Mellon minority program awards funding renewal

The Mellon Minority Undergraduate Fellowship Program recently awarded Washington University a $500,000 funding renewal. The program, initiated here in 1992, has enabled minority students to pursue independent study projects, engage in summer research at the University and in foreign countries, and, upon graduation, enter advanced graduate programs. The $300,000 renewal will be spread out over the next four years, said Susan Rollins, assistant dean and academic coordinator in the School of Arts & Sciences. Gerald L. Early, Ph.D., Merle Kling Professor of Modern Letters and professor of English and African in Afro-American Studies, both in Arts & Sciences, was instrumental in starting the program at the University and now serves as its faculty director. "I am proud to be associated with the Mellon program," Early said. "The aim of the program is worthy and important. The students are wonderful to work with. We hope to continue to use the money to support the Mellon's research expenses and to further their relationships with their faculty mentors." The renewal money will be used for a variety of programs. Part of it will go toward continuing the Mellon Undergraduate Seminar, a one-credit class that teaches minority students learning techniques and tools of scholarly research. Some of the funds will go toward continuing education for minority students. All minority students who enroll in a doctoral program at any university are eligible to have up to $10,000 of their loans repaid as part of the Mellon program. Also included in this renewal is funding for each of the eight years with all costs paid. "We hope to continue to use the Mellon's research expenses and to further their relationships with their faculty mentors." The University was urged to apply for the Mellon program in 1992 and received $280,000 to initiate the program. The fellowship was renewed in 1996 at $350,000.

Deep-sea vents studied by student on the ocean floor

By Trent Stockton

The feeling that you're sinking in deep, dark, cold water hundreds of miles from dry land is not a pleasant one. Neither is the feeling of being confined, cold and wet, for over eight hours in a metal sphere the size of a bathtub. Yet this is the only playing field with the Juan de Fuca Ridge, and research institutes on an area some 240 miles off the coast of Oregon. Smith was aboard one of the descents made in the submersible Alvin, a famous craft in which scientists 23 years ago discovered a unique ecosystem and a "dinosaur" of life forms older than life on Earth.

William H. Smith, Ph.D., professor of earth and planetary sciences in the School of Arts & Sciences, recently was one of 25 scientists from many universities and research institutes on an expedition to explore several aspects of the sea floor associated with the Juan de Fuca Ridge. About 240 miles off the coast of Oregon, Smith was aboard one of the descents made in the submersible Alvin, a famous craft which scientists 23 years ago discovered a unique ecosystem and a "dinosaur" of life forms older than life on Earth.

Two students named Rhodes Scholars

By Gerri Everingham, Tony Fitzpatrick & Neil Schoenheiser

Sarah S. Johnson and Ian R. Klaus, seniors in the School of Arts & Sciences, were named recipients of Rhodes Scholarships on Saturday. This brings the number of University students who have won the highly acclaimed award to 21 since 1992. Washington University joins Yale University and the United States Military Academy at West Point as the only institutions to have multiple Rhodes Scholars this year. Johnson and Klaus were the only recipients from St. Louis-area schools.

The two were among the 32 students in the United States chosen to receive the honor. Winners were selected from 950 applicants based on high academic achievement, personal integrity, leadership potential and physical value.

"We are very proud to have such excellent students at Washington University," Chancellor Mark S. Wrightson said. "On behalf of the entire community, I extend congratulations to Sarah and Ian upon being selected for the prestigious Rhodes Scholarships."

As Rhodes Scholars, Klaus and Johnson will be the only American students to be selected as scholars in the United States this year, the first time in 10 years. Klaus, from Belvedere, Calif., is a senior majoring in history and literature in history in Arts & Sciences. He has received numerous awards for excellence in history and as a scholar-athlete. A member of the varsity soccer team and student representative to the University Board of Trustees, Klaus also founded a service organization on campus called "Bears and Cubs" that encourages athletes involved with tutoring young people in the community.

"I am incredibly excited," Klaus said. "I've been working hard for four years and I've had great support from my professors, friends and family. I hope this honor is just as exciting for them as it is for me." Klaus said he plans to switch gears slightly at Oxford and study political science and philosophy. He would like to teach after he leaves Oxford.

"I am in the top one or two percent of students I have taught in more than 30 years," said Gerald N. Lienberg, Ph.D., professor of history in Arts & Sciences and Klaus' academic adviser. "This work clearly demonstrates both superior analytic intelligence and great writing talent, matching his deep interest in both discursive thought and creative literature."

Klaus is working on his senior honors thesis on American reminiscences of the Vietnam War. This summer he received a Bemis Fellowship to study the letters and manuscripts of British World War I soldier poets at the Imperial War Museum in England.

Klaus has won two prizes from the Department of African and Afro-American Studies for his essays on apartheid relations and on cultural nationalism and homosupersca in African-American literature and culture in the 1980s. Besides being co-captain of the soccer team, Klaus was named a varsity soccer co-captain and award-winning writer.

Sarah S. Johnson assisted in the mission control center during Steve Fossett's 1999 attempt to circumnavigate Earth by balloon.

Winners were selected from 950 applicants based on high academic achievement, personal integrity, leadership potential and physical value. We are very proud to have such excellent students at Washington University," Chancellor Mark S. Wrightson said. "On behalf of the entire community, I extend congratulations to Sarah and Ian upon being selected for the prestigious Rhodes Scholarships."

As Rhodes Scholars, Klaus and Johnson will be the only American students to be selected as scholars in the United States this year, the first time in 10 years. Klaus, from Belvedere, Calif., is a senior majoring in history and literature in history in Arts & Sciences. He has received numerous awards for excellence in history and as a scholar-athlete. A member of the varsity soccer team and student representative to the University Board of Trustees, Klaus also founded a service organization on campus called "Bears and Cubs" that encourages athletes involved with tutoring young people in the community. "I am incredibly excited," Klaus said. "I've been working hard for four years and I've had great support from my professors, friends and family. I hope this honor is just as exciting for them as it is for me."

Klaus said he plans to switch gears slightly at Oxford and study political science and philosophy. He would like to teach after he leaves Oxford. "I am in the top one or two percent of students I have taught in more than 30 years," said Gerald N. Lienberg, Ph.D., professor of history in Arts & Sciences and Klaus' academic adviser. "This work clearly demonstrates both superior analytic intelligence and great writing talent, matching his deep interest in both discursive thought and creative literature."

Klaus is working on his senior honors thesis on American reminiscences of the Vietnam War. This summer he received a Bemis Fellowship to study the letters and manuscripts of British World War I soldier poets at the Imperial War Museum in England. Klaus has won two prizes from the Department of African and Afro-American Studies for his essays on apartheid relations and on cultural nationalism and homosupersca in African-American literature and culture in the 1980s. Besides being co-captain of the soccer team, Klaus was named a varsity soccer co-captain and award-winning writer. Sarah S. Johnson assisted in the mission control center during Steve Fossett's 1999 attempt to circumnavigate Earth by balloon.
Biological “islands” study illustrates diversification, speciation

By Trent Stockton

L

isted species on large Caribbean islands are more numerous than those on smaller islands because there is more evolution going on. The bigger the island, the faster species proliferate and diversify.

Jonathan B. Losos, Ph.D., associate professor of biology in the School of Arts & Sciences, proved this species-area relationship in a study of 143 Caribbean Anolis lizard species on 147 islands, ranging on the four largest islands — Cuba, Hispaniola, Jamaica and Puerto Rico — collectively known as the Greater Antilles — Losos showed that the diversity of island species is primarily a result of the geographic and ecological processes, rather than the ecological conditions or colonization and extinction.

Losos and co-author Delf Schmitz, Ph.D., professor of biology at the University of British Columbia, published these results in the Dec. 14 issue of Nature. The study is an important and a needed extension of a 33-year-old theory of biological diversity.

“When you focus on the large islands, the rate of speciation is a function of island area,” Losos said. “A small island equals a small number of speciation events. At some level this has never been demonstrated before because there are differences in the rate of speciation, which produces the species-area relationship.”

Losos and Schmitz’s results complement the well-known “Equilibrium Theory of Island Biogeography,” published in 1967 by Robert MacArthur of Princeton University and E.O. Wilson of Harvard University. MacArthur and Wilson’s ecological theory proposed that the number of species on an island reflects a balance between the rate at which new species colonize it and the rate at which populations of established species become extinct.

“If you are on a large island, in a stream ecology, a forest for example, surrounded by barriers. A major component of this is the rate of extinction of most species on large islands is much lower than on small islands, and if everything else is equal, then a relationship is observed between the area of the island and the number of species occurring on that island. But Losos and Schmitz have shown that evolution can be just as important as colonization and extinction in producing the species-area relationship.”

MacArthur and Wilson were unable to address the role that evolution plays in producing the species-area relationship because the appropriate data was unavailable until recently. In order to address such questions, Losos worked with Caro Barrett of the University of British Columbia, who gathered some of the earliest data on the diversity and speciation events on the islands. Todd Jackman, Ph.D., assistant professor of biology at Washington University, reconstructed the phylogeny of a group of lizard postcursors fellow working in the lab of Allphin, who are interested in the evolution of Anolis lizards.

“Losos is an incredibly influential evolutionary biologist of the species can we address these sorts of questions,” said Jackman. “The critical step was to get a reasonable reconstruction of the evolutionary relationships among these lineages.

Given that a species-area relationship exists in the Caribbean, Losos and others are now able to provide an explanation for why large islands support more species.

“There is simply more opportunity for isolation to occur and for species to diverge on large islands,” Losos said.

The classic explanation of how speciation happens is that once a group of species gets separated into two or more geographically isolated groups, evolution will take place in each group, and the new species that arises won’t have genetic contact; they are not interbreeding. For species to diverge so that even the geographic barriers that isolated the removal were, are now separate species and cannot interbreed.

An unexpected finding reported by Losos and colleagues is the existence of an island-area relationship in the larger islands of the Caribbean Sea. While most studies have focused on islands less than 1,000 square kilometers (roughly 1,800 square miles), below which speciation does not take place, the four larger Caribbean islands that do have evidence of speciation. This finding, Losos said, has increased the discussion on the large islands and for species to diverge on large islands. Losos said.

“We don’t know why the thresholds is there,” Losos said.

“The islands of Guadeloupe and Martinique are quite large and vegetationally diverse, there are plenty of habitats for lizards to exploit, and yet speciation has not occurred there.

This new work flushed out the ecological theories of MacArthur and Wilson and others, Losos added. “It gives us a fulcrum, richer understanding of how these speciation and diversity.”

Tips from a pro

Award-winning filmmaker Ken Burns (right) discusses his latest work, “LAZAR,” Dec. 7 in Graham Chapel with Jeffrey Laschat, a freshman in Arts & Sciences from Louisville, Ky.

Business students seek opportunities in the Silicon Valley

By Nancy Belt

Fifty-five Ohio State students will begin the new year in California’s Silicon Valley, exploring job prospects at high-tech companies based there. The students will offer information sessions and networking opportunities to the public and sponsored by the Ohio State University’s Digital Commerce Center.

“We make it easy for customers by bringing groups of students to the companies,” said Amy Johnson, associate director for business development for the Ohio State’s Wentworth Career Resources Center. “Our shows work, whether they’re in Silicon Valley, on Wall Street, in Chicago, Boston, Austin or Denver; help MBAs and BSBA find full-time jobs and summer internships with leading companies.

During the Silicon Valley road show, companies such as Cisco Systems, Oracle and Expedia will participate in a “networking” event, SOFTBANK Venture Capital and others, will make presentations to the students.

The number of United States Washington University students currently offers study-abroad opportunities for students.

PRISCILLA STONE

Students are able to take classes that Washington University may not offer and gain experiences they make not have had on this campus.

“Students are able to take classes that Washington University may not offer and gain experiences they make not have had on this campus.

PRISCILLA STONE

The bigger the island, the more species there are because there is more evolution going on. The bigger the island, the faster species proliferate and diversify.

Jonathan B. Losos, Ph.D., associate professor of biology in the School of Arts & Sciences, proved this species-area relationship in a study of 143 Caribbean Anolis lizard species on 147 islands, ranging on the four largest islands — Cuba, Hispaniola, Jamaica and Puerto Rico — collectively known as the Greater Antilles — Losos showed that the diversity of island species is primarily a result of the geographic and ecological processes, rather than the ecological conditions or colonization and extinction.

Losos and co-author Delf Schmitz, Ph.D., professor of biology at the University of British Columbia, published these results in the Dec. 14 issue of Nature. The study is an important and a needed extension of a 33-year-old theory of biological diversity.

“When you focus on the large islands, the rate of speciation is a function of island area,” Losos said. “A small island equals a small number of speciation events. At some level this has never been demonstrated before because there are differences in the rate of speciation, which produces the species-area relationship.”

Losos and Schmitz’s results complement the well-known “Equilibrium Theory of Island Biogeography,” published in 1967 by Robert MacArthur of Princeton University and E.O. Wilson of Harvard University. MacArthur and Wilson’s ecological theory proposed that the number of species on an island reflects a balance between the rate at which new species colonize it and the rate at which populations of established species become extinct.

“If you are on a large island, in a stream ecology, a forest for example, surrounded by barriers. A major component of this is the rate of extinction of most species on large islands is much lower than on small islands, and if everything else is equal, then a relationship is observed between the area of the island and the number of species occurring on that island. But Losos and Schmitz have shown that evolution can be just as important as colonization and extinction in producing the species-area relationship.”

MacArthur and Wilson were unable to address the role that evolution plays in producing the species-area relationship because the appropriate data was unavailable until recently. In order to address such questions, Losos worked with Caro Barrett of the University of British Columbia, who gathered some of the earliest data on the diversity and speciation events on the islands. Todd Jackman, Ph.D., assistant professor of biology at Washington University, reconstructed the phylogeny of a group of lizard postcursors fellow working in the lab of Allphin, who are interested in the evolution of Anolis lizards.

“Losos is an incredibly influential evolutionary biologist of the species can we address these sorts of questions,” said Jackman. “The critical step was to get a reasonable reconstruction of the evolutionary relationships among these lineages.

Given that a species-area relationship exists in the Caribbean, Losos and others are now able to provide an explanation for why large islands support more species.

“There is simply more opportunity for isolation to occur and for species to diverge on large islands,” Losos said.

The classic explanation of how speciation happens is that once a group of species gets separated into two or more geographically isolated groups, evolution will take place in each group, and the new species that arises won’t have genetic contact; they are not interbreeding. For species to diverge so that even the geographic barriers that isolated the removal were, are now separate species and cannot interbreed.

An unexpected finding reported by Losos and colleagues is the existence of an island-area relationship in the larger islands of the Caribbean Sea. While most studies have focused on islands less than 1,000 square kilometers (roughly 1,800 square miles), below which speciation does not take place, the four larger Caribbean islands that do have evidence of speciation. This finding, Losos said, has increased the discussion on the large islands and for species to diverge on large islands. Losos said.

“We don’t know why the thresholds is there,” Losos said.

“The islands of Guadeloupe and Martinique are quite large and vegetationally diverse, there are plenty of habitats for lizards to exploit, and yet speciation has not occurred there.

This new work flushed out the ecological theories of MacArthur and Wilson and others, Losos added. “It gives us a fulcrum, richer understanding of how these speciation and diversity.”

Tips from a pro

Award-winning filmmaker Ken Burns (right) discusses his latest work, “LAZAR,” Dec. 7 in Graham Chapel with Jeffrey Laschat, a freshman in Arts & Sciences from Louisville, Ky.
Type 1 diabetes genetic cause found by researchers

BY DIANE DEE WILLIAMS

Washington University School of Medicine researchers have identified a new gene that causes an inherited form of type 1 (insulin-dependent) diabetes and autoimmunity.

Mutations in a single gene, called JM2, cause the disease, the researchers found. The mutations adversely affect the function of the protein the gene encodes.

This finding might lead to ways to prevent type 1 diabetes.

The research team, led by Talal A. Chatila, M.D., associate professor of pediatrics, and Anne M. Bowcock, M.D., professor of genetics, studied blood samples from a few of the affected by a rare disorder that affects only boys and causes type 1 diabetes and allergies. They found mutations in a gene located in a region of the X chromosome previously linked to type 1 diabetes.

"This is an example of a single gene defect causing a high incidence of type 1 diabetes in affected children," said Chatila, lead author of the study. "It provides us with an important tool for dissecting the genetics of type 1 diabetes and deciphering how the disease comes about in the general population."

Results will be published today in the online edition of The Journal of Clinical Investigation. It will be published in the print edition in the coming weeks.

The two families in the study had five affected males. All five suffered from type 1 diabetes, chronic diarrhea and certain immune disorders.

Chatila's working model is that defects in the JM2 protein make T lymphocytes—the cells that destroy islet cells.

"They're easy to activate and difficult to shut down," he said.

Understanding how JM2 regulates the immune response and how defects in the protein cause the disease will provide important insights into the development of the disease and into ways of preventing its onset, Chatila added.

The researchers found mutations in JM2 in all the affected males. This gene codes for a transcription factor—a protein that regulates the activity of other genes.

Chatila's team is also investigating whether the pathway that involves this gene is mutated in other patients with type 1 diabetes and whether other genes collaborate with this gene in the disease, he said.

Between 500,000 to 1 million people in the United States have type 1 diabetes, which usually begins in children or young adults. It develops when the immune system cells called T lymphocytes kill the cells in the pancreas that produce insulin. Insulin "locks" the cells of the body, allowing blood to enter and fuel them. When cells don't obtain enough fuel, they can't function.

The two families in the study had five affected males. All five suffered from type 1 diabetes, chronic diarrhea and certain immune disorders. Other family members were not affected.

The researchers found mutations in JM2 in all the affected males. This gene codes for a transcription factor—a protein that regulates the activity of other genes.

Chatila's working model is that defects in the JM2 protein make T lymphocytes—the cells that destroy islet cells.

"They're easy to activate and difficult to shut down," he said.

Understanding how JM2 regulates the immune response and how defects in the protein cause the disease will provide important insights into the development of the disease and into ways of preventing its onset, Chatila added.

The researchers also are particularly interested in G proteins' roles in organizing the cellular skeleton, an arrangement of fibers that helps cells move and maintain their shape.

This work might lead to a better understanding of how immune system cells migrate to sites of inflammation to deal with invading pathogens. It also might help doctors learn why cancer cells can move through tissues as they metastasize.

Malfunctioning G proteins cause the symptoms of cholera and other inherited hormonal disorders. They also are involved in addiction, diabetes, and other conditions.

"We hope to discover new principles of G-protein signaling that will reveal new fundamental facts about how cells work and provide the foundation for understanding how the process goes wrong in many diseases," Blumberg said.
Shapiro & Smith Dance will bring their breathtaking blend of exuberant physicality, biting sarcasm and psychological insight to Edison Theatre Jan. 19-21.
Small-group housing to open in 2001

By Neil Schoenherr

Approximately 425 students will move Aug. 19 into two new residential facilities and two new fraternity town houses at the Hilltop campus's northwest corner.

The new campus community created by the two residential facilities will be the center of small-group housing, which will introduce the University to a different living style for students and will help blur the lines between academic and residential life. The two buildings have been designed to house students in groups of four to 32 with similar academic and professional interests.

The goals of this living system are to foster a seamless living and learning environment, to support special projects and programs for the residents, and to encourage collaborative and interdisciplinary learning.

"The advantage is that we are able to decrease the separation between the classroom and the living environment," said James W. Davis, Ph.D., professor of political science in the School of Arts & Sciences, director of the Reaching Center and chair of the small-group housing committee.

Designers of the small-group housing could include an autonomy group a Spanish group, students writing theses in a common discipline, performance groups, computing groups, or seniors interested in certain careers. The possibilities are as diverse as the students who attend the University. "We want to offer upper-class students another on-campus housing option," said Justin X. Carroll, assistant vice chancellor for students and dean of students. "We also see this as an opportunity to involve students and faculty in meaningful ways by blending the in-classroom and out-of-classroom experience."

The two buildings, which have not yet been named, will be well-furnished when they open in August. The complex will have its own food service with both large and small dining areas. The buildings will also include special practice rooms and performance spaces, meeting rooms, common rooms, study areas and classrooms. There will be an on-site staff and a small budget to support special projects and programs for the residents.

Student groups wishing to participate in the small-group housing plan will have the opportunity to apply in early February. The decision regarding which groups to accept will be made shortly thereafter.

Small-group housing is present at other universities, including Penn State and Northeastern.

"Through this program we will be able to enrich intellectual life in the residential context and enrich the learning experience for students," Davis said.

Bears senior forward Chris Alexander slams home two points.

Sophomore Nick Grunts scored a career-high 13 points and Ryan Patton dished a game-high eight assists.

The streak rolls on

The Washington University women's basketball team continued to ride the high-wire act they call the streak with two hard-fought wins last week. Beginning with Johns Hopkins University at home Dec. 8 and following up with Blackburn College on the road Dec. 9, The Bears scraped out two wins in games where they led by just one point at halftime.

The Bears led 27-26 heading into the locker room against the Blue Jays, shooting just 34 percent in the first stanza. The Bears halftime wake-up call worked, and they awoke from their slumber to shoot 52 percent in the second half and outscored the Blue Jays 17-4 from the free throw line.

Tasha Rodgers led all scorers with 23 points, while senior center Lindsey Merritt tied her career-high with 18 points. Jennifer Rudis set a career-high with 11 points.

Against Blackbourn, the Bears jumped out to an early 7-0 lead, not allowing a Beaver player to score until nearly four minutes into the game. Blackbourn answered, going on its own 7-0 run to tie the game. Trailiy by four with just nine seconds left in the half, Beaver guard Nicole Gladish launched a 27-foot three-point attempt that swished as the buzzer sounded, making the score 33-32 at the break. Again, the Bears came out in the second half with fresh legs and went on a 13-4 run in the first six minutes. Rodgers led all scorers again, tallying 25 points and eight rebounds, as well as a career-high six assists, five in the second half.

Senior guard Sara Ermer set or tied four career-highs with her 15-point, five rebound, seven assist, four-three-pointer performance.

Men's hoops handed first loss

The Washington University men's basketball team matched the 1923-24 squad for the best start in team history, improving to 8-0 with wins over Maryville University, 77-63, Dec. 5, and Johns Hopkins University, 82-64 Dec. 8. Bears were bidding for their first 9-0 start, but Illinois Wesleyan handed WU its only loss, 94-86 setback Dec. 10 in Bloomington, Ill.

Against Maryville, the Bears jumped out to an early lead and stretched the margin to 45-30 at halftime, WU pushed the lead to 52-30 with a 7-0 run to start the second, but the Scots cut the margin to 65-58 with 6:46 left. Washington answered with a 12-2 run to put the game away. Sophomore Jarriot Rook tied his career-high with 18 points and added 11 rebounds and three blocks.

Dustin Tylka had 15 points, Chris Alexander had 14 points and Chris Jeffries had 10 points, nine rebounds and a career-high six assists.

Johns Hopkins jumped out to an early 18-10 lead before WU rebounded to take a 33-29 lead into halftime. The Blue Jays trimmed the margin to four at 50-46 with 13:04 left, but it was as close as they would get as WU pulled away. Tylka led all scorers with 18 points, while Alexander tallied 15 and added a career-high 12 rebounds and a career-high seven assists.

Men's hoops handed first loss
Deep-sea vents

"Professor descends to do the door..."

than 100 spectral bands, as opposed to the more traditional overlapping bands resolved by a typical color camera and the human eye.

Smith has used hyperspectral imaging technology with NASA and others in remote sensing of a variety of objects, including planets and meteors, the Earth's atmosphere, agricultural crops, and diverse geological features. Scientific success in imaging was accompanied by an experienced pilot and marine biologist. In addition to a host of monitors, switches, gauges, and other equipment, including a hyperspectral imager. After the long, spiraling descent to the ocean floor, Smith and the other five had five hours in total darkness to locate the vents and to conduct a variety of experiments, many of them for scientists astonishingly waiting on the surface. Because the submersible Alvin has a dive time of six to 12 hours, Smith had only about an hour to conduct an experiment, which included obtaining spectra of the unique biological communities at the vents. The bacteria found at the vents are remarkable in that they can live in very low-sulfur hydrogen sulfide, a compound ions and a suite of heat-loving and cold-loving animals. The bacteria thrive in sulfur-rich water surrounding the vents — which range from 375 degrees C at the vent itself (to as high as 520 degrees C) only a few inches above the vent. The abundant sulfide there into a usable energy source, a process known as hydrothermal bacterial chemistry. These bacteria do not need sunlight, energy is instead supplied by reactions that could be placed on the seafloor near the vents and for long-term observations, up to a year or even longer.

These vents are very dynamic and geological features," Smith said. We have an opportunity to observe over a period of time to see what is really going on.

"As we descend along with the connivance of Alvin, Smith continued, I'm not claustrophobic, so the tight quarters didn't bother me at the least.," you on your way down and back up you see incredible scenes, and once we got near the vents I was so busy conducting the experiments that I barely even noticed the boat ride out to where we were going to make our descent. But that year rowed and I got a bit seasick, I'm really looking forward to going on again..."
Speaking of

Carter C. Revard, Ph.D., professor emeritus of English in Arts & Sciences, will speak at the University of Tulsa's 160th commencement ceremony Dec. 16. Revard, a graduate of TU, is the author of numerous books including, "Family Matters, Tribal Affairs" and "Winning the Fruit Bowl," and continues to do both scholarly research and creative writing in medieval and American Indian studies....

Gershon J. Spector, M.D., professor of Urologyology traveled to Padua, Italy as an invited guest at the International Consensus Congress on Supracricoid Laryngectomies this summer. He was a member of the roundtable discussions on the Indications of Supracricoid Laryngectomies as well as Management of Complications and Failures. He also served on the discussion panel regarding functional results of supracricoid laryngectomies.

Of note

Phillip E. Cryer, M.D., the Irene E. and Michael M. Karl

Loewenstein receives Governor's Award for teaching

By Donna Kettlesbach

Joseph L. Loewenstein, Ph.D., assistant professor, was named an Honored professor in the School of Arts & Sciences and interdisciplinary programs to develop new courses, with technological experts who are redesigning the course registra-

tion system, and with under-

graduate students, many of whom are and will be using the wireless

services firms and their clients

are and will be using the wireless

services.

By establishing the Center

for the next wave of the Internet

architects, whose goal is to improve the quality of life.

"If energy is the concern, we can only ever use and the passive solar heating and
certainty in architecture in can and should be addressed more

They have responded with accolades in their evaluations of his classes, and honored him in 1993 with an award for outstanding teaching given by the Council of Students of Arts & Sciences. He has received grants from the National Endowment for the Arts, ACLS and the Education Foundation. He teaches many courses in Renaissance literature and culture and modernism, and conduct a focus course, "Writers as Readers" next semester.

In addition to his teaching, Loewenstein is currently working with Arts & Sciences to update revisions to its curriculum. The new curriculum will have a

tremendous and long-lasting impact on the education of undergraduates. Loewenstein has served on the faculty in Arts & Sciences departments and interdisciplinary programs to develop new courses, with technological experts who are redesigning the course registration system, and with undergraduate students, many of whom are and will be using the wireless services firms and their clients are and will be using the wireless services.

to,four additional reports of

to four additional reports of

Dec. 9

2:15 a.m. Dec. 10 and 2:15 a.m.
Dec. 11

5:23 p.m. A student reported that he had received increasing telephone calls since October. Telephone services have been contacted and an investigation is continuing.

University Police also responded to four additional reports of theft, two reports of vandalism, one report of assault and battery and an automobile accident.

Loewenstein: Honored professor in the School of Arts & Sciences and interdisciplinary programs to develop new courses, with technological experts who are redesigning the course registration system, and with undergraduate students, many of whom are and will be using the wireless services firms and their clients are and will be using the wireless services.

The symposium, "Mobile Services Providers, Trade Magazines, and Providing Networking Opportunities for Those in	

commerce, the Olin School is

providing a viable leadership role for the next wave of the Internet — the wireless revolution," said Gregory Hutchings, executive director of the center and associate dean for the school who spearheaded the event.

Loewenstein: Honored professor in the School of Arts & Sciences and interdisciplinary programs to develop new courses, with technological experts who are redesigning the course registration system, and with undergraduate students, many of whom are and will be using the wireless services firms and their clients are and will be using the wireless services.

For the next wave of the Internet — the wireless revolution," said Gregory Hutchings, executive director of the center and associate dean for the school who spearheaded the event.

Loewenstein: Honored professor in the School of Arts & Sciences and interdisciplinary programs to develop new courses, with technological experts who are redesigning the course registration system, and with undergraduate students, many of whom are and will be using the wireless services firms and their clients are and will be using the wireless services.

The symposium, "Mobile Services Providers, Trade Magazines, and Providing Networking Opportunities for Those in	

commerce, the Olin School is

providing a viable leadership role for the next wave of the Internet — the wireless revolution," said Gregory Hutchings, executive director of the center and associate dean for the school who spearheaded the event.

Loewenstein: Honored professor in the School of Arts & Sciences and interdisciplinary programs to develop new courses, with technological experts who are redesigning the course registration system, and with undergraduate students, many of whom are and will be using the wireless services firms and their clients are and will be using the wireless services.

The symposium, "Mobile Services Providers, Trade Magazines, and Providing Networking Opportunities for Those in	

commerce, the Olin School is

providing a viable leadership role for the next wave of the Internet — the wireless revolution," said Gregory Hutchings, executive director of the center and associate dean for the school who spearheaded the event.
Sally A. Goldman, Ph.D., does so many things so well, one might wonder if there's anything she can’t do.

Goldman is an associate professor and assistant chair of the Department of Computer Science. More specifically, she’s a key adviser for the department, a challenging graduate and undergraduate teacher, an internationally known researcher in computational learning theory, and a leader in professional organizations.

She’s also bona fide mom. Goldman and her husband, Kenneth J. Goldman, Ph.D., associate professor of computer science, participate in many activities with their children, from hiking and hiking to playing games and solving jigsaw puzzles. But Sally Goldman doesn’t just take 13-year-old Mark and 9-year-old Ben to their myriad sporting events. Goldman coaches them in soccer, basketball and football through the Clayton Parks and Recreation programs. Three-year-old Julie waits in the wings. As a senior at Ladue Horton Watkins High School in St. Louis County, Goldman had her hands full with academics and sports. She was on the varsity basketball, softball and tennis teams, and tennis team captain. She also took a rigorous college-prep curriculum that included lots of mathematics. That school year, 1979-80; Goldman also got her first exposure to computing. Her school had computers tied to an off-campus mainframe, and during study halls Goldman began to experiment with a tool that was going to shape her future.

“I started programming in BASIC, and thought, ‘Gee, this is a lot of fun,’” she said in her rolley Hall office decorated with her children’s vivid artwork. “Though I’d be afraid to look back at my code, back then I made a program that played a pretty good game of ‘Othello.’”

Increasingly, the problem of programming games was the spark that led to her expertise today in computational learning theory, which studies the design and analysis of algorithms that can learn. These programs that have learning capabilities and identifies the limits to learning by computers. In this realm, Goldman works with learning models and develops basic algorithms, mathematical procedures that are devised to solve specific problems in a stepwise manner.

This is the front line of computer science, both theoretical and complex. The foundation that Goldman lays in devising and testing algorithms is crucial to the promising, exciting applications of machine learning. These applications are abundant and diverse. They include natural language processing, pattern recognition, DNA analysis, information retrieval, data mining and drug discovery; plus many others, some still unknown.

“I’ve always loved the problem-solving and logical portions of mathematics, and from the beginning I’ve been intrigued with the idea of having a computer appear to think,” Goldman explained. “The whole idea of designing a faster algorithm is to find a better solution for a problem that is what motivates me. I’ve always selected problems that helped reduce the gap between our theoretical models and the real-world intended character. Computer scientists often call the set of attributes the training data. The learner’s goal is to efficiently construct a rule, often called a hypothesis or classifier, which can take some previously unseen characteristics of the data and determine a proper label with high accuracy. That same principle is applicable to computational voice recognition, medical data analysis, and networking along with many others. Goldman has recently addressed problems in networking and robot navigation as well as semi-supervised learning tasks. Software that would be able to screen inappropriate Web pages and keep them from children is just one possible example of an application using Goldman’s research.

In addition, Goldman and her group recently developed a general method of “co-training,” where two independent learning algorithms are originally trained on labeled data. Each learner, using statistical techniques, selects some unlabeled data to label for the other learner. Goldman’s results have been promising, for example, a number of her test data sets will aid in improving breast cancer diagnosis.

Similarly, she is investigating machine learning to develop a new way to predict the shape of disease-receptor molecules. Knowing the shape of such molecules could accelerate the discovery process for new drugs and thus reduce costs.

In 1984, Goldman married Laszlo High School classmate Ken Goldman, and she graduated with honors from Brown University.

Sally and Ken Goldman both went to Massachusetts Institute of Technology in 1985 to pursue graduate work. Famed cryptographer Ronald Rivest, Ph.D., was Sally’s thesis advisor for her masters degree (1987) and dissertation, (1990), both in electrical engineering and computer science. Goldman’s professional activities can be divided into four parts: teacher, researcher, administrator and professional organization mainstay. As a teacher, she has taught a vital array of courses, including courses in the formal foundations of computer science (CS 201), algorithms and data structures (CS 241), and computer organization and principles. In addition, Goldman is the adviser for about 45 students this year and estimates she informally advises about 100 student yearly. As a researcher, she’s highly acclaimed worldwide in her community of about 200 computational learning theory specialists, with more than 50 publications ranging from conference publications to refereed journal articles to book chapters. As an assistant chair of the computer science department, she is involved with almost everything related to its educational mission.

Recent commitments—hers and his—are her prominent roles in professional societies, Goldman is on the editorial board of two journals. Last year she served as committee member for two different conferences, one of which, the Thirteenth Annual Conference on Computational Learning Theory (COLT), co-chaired. The COLT conference was co-located with the International Conference on Machine Learning and the Uncertainty in A.I. Conference. Bringing the three groups together was a significant technical undertaking.

Sally A. Goldman, Ph.D. is a superior teacher, adviser, and professional researcher.

Sally A. Goldman, Ph.D.

Education Brown University, Sc.B. 1984; Massachusetts Institute of Technology, master’s. 1987; Ph. D. 1990

University position Associate professor and assistant chair of the Department of Computer Science

Family Husband, Kenneth J. Goldman, associate professor, Department of Computer Science, sons Mark, 13, Ben, 9; daughter Julie, 3

Published by The Record

Record.wustl.edu

Washington University in St. Louis

Computer science’s Sally A. Goldman, Ph.D., reviews coursework with a student in engineering.

Washington People

Computer science's Sally A. Goldman, Ph.D., is a superior teacher, adviser, and professional researcher.