9-20-2002

Washington University Record, September 20, 2002

Follow this and additional works at: http://digitalcommons.wustl.edu/record

Recommended Citation
http://digitalcommons.wustl.edu/record/942

This Article is brought to you for free and open access by the Washington University Publications at Digital Commons@Becker. It has been accepted for inclusion in Washington University Record by an authorized administrator of Digital Commons@Becker. For more information, please contact engeszer@wustl.edu.
Scientists learn how herpes tricks immune system

By Darrell E. Ward

Herpes viruses enter the body and hide away in cells, often re-emerging later to cause illnesses such as shingles, genital herpes and cancer.

How these viruses evade the immune system remains poorly understood, but School of Medicine researchers discovered that a mouse herpes virus uses molecules that mimic a cell's proteins to help thwart an immune attack.

The study, published in a recent issue of the journal Immunity, also suggests that a branch of the immune system known as the complement system may play a more important role in controlling herpes viruses than previously thought.

“These findings reveal another molecular mechanism by which viruses evade the immune system,” said study leader Herbert W. Virgin, M.D., Ph.D., professor of pathology and immunology and of molecular microbiology. “By targeting this viral protein or by manipulating the complement system, perhaps someday we can develop better treatments for herpes virus infections.”

The complement system consists of 20 different proteins that are transported in the bloodstream. When activated by certain disease-causing organisms, the proteins unite and collect on membranes of viruses or on the membranes of virus-infected cells and kill them by punching holes in the membranes. To help prevent this inadvertent and dangerous triggering of this complement reaction, healthy cells produce molecules known as regulators of complement activation (RCA).

Virgin’s team found that one type of herpes virus makes its own version of RCA to trick the immune system.

See Herpes, Page 6

The mathematics of beauty

Researchers collaborate to make plastic surgery more precise

By Tony Fitzpatrick

Beauty may well be in the eye of the beholder. But in the future, it could be in the realm of mathematics.

Steven G. Krantz, Ph.D., professor and chair of mathematics in Arts & Sciences, is working with collaborators on the West Coast to create a system that will make the practice of reconstructive surgery analytical.

The system consists of a new type of three-dimensional scanner and sophisticated graphics software that uses wavelets to analyze a face, recommend procedures, assess the difficulty of the surgery and evaluate the outcome of the surgery.

Wavelet analysis is a sophisticated kind of harmonic analysis that is integral in examining and compressing data — video, sound or photographic, for instance — for a wide range of applications.

Krantz is working on the software package Thomas Lu, Ph.D., an electrical engineer from Petaluma, Calif., developed the scanner: Michael Cedaris, M.D., a plastic surgeon from Berkeley, Calif., is the philosophical guiding light of the project and is implementing the system with his patients.

The system is not intended to replace plastic surgeons, rather, its purpose is to aid the plastic surgeon in making more precise evaluations and procedures in performing plastic surgery. It will help him or her see problems in new ways and to more accurately predict outcomes.

Did Cleopatra?

Plastic surgery has been practiced since the days of ancient Egypt, some 2,500 years ago. Many strides have been made in the field since the end of World War II and especially in the past 25 years.

For instance, it’s now possible for plastic surgeons to perform a procedure to change the distance between your eyes.

In spite of this sophistication, the plastic surgeon essentially relies on his or her own set of experiences.

See Mathematics, Page 6

Marc Foley displays his first-prize award from the Culinary Challenge contest.

Scrumptious scallops

Chef wins national award for recipe

By Neil Schoenherr

When Marc Foley, executive sous-chef with Bon Appetit, entered the Culinary Challenge contest sponsored by the National Association of College and University Food Services, his only instructions were that the recipe had to be original and had to use scallops.

Foley’s concoction, “Seared Sea Scallops With Vegetable Couscous and Tomatillo Gazpacho,” earned him first place in the nationwide competition.

“I’m excited,” Foley said. “It was kind of surprising, but it’s nice to be recognized like this.”

Foley, originally from Nantucket, Mass., has been with the University and Bon Appetit since August 2000. He has 15 years of culinary experience working in restaurants throughout the St. Louis metropolitan area, including Zighi’s, serving Russian cuisine the Chesire Inn and Portabella’s.

He has also worked in Miami, for Norman Van Aken’s Stars and Stripes restaurant, and at the Raleigh Hotel on South Beach.

“Marc is creative, talented and a real team player,” said Steve Hoffher, assistant vice chancellor for students and director of operations. “It’s obvious that he enjoys what he does.”

See Recipes, Page 6

O’Sullivan new chair of Faculty Senate Council

By Kevin M. Kiley

Joseph A. O’Sullivan, Ph.D., professor of electrical engineering, has been elected chair of the Faculty Senate and the Faculty Senate Council for this academic year.

“It’s an honor to be in a position to serve the faculty and give something back to the University,” said O’Sullivan, who also is a professor of biomedical engineering in the School of Engineering & Applied Science and an associate professor of radiology in the School of Medicine.

The Faculty Senate Council brings together 15 representatives from the University’s eight schools. The council serves as liaison between the administration and the faculty on a broad range of issues touching virtually all aspects of campus life.

“The Faculty Senate is comprised of all faculty members,” O’Sullivan said.

“We are concerned in particular with the issues that affect academic freedom and tenure,” O’Sullivan said. “We provide feedback to the administration on various matters that affect faculty, such as benefits.”

As chair of the Faculty Senate and the Faculty Senate Council, O’Sullivan represents the faculty on the University Council, the University Management Team and the Sesquicentennial Commission.

In addition, O’Sullivan and the council’s secretary, William E. Brown, Ph.D., professor of chemistry in Arts & Sciences, are two of the three faculty representatives to the Board of Trustees.

O’Sullivan succeeds Philip E. Kyriakoudis.

See O’Sullivan, Page 6

Phibilists

Bob Hansman runs nationally recognized City Faces program

Assembly Series: Philosophers

Hacking, Beauty to talk Sept. 25-26

Washington People: Bob Hansman runs nationally recognized City Faces program
University moves to 12th-place tie in U.S. News undergraduate rankings

BY NEIL SCHONERHED

Washington University is now tied with the University of Chicago for 12th place in undergraduate programs according to the 2023 U.S. News & World Report magazine.

Currently ranked 10th among America's 20 best national universities, Washington University climbed two notches from last year's tie for 14th among the 249 national universities rated by U.S. News. The tie for 12th place is the best undergraduate ranking of the University by U.S. News since the publication began in the 1980s.

The U.S. News & World Report undergraduate rankings are derived from data gathered from each institution. This data is broken down into categories and assigned a weight reflecting the magazine's judgment about which measures of quality matter.

This year's results, published in the magazine's Sept. 23 issue that went on sale Sept. 16, rank the University as fifth in finan-
cial resources, 11th in faculty resources and seventh in alumni giving. The University tied for 12th in percentage (71 per-
cent) of students with less than 20 students.

The U.S. News "Best Value" category ranks schools that offer a high-quality education at an affordable cost, including financial aid. The University ranked 16th in total value, which is the same as last year's ranking.

"It is gratifying to see recognition coming to Washington University," Chancellor Mark S. Wrighton said. "Our success is due to the excellent students, faculty and staff who bring great value to the educational environment here. We have been generously supported by our alumni, friends, corporations and foundations in our efforts to create the best programs for education and scholarship. Continued program development and support will enhance our impact and value to society."

The Olin School of Business was tied for 14th, an increase from 16th a year ago. The Olin School tied with three other undergraduate business programs: Ohio State University, Purdue University and the University of Minnesota.

"Our graduates from the bachelor of science in business administration program delight their employers with the level of their capability and training," said Stuart R. Greenbaum, Ph.D., dean of the Olin School. "It is truly a cutting-edge program, offering a range of choices unavailable in most undergraduate programs. We recently introduced a new concentration in economics and strategy, which is groundbreaking for an undergraduate business program."
School of Medicine Update

Does brain artery bypass prevent future strokes?

By Gil Z. Rekhter

The School of Medicine is leading a multicenter effort to see if brain artery bypass surgery prevents people from having a second stroke. The medical school team received a five-year, $17 million grant from the National Institute of Neurological Disorders and Stroke and now is looking for volunteers to participate.

Each year, about 80,000 Americans develop complete blockage of one of the carotid arteries, the main blood vessels on each side of the neck that supply the brain with blood, resulting in a stroke. In a stroke, either a blood clot or a transient ischemic attack (a milder form of stroke) can block an artery, leading to severe brain injuries. The school is leading a five-year, $17 million grant from the National Institute of Neurological Disorders and Stroke and now is looking for volunteers to participate. The study will involve about 2,000 participants from across the United States who are at high risk of having a second stroke.

The team found that pictures of blood flow and oxygen use in the brain taken by positron emission tomography (PET) can identify those who already have developed a natural bypass. In 1998, the team published an article in the *Journal of the American Medical Association*, which showed that only about 5 percent of people who developed a natural bypass had a stroke on the same side of the brain within two years, compared with more than 2 percent of people who did not develop a natural bypass.

"At the moment, these people are at risk even with the best medical treatments available," Powers said. "We believe this trial is an opportunity to explore a promising alternative." Brain artery bypass surgery was developed and tested in the 1970s in patients with completely blocked carotid arteries. It was abandoned in the mid-1980s because research showed that surgery did not prevent future strokes, and the risks of surgery outweighed the benefits. However, it was performed on all patients at that time, whether they had developed a natural bypass or not.

Since brain surgery always has potential complications, operating on people who did not need the surgery may have resulted from early studies. Powers said. "By performing this surgery only on people who have not already developed a bypass on their own, we will determine if the procedure's results will be more favorable and if the natural findings in the 1980s."

Individuals with carotid artery blockage who have had a stroke or a transient ischemic attack within the last four months may be eligible for the study. Researchers will perform PET brain scans of all participants.

Half of the participants whose PET scans show that they have not developed a natural bypass will be randomly assigned to undergo free brain artery bypass surgery. All participants will continue medical treatment under the supervision of their personal care providers.

Powers is the principal investigator of the trial, which includes 29 institutions from the United States and Canada. He and Grabb directed the clinical coordinating center for this study, which is located at the medical school.

Maximizing medicine

Physicians, students rave about Mini-Medical School

By Kimberley Letting

Are you addicted to ER? Do you fill your days and nights with the search for answers? Do you wonder if there’s a better way to learn about the workings of medicine? If the answer is yes, then you may be interested in the Mini-Medical School, now being offered at Washington University School of Medicine.

The Mini-Medical School program is designed to introduce individuals to the medical profession and medical school. This program is such a cornerstone of our educational mission that it is difficult to pinpoint exactly when it began. It’s reasonable to say that the program has been offered for at least 20 years. It is a unique program because it is designed specifically for people who have no medical school preparation.

The school is located in a quiet, suburban neighborhood on the campus of Washington University School of Medicine. The program’s director, Dr. Nathaniel S. Soper, is a well-known and respected physician who has been involved in medical education for many years.

The program is held on Saturdays from 9:00 a.m. to 4:00 p.m. Participants are invited to meet with current and former students, doctors, nurses, and other health care professionals. They are encouraged to ask questions and share experiences.

The program is free to participants, but there is a $25 fee for those who wish to receive a certificate of completion.

Nominations sought for awards

It’s time to reward dedicated co-workers for their outstanding job

The Dean’s Distinguished Service Award continues to be the highest honor awarded to a staff member while the new award —The Dean’s Rising Operations Staff and Clinical Care Leaders Award— will further identify staff efforts within defined job classifications.

All awards include generous cash prizes, a certificate of recognition in the Record and at the Senior Administrators Luncheon. For details and a nomination form, go to wustl.wustl.edu/record or call Mary Luber at 362-4330 to register.

Brain artery bypass surgery

Researchers at Washington University School of Medicine have developed a new approach to treating strokes. The team is currently testing the procedure in a clinical trial.

The procedure involves using a laparoscopic technique to create a bypass from the carotid artery to the brain. This bypass is intended to improve blood flow to the brain, thereby reducing the risk of a stroke.

The researchers have tested the procedure on animal models and are now beginning to test it on humans. The goal is to determine if this procedure can be used to prevent strokes in people who are at high risk for stroke.

This research is supported by the National Institutes of Health.

Lasting lesson

All the way to a Cure 2002 Resource Fair, third-year occupational therapy student Darci Redmond gets a lesson from Zach Prosser of Chesterfield, Mo., on how remote control can improve hand-eye coordination for people with disabilities. The Sept. 7 event, held at the Rehabilitation Institute of St. Louis, featured products, companies, services and programs to enhance the lives of those with special needs.

Gray named associate dean for faculty affairs

By Kimberley Letting

Idea L. Gray, M.D., associate professor of obstetrics and gynecology and of radiology, has been named director of faculty affairs in the School of Medicine.

We are most pleased that Diane Gray has accepted this position. Her background and skills will be an invaluable asset to this office,” said William A. Peck, M.D., executive vice chancellor for medical affairs and dean of the medical school. Peck announced Gray’s appointment last month.

In her new position, Gray will work closely with the dean to develop and execute policies to support and advance all faculty and student affairs.

Her background and skills will be an invaluable asset to this office,” said William A. Peck, M.D., executive vice chancellor for medical affairs and dean of the medical school. Peck announced Gray’s appointment last month.

In her new position, Gray will work closely with the dean to develop and execute policies to support and advance all faculty and student affairs.

As director of faculty affairs, Gray will be responsible for advancing the medical school’s Faculty Practice Plan and Faculty Development and Lifetime Careers initiatives.

Gray also added that she’ll work with department heads to achieve a consistent, supportive and dynamic environment by collaborating with department heads to achieve a consistent, supportive and dynamic environment.

"I’m eagerly anticipating the challenges and rewards my new position will bring," she said, “I look forward to working closely with faculty, department heads and division chiefs to enhance quality of life and productivity for all faculty.”

As director of faculty affairs, Gray will ensure that faculty receive the appropriate mentoring and guidance to grow in their current and future careers.

"Without exception, the speakers were from medical experts — and their voices are unfortunately"
Vo-Du Macbeth opens 30th Edison Theatre OVATIONS! Series

By LIAA OTTEN

The 30th annual Edison Theatre OVATIONS! Series will open with Vo-Du Macbeth, a Creole-flavored take on Shakespeare’s Macbeth. Directed by Orlando Wes’ells’ famed 16th adaptation.

A rare Edison Theatre co-production, this work-in-progress is created by the National Spirit Project, a coalition of 35 arts organizations from around the country. St. Louis performances will make up the Midwest premiere of the theatrical and musical components and will serve as a platform for the production.

Shows begin at 8 p.m., Sept. 28 and 2 p.m., Sept. 29. Performances are co-sponsored by the University’s American Culture Studies program with support from the Department of Music and the Performing Arts Department, as well as in Arts & Sciences.

Vo-Du Macbeth — New York debut — set the famous story of power, manipulation and betrayal in Haiti during the late 1800s. A Creole-flavored take on the Shakespearean classic staged by Wes’ells’ beloved family of actors, the show played to packed houses for three months before becoming an influential national tour. It is considered today a landmark of Harlem Renaissance theatre.

Vo-Du Macbeth retains Wes’ells’ basic conception of Macbeth: the choro-drama but unfolds the action in New Orleans at the close of the Civil War, among the genii de l’art-freie Libre, or Free People of Color.

Descended from slaves who had freed themselves and the children of slave women and whites from Haiti and later Cuban immigrants, the Free People of Color contributed to a social system in colonial and antebellum Louisiana that defied traditional Calinda, Bamboula and the traditional New Orleans drumming of a New Year’s Eve tradition.

Vo-Du Macbeth is a musical and dance production developed by the Macbeth-Wes’ells’ family. It is a rare performance in St. Louis. A Creole-flavored rendering of Shakespeare’s classic. It will feature music, songs, and dance. The performance will feature traditional Voodoo healing songs for Hecate, Mother Mambo, and Donald McKayle are design collaborators.

The show is being developed through a national series of community residencies with actors, musicians, scholars and the general public. Local residencies participating include Denise Thimes as Hecate and Linda Kennedy as the Marquesa de St. Marceaux.
Hacking, Beatty to speak for Assembly Series

WASHINGTON UNIVERSITY IN ST. LOUIS

By Mary Kastens

The University will welcome two eminent philosophers in two days for its Assembly Series.

Ian Hacking will deliver a lecture titled "Body Parts: Large and Small" at 11 a.m. Sept. 25 in Washington University's Anheuser-Busch Hall. Hacking's lecture will give the Thomas Hall Lecture titled "Genetics, the Anatom Age. He is the author of more than 20 books, including "The Social Construction of What?" (1999), "Mad Travelers: Reflections on the Reality of Transient Mental Illness" (1988) and "Rewriting the Soul: Multiple Personality and the Science of Memory." He was a founding member of the Royal Society in 1995. The Soul was the winner of the 1995 Pierre Pier Lecture. He is the recipient of the International Society for the Study of Dissociation. A reviewer from Contemporary Psychology wrote, "Hacking's hands, multiple personality - and in particular his case study illuminating basic questions about truth, memory, fact and fiction, about knowledge, science and identity."

Hacking is a professor of philosophy of science at the University of Toronto. He is a fellow of the Royal Society of Canada, the American Philosophical Society and the British Academy. He is an emeritus professor of Trinity College in Cambridge.

Philosopher of science Beatty is the Morse Alumni Teaching Professor in the department of ecology, evolution and behavior at the University of Minnesota.

The thrust of his talk will be on the way science and natural history have tended, until recently, to base their conclusions exclusively on the physical sciences. But recent fears of bioterrorism have led biologists to worry more broadly about the role that biology might play in the ongoing national security in the 21st century.

According to Beatty, biology has long played a role in considerations of national security. He will consider the relation between the history of science, and the changing conceptual foundations of biology. He will have published widely on the changing conceptual foundations of biology, and in philosophy of science.

Beatty has been a fellow of the American Philosophical Society and Technology Vigilance Project, a fellow of the Royal Society of Canada, and a member of the Royal Society of Literature and the British Academy, and he is an emeritus professor of Trinity College in Cambridge.

On Stage

Saturday, Sept. 21

7 p.m. Nuy’s Express vs. Principia College. Franklin Field. 935-4705.

Wednesday, Sept. 25

7:30 p.m. Volleyball vs. Fontbonne U. Steinberg Hall Aud. 935-6543.

Thursday, Sept. 26

7:30 p.m. Women’s Soccer vs. Fontbonne U. Athletics. 935-4705.

Saturday, Sept. 28

7 p.m. Football vs. Rose-Hulman Inst. France Field. 935-4703.

Sunday, Sept. 29

More and more...

Friday, Sept. 20

7:30-9:30 p.m. C E N T E R for the Apprenticeship of Information Technology team building. Queens Island. 935-7499.

Saturday, Sept. 21

9 a.m. Coworking. University of Texas at Austin. 512-517-7404.

Sunday, Sept. 22

8 p.m. Volleyball vs. Fontbonne U. Sports. 935-6543.

Music

Friday, Sept. 20

7:30-10 a.m. C E N T E R for the Apprenticeship of Information Technology team building. Queens Island. 935-7499.

Saturday, Sept. 21

9 a.m. Coworking. University of Texas at Austin. 512-517-7404.

Sunday, Sept. 22

8 p.m. Volleyball vs. Fontbonne U. Sports. 935-6543.

Golf

Saturday, Sept. 21

More and more...

Friday, Sept. 20

7:30-9:30 p.m. C E N T E R for the Apprenticeship of Information Technology team building. Queens Island. 935-7499.

Saturday, Sept. 21

9 a.m. Coworking. University of Texas at Austin. 512-517-7404.

Sunday, Sept. 22

8 p.m. Volleyball vs. Fontbonne U. Sports. 935-6543.

Institutes of Health and Human Development, the National Science Foundation, the Spencer Foundation and the March of Dimes Birth Defects Foundation.

Elizabeth High Baker attended John Burroughs High School in St. Louis. She entered Washington University after a year at Stanford University and graduated in 1940 with a bachelor’s degree in psychology and art history.

After graduation, she moved to Houston, where she continues to support many local charities and maintains her interests in her family and the local community.
form a breast lift or nose job.

"The basic elements of plastic surgery are pre- natal," Krantz said. "The primary con- ceptual tool is the anatomy, in the ex- pertise and intuition of the surgeon. If you read the technical papers of the masters of the time, it's like reading about art, each era, with a great emphasis on balance and proportion.

"But the face is a geometric surface and can be analyzed as such. Roughly half of all facial plastic surgeons take a scan of the face and matched the child to his parents.

"We hope to be able to predict the attributes of a child of two given parents, to match identical twins and to perform other 'facial recognition' functions," he said.

The capability of the system will be useful in security applica- tions, in forensic science, in aesthetic- ics and in other as yet unforeseen applications.

Krantz discussed the research in a keynote address given at the recent David Alan Newman Conference in Tallahassee, Fla. The conference was sponsored by the National Science Foundation.

One of the themes of the conference was brain mapping, but there were contributors who were focusing on the conceptual tools of the surgeon are exquisitely beau- tiful. A patient comes to a plas- mics and suture, how do you establish a rubric that
ty. It is an age-old problem to
the attributes of a child of two given
parents, to match identical twins and to perform other "facial recognition" functions," he said.

"We hope to be able to predict the attributes of a child of two given parents, to match identical twins and to perform other "facial recognition" functions," he said.

The capability of the system will be useful in security applica-
tions, in forensic science, in aesthetic- ics and in other as yet unforeseen applications.

Krantz discussed the research in a keynote address given at the recent David Alan Newman Conference in Tallahassee, Fla. The conference was sponsored by the National Science Foundation.

One of the themes of the conference was brain mapping, but there were contributors who were focusing on the conceptual tools of the surgeon are exquisitely beau- tiful. A patient comes to a plas- mics and suture, how do you establish a rubric that

the attributes of a child of two given
parents, to match identical twins and to perform other "facial recognition" functions," he said.

"We hope to be able to predict the attributes of a child of two given parents, to match identical twins and to perform other "facial recognition" functions," he said.

The capability of the system will be useful in security applica-
tions, in forensic science, in aesthetic- ics and in other as yet unforeseen applications.

Krantz discussed the research in a keynote address given at the recent David Alan Newman Conference in Tallahassee, Fla. The conference was sponsored by the National Science Foundation.

One of the themes of the conference was brain mapping, but there were contributors who were focusing on the conceptual tools of the surgeon are exquisitely beau- tiful. A patient comes to a plas- mics and suture, how do you establish a rubric that

the attributes of a child of two given
parents, to match identical twins and to perform other "facial recognition" functions," he said.

"We hope to be able to predict the attributes of a child of two given parents, to match identical twins and to perform other "facial recognition" functions," he said.

The capability of the system will be useful in security applica-
tions, in forensic science, in aesthetic- ics and in other as yet unforeseen applications.

Krantz discussed the research in a keynote address given at the recent David Alan Newman Conference in Tallahassee, Fla. The conference was sponsored by the National Science Foundation.

One of the themes of the conference was brain mapping, but there were contributors who were focusing on the conceptual tools of the surgeon are exquisitely beau- tiful. A patient comes to a plas- mics and suture, how do you establish a rubric that

the attributes of a child of two given
parents, to match identical twins and to perform other "facial recognition" functions," he said.

"We hope to be able to predict the attributes of a child of two given parents, to match identical twins and to perform other "facial recognition" functions," he said.

The capability of the system will be useful in security applica-
tions, in forensic science, in aesthetic- ics and in other as yet unforeseen applications.

Krantz discussed the research in a keynote address given at the recent David Alan Newman Conference in Tallahassee, Fla. The conference was sponsored by the National Science Foundation.

One of the themes of the conference was brain mapping, but there were contributors who were focusing on the conceptual tools of the surgeon are exquisitely beau- tiful. A patient comes to a plas- mics and suture, how do you establish a rubric that

the attributes of a child of two given
parents, to match identical twins and to perform other "facial recognition" functions," he said.

"We hope to be able to predict the attributes of a child of two given parents, to match identical twins and to perform other "facial recognition" functions," he said.

The capability of the system will be useful in security applica-
tions, in forensic science, in aesthetic- ics and in other as yet unforeseen applications.

Krantz discussed the research in a keynote address given at the recent David Alan Newman Conference in Tallahassee, Fla. The conference was sponsored by the National Science Foundation.

One of the themes of the conference was brain mapping, but there were contributors who were focusing on the conceptual tools of the surgeon are exquisitely beau- tiful. A patient comes to a plas- mics and suture, how do you establish a rubric that

the attributes of a child of two given
parents, to match identical twins and to perform other "facial recognition" functions," he said.

"We hope to be able to predict the attributes of a child of two given parents, to match identical twins and to perform other "facial recognition" functions," he said.

The capability of the system will be useful in security applica-
tions, in forensic science, in aesthetic- ics and in other as yet unforeseen applications.

Krantz discussed the research in a keynote address given at the recent David Alan Newman Conference in Tallahassee, Fla. The conference was sponsored by the National Science Foundation.

One of the themes of the conference was brain mapping, but there were contributors who were focusing on the conceptual tools of the surgeon are exquisitely beau- tiful. A patient comes to a plas- mics and suture, how do you establish a rubric that

the attributes of a child of two given
parents, to match identical twins and to perform other "facial recognition" functions," he said.

"We hope to be able to predict the attributes of a child of two given parents, to match identical twins and to perform other "facial recognition" functions," he said.

The capability of the system will be useful in security applica-
tions, in forensic science, in aesthetic- ics and in other as yet unforeseen applications.

Krantz discussed the research in a keynote address given at the recent David Alan Newman Conference in Tallahassee, Fla. The conference was sponsored by the National Science Foundation.

One of the themes of the conference was brain mapping, but there were contributors who were focusing on the conceptual tools of the surgeon are exquisitely beau- tiful. A patient comes to a plas- mics and suture, how do you establish a rubric that

the attributes of a child of two given
parents, to match identical twins and to perform other "facial recognition" functions," he said.

"We hope to be able to predict the attributes of a child of two given parents, to match identical twins and to perform other "facial recognition" functions," he said.

The capability of the system will be useful in security applica-
tions, in forensic science, in aesthetic- ics and in other as yet unforeseen applications.

Krantz discussed the research in a keynote address given at the recent David Alan Newman Conference in Tallahassee, Fla. The conference was sponsored by the National Science Foundation.

One of the themes of the conference was brain mapping, but there were contributors who were focusing on the conceptual tools of the surgeon are exquisitely beau- tiful. A patient comes to a plas- mics and suture, how do you establish a rubric that

the attributes of a child of two given
parents, to match identical twins and to perform other "facial recognition" functions," he said.

"We hope to be able to predict the attributes of a child of two given parents, to match identical twins and to perform other "facial recognition" functions," he said.

The capability of the system will be useful in security applica-
tions, in forensic science, in aesthetic- ics and in other as yet unforeseen applications.

Krantz discussed the research in a keynote address given at the recent David Alan Newman Conference in Tallahassee, Fla. The conference was sponsored by the National Science Foundation.

One of the themes of the conference was brain mapping, but there were contributors who were focusing on the conceptual tools of the surgeon are exquisitely beau- tiful. A patient comes to a plas- mics and suture, how do you establish a rubric that

the attributes of a child of two given
parents, to match identical twins and to perform other "facial recognition" functions," he said.

"We hope to be able to predict the attributes of a child of two given parents, to match identical twins and to perform other "facial recognition" functions," he said.

The capability of the system will be useful in security applica-
tions, in forensic science, in aesthetic- ics and in other as yet unforeseen applications.

Krantz discussed the research in a keynote address given at the recent David Alan Newman Conference in Tallahassee, Fla. The conference was sponsored by the National Science Foundation.

One of the themes of the conference was brain mapping, but there were contributors who were focusing on the conceptual tools of the surgeon are exquisitely beau- tiful. A patient comes to a plas- mics and suture, how do you establish a rubric that

the attributes of a child of two given
parents, to match identical twins and to perform other "facial recognition" functions," he said.

"We hope to be able to predict the attributes of a child of two given parents, to match identical twins and to perform other "facial recognition" functions," he said.

The capability of the system will be useful in security applica-
tions, in forensic science, in aesthetic- ics and in other as yet unforeseen applications.

Krantz discussed the research in a keynote address given at the recent David Alan Newman Conference in Tallahassee, Fla. The conference was sponsored by the National Science Foundation.

One of the themes of the conference was brain mapping, but there were contributors who were focusing on the conceptual tools of the surgeon are exquisitely beau- tiful. A patient comes to a plas- mics and suture, how do you establish a rubric that

the attributes of a child of two given
parents, to match identical twins and to perform other "facial recognition" functions," he said.

"We hope to be able to predict the attributes of a child of two given parents, to match identical twins and to perform other "facial recognition" functions," he said.

The capability of the system will be useful in security applica-
tions, in forensic science, in aesthetic- ics and in other as yet unforeseen applications.

Krantz discussed the research in a keynote address given at the recent David Alan Newman Conference in Tallahassee, Fla. The conference was sponsored by the National Science Foundation.

One of the themes of the conference was brain mapping, but there were contributors who were focusing on the conceptual tools of the surgeon are exquisitely beau- tiful. A patient comes to a plas- mics and suture, how do you establish a rubric that

the attributes of a child of two given
parents, to match identical twins and to perform other "facial recognition" functions," he said.

"We hope to be able to predict the attributes of a child of two given parents, to match identical twins and to perform other "facial recognition" functions," he said.

The capability of the system will be useful in security applica-
tions, in forensic science, in aesthetic- ics and in other as yet unforeseen applications.
Introducing new faculty members

The following are among the new faculty members at the University. Others will be introduced in future issues in this space.

Paul A. Coccia, M.D., assistant professor of pediatrics, comes to the School of Medicine from Loma Linda University Children's Hospital (LLUCH), where he specialized in the diagnosis and treatment of developmental and postoperative cardiothoracic management. Coccia, a Chicago native, earned a medical degree from Southern Illinois University and a bachelor's degree in English from Northwestern University. He received the Faculty-Teacher of the Year Award in pediatric emergency medicine. His research interests include acute myocardial injury and the postoperative care of children.

Joshua B. Smith, Ph.D., joins the Department of Planetary Sciences in Arts & Sciences as assistant professor. He earned a bachelor's from the University of Massachusetts in 1999 and a doctorate in 2002, both from the Pennsylvania State University. He studies the interactions of ancient organisms and their environments, particularly the paleontology of ancient organisms that contained dinosaurs and other Mesozoic vertebrates. His efforts are currently largely focused on describing the 149 million-year-old rocks in the Bahariya Oasis of Egypt that have produced one of the most enigmatic dinosaur fossils ever discovered, including one of the largest known terrestrial animals.

Privy Joshi, Ph.D., joins the Department of English in Arts & Sciences as assistant professor. She earned a doctorate with distinction in English and comparative literature from Columbia University in 1995. Her research and teaching interests include imperialism and colonialism, post-British colonial postcolonial theory, and literary and cultural contexts. She is the author of a book, Performing American Imperialism, and has produced numerous articles, poems, and book chapters. Her research and teaching extend well beyond World War II, and she is interested in her research is that modernism.

Catherine A. Collins, Ph.D., post-doctoral fellow in molecular biology and pharmacology, has received a three-year, $99,000 grant from the Damon Runyon Cancer Research Foundation for research titled "The Role of Ubiquitination in Regulating Synaptic Growth." Thomas W. Ferkal Jr., M.D., assistant professor of pediatrics, has received a one-year, $15,000 grant from the Cystic Fibrosis Foundation for research titled "Quantification of Pulmonary Neutrophility Activity in Cystic Fibrosis Using Radiolabeled and PET Imaging." Richard J. Battafarano, M.D., Ph.D., assistant professor of surgery, has received a one-year, $30,000 grant from the Thoracic Surgery Foundation for Research and Education.

Michael A. Provence, Ph.D., professor of biostatistics, has received a one-year, $50,000 grant from the Longner Life Foundation for research titled "Dis ease Comorbidity and Survival in the NHLBI Family Heart Study."

Washington University in St. Louis President Mark J. cris has received a one-year, $7,000 grant from the AIDS Foundation of St. Louis and a one-year, $45,958 grant from the Children's Hospital of St. Louis for a program titled "Forever Family."

Elena Ignatchev, Ph.D., research associate of otolaryngology, has received a one-year, $10,000 grant from The National Organization for Hearing Research Foundation for research titled "Molecular Mechanisms Determining the Formation of Aromatic Calycal Otocysts."

Jay W. Helleck, M.D., professor of medicine, has received a one-year, $40,000 subcontract grant from Columbia University for research titled "Protein Kinase and Immune Function in the Human Microorganism."

Brooks, 77; professor emeritus of music

Blford U. Brooks, Ed.D., professor emeritus and former chair of the Department of Music in Arts & Sciences, died Sept. 3, 2003, at his Barnes-Jewish Extended Care in Clayton. Missouri, of a head injury suffered during a fall in May at a different facility. He was 77.

Brooks was born in St. Louis and grew up across the street from jazz pioneer Miles Davis. During World War II, he served as a P-47 fighter pilot with the famed Tuskegee Airmen and in 1949 earned a bachelor's degree in music education from Southern Illinois University at Carbondale. He earned both a master's degree and a doctorate in music education from Washington University, in 1960 and 1972, respectively.

Brooks played trombone in several groups, notably the George Hudson Band, and from 1950-1971 served as director of music education at East St. Louis School District 189. He joined the faculty of Washington University in 1970 as a lecturer in Black music and was named assistant professor in 1972.

He was a member of the music department the following year as associate professor and served as chair from 1975-1984. He was named professor emeritus in 1988. Brooks was an authority on the history of African-American music. His highly regarded survey America's Black Musical Heritage (1984) provides an overview of significant genres, composers and works while also examining their social, political and cultural significance.

In 1986, Brooks joined the St. Louis Parish School of Music in Clayton, Missouri, as director, where he retired in 1993. He then taught for two years at the University of New York at Buffalo.

Brooks is survived by his former wife, Ethelyn Harris Pappas of St. Louis; three daughters, Gerri B. Dickerson of Atlanta, Denise B. Clayton of Clayton and Tracey L. Brooks of Chicago; four grandchildren; and two great-granddaughters.

Memorial service was held Sept. 14 at Valhalla Chapel, 7600 St. Charles Rock Road.

Memorial contributions can be made to Washington University's Friends of Music, Campus Box 1033, St. Louis, MO 63130 or to Young Audiences of St. Louis, 801 Big Bend Blvd., Suite 100, St. Louis, MO 63119 or to the National CAREGIVING Foundation, 801 N. Pitt St., Suite 116, Alexandria, VA 22314.

Kamen, 89

Michael D. Kamen, one of the identiters who discovered radioactive carbon-14 and is doing so helped lay a foundation for deciphering the chemical processes in plants and animals, died Saturday Aug. 31,2002, at his home in Santa Barbara, Calif. He was 89. Kamen was a professor of biochemistry at the University of California from 1945-1957.

Of note

Rebecca J. Delroy, Ph.D., assistant professor of art history, recently chaired a session at the annual meeting of the College Art Association, titled "Curating Community: Feminist Art and Exhibitions of the 1970s."

Every detail counts

Caroline Blaker (toll), a senior in the School of Art, discusses her ceramics with local resident Kim Goldman during the Clayton Art Fair Sept. 14. Blaker was one of about a dozen students to take part in the annual festival — the third-largest event of its kind in the United States — through a unique program developed by Ron Fonds, professor in the School of Art and area coordinator of ceramics. Students intern with established artists one year and return the following year to display booths of their own.

Notables

Michael Wyssens, Ph.D., associate professor of earth and planetary sciences in Arts & Sciences, is co-author of An Introduction to Seismology: Earthquakes and Earth Structure.

Wyllis Spain, 87, of 36 Sunny Ridge Road, a retired professor in the School of Social Work, has been named one of the 100 most influential people in the world by Time magazine. She received her Ph.D. from the University of Chicago in 1967 and is professor emeritus of social work at the University of Michigan.

In May 1971, Spain became the first woman to receive a tenured appointment as a full professor at a major university. She is a leading expert in health policy and a recognized authority on the role of government in the health care system.

Spain has been a vocal critic of the federal government's role in health care reform and has advocated for a more equitable system that prioritizes the needs of vulnerable populations.

She has been a vocal advocate for the rights of patients and has worked to improve access to quality care for all Americans.

Spain is a recipient of numerous awards and honors, including the National Medal of Science, the National Humanities Medal, and the Presidential Medal of Freedom.

She has been a member of the National Academy of Sciences, the American Academy of Arts and Sciences, and the American Philosophical Society.

In addition to her academic work, Spain has been a prominent figure in the civil rights movement and has advocated for the rights of women and minorities.

She is the author of numerous books and articles on health policy and has served on numerous advisory committees and boards.

She has been a vocal critic of the Trump administration's rollbacks of health care protections for vulnerable populations.

Wyssens is an expert in the field of seismology and has made significant contributions to our understanding of the Earth's interior and its response to external forces.

Wyssens is the author or co-author of over 100 peer-reviewed articles and several books, including Seismology, Earthquakes, and Earth Structure.

Wyssens is also a member of the American Geophysical Union, the Seismological Society of America, and the Society for SEISMOLOGY, Environmental Engineering Science.

In 1986, Wyssens was elected to the National Academy of Sciences for his contributions to the field of seismology.

Wyssens' research has been supported by grants from several federal agencies, including the National Science Foundation and the National Aeronautics and Space Administration.

Wyssens received his Ph.D. in geophysics from the University of California, Berkeley, and his M.S. in geophysics from Stanford University.

Wyssens is currently the director of the Center for Seismology, Earthquakes, and Earth Structure at Washington University.

Wyssens is an authority on the role of the Earth's core-mantle boundary in the Earth's magnetic field and its implications for the Earth's interior.

Wyssens is also known for his work on the role of the Earth's core-mantle boundary in the Earth's magnetic field and its implications for the Earth's interior.

Wyssens has been a vocal advocate for the importance of understanding the Earth's interior and its response to external forces in order to better predict and mitigate the impacts of natural disasters.

Wyssens has also been a vocal critic of the Trump administration's rollbacks of health care protections for vulnerable populations.

Wyssens has been a vocal critic of the Trump administration's rollbacks of health care protections for vulnerable populations.

Wyssens has been a vocal critic of the Trump administration's rollbacks of health care protections for vulnerable populations.

Wyssens has been a vocal critic of the Trump administration's rollbacks of health care protections for vulnerable populations.

Wyssens has been a vocal critic of the Trump administration's rollbacks of health care protections for vulnerable populations.

Wyssens has been a vocal critic of the Trump administration's rollbacks of health care protections for vulnerable populations.

Wyssens has been a vocal critic of the Trump administration's rollbacks of health care protections for vulnerable populations.

Wyssens has been a vocal critic of the Trump administration's rollbacks of health care protections for vulnerable populations.
Perseverance personified

Having conquered cancer, Bob Hansman brings art education to at-risk kids

Bob Hansman, associate professor in the School of Architecture, is renowned for his work both as an artist and as a leader of the urban design and architecture programs, providing a unique perspective on design education.

Bob Hansman grew up in a family where art was celebrated. His parents, both artists, instilled in him the importance of creativity and critical thinking from a young age. Hansman’s passion for art was further nurtured during his childhood, as he and his siblings used the surrounding nature as their canvas, drawing portraits, printing woodcuts, and honing their artistic skills and sharpening their instincts.

In 1965, Hansman arrived at the University of Kansas, majoring in painting and drawing. He was deeply influenced by the environment and the art community at the university. His artistic abilities were nurtured by his professors and the supportive atmosphere of the school. Hansman’s dedication and hard work paid off when he received a Bachelor of Fine Arts degree in 1970. Despite financial difficulties, Hansman continued to pursue his passion for art, working in various capacities to support himself while completing his education.

In 1974, Hansman graduated from the University of Illinois, majoring in painting and drawing. He was awarded a Master of Fine Arts degree, further cementing his reputation as a skilled and accomplished artist. During his time at the university, Hansman was involved in a variety of projects, including the creation of a series of portraits that were later displayed in the University of Illinois Medical Library. These portraits were designed to introduce the complexities and the ethical dimensions of architecture in the total environment.

Hansman’s own commitment to community projects led him to establish the “Hansman Family” T-shirt that enjoys great pride in his given name, highlighting the importance of grassroots efforts in making a difference. He has co-taught courses through the George Washington University’s Washington People program, which emphasizes the role of art and design in shaping the future.

Hansman’s work is characterized by its depth and richness, addressing the importance of art in shaping society and fostering meaningful dialogue between artists and the public. His contributions to the field of architecture and design continue to inspire and influence new generations of artists and architects, reminding us of the power of art to heal, connect, and transform.