government tax benefits. IDAs serve as a means of promoting asset building among people who do not have access to these subsidies.

Sherraden recently learned that CSD research has been influential in decisions in the United Kingdom to move towards a more aggressive asset-building policy. In June, he met with British researchers at the Institute for Public Policy Research and treasury officials to discuss asset building and IDAs there.

Sports

Record of 5-2-0.

Saturday, Sept. 1

Wednesday, Sept. 13

11 a.m. and 9 p.m. 75th Anniversary Celebration. "The George Warren Brown School of Social Work: A Dynamic Design Element and Eye-Catching Attention to Detail Plus."

Women's soccer wins

Tuesday, Dec. 12
8 a.m. Creative Writing Program Reading Series. "Mary Jo Bang: and art and the English, will read from her work." Harold Long. Room 201 Duressor Hall. 935-7079.

Wednesday, Dec. 13
10 a.m. Missouri Warren Research Institute Dedication. "Scientific Program." Four 4 p.m. "The Bernard Becker Institute for Public Policy Research Conference: Assets and the Poor: Sherraden's "Poor Asset Accumulation in Structured and Subsidized for many low-to-moderate-income households, primarily via retirement accounts and home ownership, with subsidies in the form of government tax benefits. IDAs serve as a means of promoting asset building among people who do not have access to these subsidies.

Sherraden recently learned that CSD research has been influential in decisions in the United Kingdom to move towards a more aggressive asset-building policy. In June, he met with British researchers at the Institute for Public Policy Research and treasury officials to discuss asset building and IDAs there.

Sports

Saturday, Sept. 9
11 a.m. and 9 p.m. University College poetry writing workshop. "Creative Writing: "Jane Austen: A Close Reading." Amy J. Love, award-winning novelist (Saturdays through Oct. 28.) Cost: $270. Room 211 Duncker Hall. 935-6759.

Monday, Sept. 11

Wednesday, Sept. 13

11 a.m. and 9 p.m. 75th Anniversary Celebration. "The George Warren Brown School of Social Work: A Dynamic Design Element and Eye-Catching Attention to Detail Plus."

Women's soccer wins

Tuesday, Dec. 12
8 a.m. Creative Writing Program Reading Series. "Mary Jo Bang: and art and the English, will read from her work." Harold Long. Room 201 Duressor Hall. 935-7079.

Wednesday, Dec. 13
10 a.m. Missouri Warren Research Institute Dedication. "Scientific Program." Four 4 p.m. "The Bernard Becker Institute for Public Policy Research Conference: Assets and the Poor: Sherraden's "Poor Asset Accumulation in Structured and Subsidized for many low-to-moderate-income households, primarily via retirement accounts and home ownership, with subsidies in the form of government tax benefits. IDAs serve as a means of promoting asset building among people who do not have access to these subsidies.

Sherraden recently learned that CSD research has been influential in decisions in the United Kingdom to move towards a more aggressive asset-building policy. In June, he met with British researchers at the Institute for Public Policy Research and treasury officials to discuss asset building and IDAs there.

Sports

Saturday, Sept. 1

Wednesday, Sept. 13

11 a.m. and 9 p.m. 75th Anniversary Celebration. "The George Warren Brown School of Social Work: A Dynamic Design Element and Eye-Catching Attention to Detail Plus."

Women's soccer wins

An architect’s rendering shows new engineering buildings and landscaping at the corner of Skinker and Millbrook boulevards, as seen from the former Talayna’s pizza restaurant. Major building efforts will transform the east end of campus by 2007.

Plans

East campus to get six new buildings

—from page 1

"We want to be a great university for this region," McLeod told the audience. "No region can sustain growth and prosperity over time without centers of learning." McLeod said the University proposes to replace in part an underground parking facility. Three options are still under consideration. Two would place the garage under the grand entrance, leading up the hill to Brookings Hall, and the third would put it under Brookings Drive, requiring the replacement of four rows of 90-year-old oak trees along the east- and west-bound lines. A recently completed horticultural study revealed that a large number of the trees are distressed, with a life expectancy of only 10 years.

Whatever choice is ultimately made will remain the "signature" entry to the campus.

Hoffner said a final decision on the underground parking awaits the results of soil and soil sampling and will be made in the near future.

Hoffner also announced plans to demolish the former Talayna’s building, at the northeastern corner of Skinker and Millbrook boulevards, replacing it with an office/retail building to complement the neighborhood. The ground floor will house small independent shops, and University offices will occupy upper floors. The parking currently available on the site will be increased by including a parking facility in the new building.

Showing slides of architects’ renderings and the footprint of the new campus buildings, Hoffner pointed out that the plans include extensive landscaping, new walkways along Skinker and Millbrook boulevards and improved lighting. Addressing the audience, McLeod emphasized the relationship between residents and the University in the area. "Washington University is my home. The Skinker-DeBaliviere bombardment is also my home," he said of the northwestern corner of the campus. "I believe we have been good for each other, that we've made contributions to one another. Certainly the beautiful surrounding area is a tremendous asset to us." After describing the new plans, the University has also established a "neighborhood liaison group," to act as an "oasis of trust in corporate governance." McLeod said the University has no firm plans for the corner of Skinker and Lindell boulevards, and a second option, the former Talayna’s site, will remain the "signature" entry to the campus. "I believe that in developing the new plans, the University has a responsibility to the residents, its history, its location and its impact on our neighbors." McLeod also said that if the University is to attract and retain the best students, faculty and staff, it must continue to upgrade its facilities. "Washington University does not anticipate enlarging its undergraduate student body, "but we do know that there will be an increase in research activity at this time of campus growth," which could result in a small increase in faculty and staff.

Many residents had questions. There was considerable interest in the proposed new building on the Talayna’s site, particularly about traffic congestion around it. Parking continues to be a concern for homeowners near campus, who object to students and employees parking on their streets. Hoffner and McLeod both repeated the University’s commitment to providing ample parking with a variety of cost options. In response to a suggestion that underground parking accompany the new campus buildings, Hoffner said the University considered that possibility but rejected it. "We anticipate these buildings will be here for hundreds of years," he explained, "far longer than the parking lots." He also noted that putting cars, with their vibrations and fumes, in buildings with sensitive scientific equipment and, in the case of the VADC, a valuable art collection, is "problematic."

A couple of residents expressed interest in the proposed new building’s residential property it owns on the northeast corner of Skinker and Lindell boulevards, and a second option is the former Talayna’s site.

The annual series of lectures on "complex cutting-edge legal issues that require expertise from other fields for full exploration," Hoffner said, "at the same time." He added that "the University would like to allow students to study the work of the visiting scholars and then discuss the wriggly with these authors."

Drobak added that in addition to the visiting scholars and seminar participants, he hopes that University faculty and graduate students of various fields will attend the free symposia to further the intellectual discussion. The fall symposia are:

• "The Future of Norms," Sept. 15, featuring John Foywotton, political science professor at Stanford University and special master in the Microsoft Antitrust case, "The Commons and the Internet"; and Robert Ellickson, professor at Yale University School of Law, on commons issues in the family. During the 2001-02 academic year, the center also will work with "tongues" to coordinate interdisciplinary research and host programs on the "imaginary Forms of Life—the Human Imagination." For more information on the conferences, call 935-6487 or visit the law school’s Web site (http://ls.wustl.edu).

Employment

Use the World Wide Web to obtain complete job descriptions. Go to https://hr.wustl.edu/ (Hilltop) or http://medicine.wustl.edu/wumshr (Medical).

Campaign finance reform is law school conference topic

A Sept. 17 conference, co-sponsored by the School of Law and the St. Louis Law Journal, will bring the nation’s leading economic norms. It is the inaugural program of the School of Law’s new Center for Interdisciplinary Legal Studies. The center will host three fall symposia beginning Sept. 15 and concluding with a conference on March 30-31, featuring program director and a keynote address by Arthur Amore. 1998 Nobel Laureate in Economics and National Science and master of Trinity College at Cambridge University. The school will also hold a related seminar and will publish a book of the papers presented at the fall symposia.

The new center builds on the law school’s existing interdisciplinary strengths, including its joint degrees and partnerships with faculty and staff, including the Visiting Scholars and policy faculty, while recognizing that many legal issues are multidisciplinary in nature, said John Drobak, J.D., director of the VADC, and Larry deAngelis, professor of and economics at Arts and Sciences. "Annual symposia of cutting-edge legal issues that require expertise from other fields for full exploration," Hoffner said, "at the same time." He added that "the University would like to allow students to study the work of the visiting scholars and then discuss the wriggly with these authors."

Drobak added that in addition to the visiting scholars and seminar participants, he hopes that University faculty and graduate students of various fields will attend the free symposia to further the intellectual discussion. The fall symposia are:

• "The Future of Norms," Sept. 15, featuring John Foywotton, political science professor at Stanford University and special master in the Microsoft Antitrust case, "The Commons and the Internet"; and Robert Ellickson, professor at Yale University School of Law, on commons issues in the family. During the 2001-02 academic year, the center also will work with "tongues" to coordinate interdisciplinary research and host programs on the "imaginary Forms of Life—the Human Imagination." For more information on the conferences, call 935-6487 or visit the law school’s Web site (http://ls.wustl.edu).
Knight, Formal Institution No. 28

Notables

Knight to be named Souers professor

Jack Knight, Ph.D., professor and chair of the Department of Political Science, will be named the Sidney W. Souers Professor of Government in Arts & Sciences. His financial installment will take place Nov. 28.

"I am very pleased to appoint Professor Knight to the Souers professorship," said Edward M. Schraut, Ph.D., executive vice chancellor and provost of the Colleges. "Jack began his academic career at Washington University, and his career has blossomed at the University over the past 12 years. He has been here. He is an outstanding scholar in his field, and he has provided significant leadership to our Department of Political Science. He is a superb teacher, as well."

I am particularly pleased to recognize his considerable involvement in our interdisciplinary programs in Arts & Sciences. His wise counsel has had a significant impact on the development of these key intellectual clusters."

Knight earned a bachelor's degree in political science from North Carolina at Chapel Hill in 1974, with a double major in English literature and religious studies, and a juris doctor in 1977 from the same institution. He earned a master of arts in 1980 and a doctorate in 1989 in political science, both from the University of Chicago. Knight joined the political science department here in 1988, and was named a full professor in 1991. He has served as an associate professor with tenure and was made full professor in 1999. He served as associate chair of the Department of Political Science from 1998 to 1999, when he was appointed chair. He is a fellow in the Center for Political Economy and a member of the Committee on Social Thought & Analysis, both in Arts & Sciences. An active participant in the University's Bear program, served as a member and chair of the Faculty Council, on the executive committee of the American Culture Studies Program in Arts & Sciences, as secretary of the Senate Committee and Faculty Senate, and as a member of the Fullbright Grants Committee, among many others.

Knight's primary areas of research are modern social and political theory; law, courts and jurisprudence; political economy; and philosophy of social science. His publications include "Institutions and Social Conflict" (Cambridge University Press, 1992); "Institutions und gesellschaftlicher Konflikt" (J.C. Mohr, 1997); and "Explaining Social Institutions," edited with Itai Sened (The University of Michigan Press, 1995). With Lee Epstein of the University of Chicago, he co-authored "The Chosen Justices Make," which won the C. F. Cardozo Prize from the American Political Science Association. His best book was published on law and courts. He also has published numerous articles in journals and edited volumes on such topics as the economic and political role of the law, judicial decision-making, and theories of institutional emergence and change.

A dedicated teacher and mentor of both graduate and undergraduate students, Knight has supervised an extraordinary number of independent projects, honors theses and dissertations in Political Science, working with John K. Bowen, Ph.D., professor of anthropology and the Durand- Van Clef Professor in Arts & Sciences, for 10 years, and with William T. Kemper Foundation Award for developing an undergraduate course on "Individual and Community," a seminar that explored the role of the individual in various forms of social organization in a community. He was special to study the relationship between social and cultural perspectives. He also played active roles at least three key interdisciplinary programs in Arts & Sciences, Social Thought & Analysis, Political Economy and American Culture Studies.

The Sidney W. Souers professorship in government was established in 1982 by Sylvia and Philip Souers. Sylvia Souers has her late husband and to perpetuate his dedication to public affairs and public service, and their long-standing interest in higher education, to the University of St. Louis community. As holder of the first two Souers professorships, Knight succeeds John Sprague, Ph.D., professor emeritus, and John Sprague, of the second Souers, retirement. Professor Sprague for professor of political science, was named to the second of the two professorships in 1999.

Lloyd Norman Simpson, former biomedical electronics engineer, teacher and assistant professor emeritus in the Department of Physics, died Aug. 28, 2000, at his home in St. Charles from Alzheimer's disease. He was 77.

In his 37 years at the School of Medicine, Simpson modified, repaired and maintained electronic recording equipment from the field of medi- cine. According to William M. Landau, M.D., professor of neurology and former head of neurology, Simpson helped advance the fields of clinical and experimental electrophysiology, and taught doctoral students how to use these tools to measure electrical activity in muscles, nerves and in the brain. "He was a patient teacher," said Landau.

Simpson retired in 1985, at which time he named research assistant professor emeritus of neurology and of neurological surgery. Born Aug. 8, 1923, in Missouri, he earned a college degree at the University of Minnesota in 1943, followed by a three-year stint in the U.S. Navy. Simpson is survived by his wife, Hazel, and daughters, Kathleen Kindbom, the University's head of the Office of Institutional Diversity, and Kitty Youngerman; a daughter, Sonni O. Youngerman and Chad Simp; a daughter-in-law, Jeni Swofford; a son-in-law, Peter Swofford; a grandson, and a granddaughter.

Scott Swofford, assistant football coach, teacher

Scott Swofford, assistant football coach, teacher, is survived by his wife, Karen; three sons, Samuel Oscar Swofford III, Clint Vanderslice and Chad Youngerman; a daughter, Sonni O. Swofford; a daughter-in-law, Jeni Youngerman; his mother, Doris Swofford; three sisters, Shelley Richard, Stacey Rhodes and Shawn Williams; and two grandchildren.

His sons, Sam, is a sophomore at the University and serves as a manager for the Washington University baseball team. His daughter, Lisa, is a senior at the Washington University in St. Louis. Scott Swofford was survived by his wife, Karen; three sons, Samuel, Oscar Swofford III, Clint Vanderslice and Chad Youngerman; a daughter, Sonni O. Swofford; a daughter-in-law, Jeni Youngerman; his mother, Doris Swofford; three sisters, Shelley Richard, Stacey Rhodes and Shawn Williams; and two grandchildren.

He was born in Springfield, Missouri, on Aug. 8, 1923, and died Aug. 28, 2000, at his home in St. Charles from Alzheimer's disease. He was 77.

Swofford was a teacher and assistant professor emeritus in the Department of Physics, and was active in the Fellowship of Christian Athletes. He was a member of the Senate Committee and Faculty Senate, and as a member of the Fullbright Grants Committee, among many others.

Swofford is survived by his wife, Karen; three sons, Samuel, Oscar Swofford III, Clint Vanderslice and Chad Youngerman; a daughter, Sonni O. Swofford; a daughter-in-law, Jeni Youngerman; his mother, Doris Swofford; three sisters, Shelley Richard, Stacey Rhodes and Shawn Williams; and two grandchildren.

His son, Sam, is a sophomore at the University and serves as a manager for the Washington University baseball team. His daughter, Lisa, is a senior at the Washington University in St. Louis. Scott Swofford was survived by his wife, Karen; three sons, Samuel, Oscar Swofford III, Clint Vanderslice and Chad Youngerman; a daughter, Sonni O. Swofford; a daughter-in-law, Jeni Youngerman; his mother, Doris Swofford; three sisters, Shelley Richard, Stacey Rhodes and Shawn Williams; and two grandchildren.

Scott Swofford, assistant football coach, teacher

Scott Swofford, assistant football coach, teacher, is survived by his wife, Karen; three sons, Samuel, Oscar Swofford III, Clint Vanderslice and Chad Youngerman; a daughter, Sonni O. Swofford; a daughter-in-law, Jeni Youngerman; his mother, Doris Swofford; three sisters, Shelley Richard, Stacey Rhodes and Shawn Williams; and two grandchildren.

Swofford was survived by his wife, Karen; three sons, Samuel, Oscar Swofford III, Clint Vanderslice and Chad Youngerman; a daughter, Sonni O. Swofford; a daughter-in-law, Jeni Youngerman; his mother, Doris Swofford; three sisters, Shelley Richard, Stacey Rhodes and Shawn Williams; and two grandchildren.

United Way

United Way Campaign has $425,000 goal — from page 1

United Way Campaign has $425,000 goal — from page 1

University Washington has ranked No. 15 for overall undergraduate programs in the 2000-2001 U.S. News & World Report survey, tied with Brown and Johns Hopkins universities. The rankings were released electronically Friday, Sept. 1. Last year, the University was ranked 17th best for undergraduate programs.

The School of Business undergraduate program was ranked No. 1A, the same as last year. The undergraduate finance program was ranked 14th, and the undergraduate general management program was ranked 24th. The School of Engineering and Applied Science graduate under- graduate programs were ranked 44th, up two spots from last year.

The magazine ranks schools based on several criteria, including academic reputation, student selectivity, percentage of students graduating, financial resources and alumni donations. This is the 14th year that U.S. News & World Report has published the results of its survey. The full issue, America's Best Colleges, will be on news- stands Monday, Sept. 11.

United Way

Washington University in St. Louis

University Washington has ranked No. 15 for overall undergraduate programs in the 2000-2001 U.S. News & World Report survey, tied with Brown and Johns Hopkins universities. The rankings were released electronically Friday, Sept. 1. Last year, the University was ranked 17th best for undergraduate programs.

The School of Business undergraduate program was ranked No. 1A, the same as last year. The undergraduate finance program was ranked 14th, and the undergraduate general management program was ranked 24th. The School of Engineering and Applied Science graduate undergraduate programs were ranked 44th, up two spots from last year.

The magazine ranks schools based on several criteria, including academic reputation, student selectivity, percentage of students graduating, financial resources and alumni donations. This is the 14th year that U.S. News & World Report has published the results of its survey. The full issue, America's Best Colleges, will be on newsstands Monday, Sept. 11.

United Way

Washington University in St. Louis

University Washington has ranked No. 15 for overall undergraduate programs in the 2000-2001 U.S. News & World Report survey, tied with Brown and Johns Hopkins universities. The rankings were released electronically Friday, Sept. 1. Last year, the University was ranked 17th best for undergraduate programs.

The School of Business undergraduate program was ranked No. 1A, the same as last year. The undergraduate finance program was ranked 14th, and the undergraduate general management program was ranked 24th. The School of Engineering and Applied Science graduate undergraduate programs were ranked 44th, up two spots from last year.
Plumbing mysteries of cell-cycle control
Helen Piwnica-Worms, Ph.D., rises to eminence in her field

By DAVID LINZER

Growing up in upstate New York and suburban Minneapolis, Helen Piwnica-Worms didn’t intend to be a scientist. Her father was an electrical engineer, her mother a secretary, and she didn’t know any scientists or have a clear idea of what they did. In movies, they were people in white coats, wearing glasses and carrying fuming test tubes. "That image had zero appeal for me," she said. Today, Helen Piwnica-Worms (pronounced Pwince-worms, the name is Polish and means "rathskellier," while Worms is German and was hyphenated upon marriage), Ph.D., wears a white coat and carries test tubes. She even had to find an experiment before going to the delivery room to give birth to her daughter. "She now is one of the most eminent scientists in her field," said Andrey S. Shaw, Ph.D., associate professor of pathology at the School of Medicine. She has been named a Pew Scholar in the Biomedical Sciences and a Howard Hughes Medical Institute investigator, and has received the Paper of the Year Award in the journal Molecular Biology of the Cell. Piwnica-Worms, professor of cell biology and physiolo­gy, studies regulation of cell division — cell-cycle control. "We’re constantly being bombarded by radiation and other agents that damage our DNA," she explained. "Fortunately, the cell has beautiful machinery for detecting that damage." This machinery, called checkpoint points, stops the cell cycle if a cell is likely to pass on faulty DNA. When the system fails, cancer can result. As a child, Piwnica-Worms wanted to be a science teacher so much that her parents built her a classroom in the basement. Her brother and two sisters resisted, she said. "Out of a lust for knowledge, I fell into science." Her introduction to cell-cycle checkpoint system, they had to find regulators of Cdc2. At first, an enzyme that Piwnica-Worms was studying was a leading candidate, but her results with this candidate were negative. Not a setback Characteristically, she took this as an opportunity to learn rather than as a setback. Putting aside the research that had occupied her for five years, she delved into genetic studies of yeast cells, whose cycle is similar to that of human cells. "She got in on the ground floor," said James L. Mailer, Ph.D., a colleague at the University of Colorado School of Medicine in Denver. "And the early days of cell-cycle research were a special time. The check­points had been identified genetically, but no one knew how they worked biochemically. You had an incredibly energetic group of people trying to find the answers." Moving back up the checkpoint pathway, researchers including Piwnica-Worms learned that a protein called Cdc25C regulates Cdc2. Over the next several years, she made important discoveries about how the two proteins interacted. She said she was "highly impressed" by some of these findings in the journal Science in 1997, proposing a molecule that binds to Cdc25C and its results in interaction with Cdc2. Working with cells express­ing an altered form of Cdc25C, she showed that such cells could divide even if they contained damaged DNA. This indicated that Cdc25C is essential to the checkpoint pathway. "So we had a direct link between DNA damage, a cell cycle regulator and mitosis," she said. The findings offer hope of a new, two-stage therapy: radiation treatment to damage the DNA of cancer cells followed by a drug to disrupt Cdc25C regulation and therefore the checkpoint pathway. This approach should make cancer cells divide into defective cells that quickly die. Clinical trials are currently under way. Piwnica-Worms met her husband, David, when she was 16, after her family relocated to Minneapolis. They went to the same high school together, but he left for Stanford University soon after. Five years later, though, the two married, and faced up to the continuing challenge of coordinating their careers. Their first move was to Duke University, where she entered a combined M.D./Ph.D. program while she pursued a Ph.D. in microbiology and immunology. Degrees completed, they spent 10 years in Boston, with mixed feelings. It was ideal for their careers, Piwnica-Worms said, but she didn’t like living in a place where traffic drowns out the singing of birds. The couple moved frequently, trying to find a quiet stretch within commuting range. They now had children, and thought family of their Midwestern childhood. When the first offer came from Washington University School of Medicine in 1993, however, Piwnica-Worms was hesitant. It was the year of the Great Flood, and the media gave the impression that St. Louis was under water. But a visit to campus and a warm reception from the faculty changed her mind. The medical school also offered a position to her husband, who now is professor of radiology and molecular biology and pharmacology. "I knew as soon as I met her that she was a winner," said Philip D. Stahl, Ph.D., professor and head of cell biology and physiology. "And that’s turned out to be the case. She’s a brilliant scientist and a good citizen of this institution. She’s also a role model for women scientists, as a leader in her field who is raising two children." No magic secrets "We don’t have any magic secrets," however. "Sometimes it’s hard to manage," she said, "but our children are the primary focus of our lives. When we need us, we’re there." She believes that her flexible schedule has been an advantage to her scientific career — it allows her to attend school plays and athletic events. Both of her children are active, and a weekend can include as many as five sporting events. William, 10, already has planned his career. He says he’s going to be a major- league pitcher who can hit, too. Katie, 13, with notable verbal and people skills, is much more outgoing than Piwnica-Worms at that age, when her favorite place was her basement schoolroom. That solitary childhood practice continues to pay off for Piwnica-Worms, though, who teaches in a cell biology and ethics course. Research remains her primary focus. "There’s an explosion now in our understand­ing of what genes become mutated and how cells are derailed into cancer," she said. "In the future, we should be able to develop therapies that are specific to the genetic profiles of different types of cancer. It’s a wonderful endeavor to be participating in."