Mars mission bolstered by Arvidson, colleagues

BY KIMBERLY LEYGOD

The robotic field geologists are back in action — thanks to NASA — to seek out the best places for the Spirit and Opportunity rovers to land. As part of the mission, scientists are analyzing data from orbiters to help identify areas on Mars that look scientifically interesting. "These rovers were designed to help us make sure the site is scientifically exciting and also safe in terms of landing hazards," Arvidson said. "Lots of big, pointy rocks, for example, would puncture the air bags. There can't be any big cliffs nearby that the landing site could impact.

In order to make sure the site was safe, Arvidson and his team helped by first using information from orbiters — the Mars Global Surveyor and Odyssey — to hone in on areas that looked scientifically interesting. "These orients were designed to understand whether or not water was on the surface and interacted with the crust to produce aqueous minerals," Arvidson said. "We wanted to find places where we could test hypotheses that relate to Mars, Page 6"
Proceedings of the National Were Not Long; Modern Human appeared in the July 8 issue of the shows that modern humans are evolutionary relative to modern anthropology in Arts & Sciences, evolution of Neandertals. New scientific evidence chal- humans" (dating back to the 18th century); Late Pleistocene early human, 26 archaic human Neandertal predecessors. Trinkaus' findings, which appeared in the July 8 issue of the Annual Proceedings of the National Academy of Sciences (PNAS), are based on two critical skull meas- forensics. His article, "Neandertal Faces Were Not Long; Modern Human Faces Are Short," is available at the PNAS Web site, picturing.

Trinkaus' main objective was to see how Neandertal faces stacked up against other in the evolutionary lineage: 179 "recent humans" dating back to the 18th century; 26 Late Pleistocene early modern humans; 24 Neandertal; and 23 archaic human Neandertal predecessors. He has now effectively established a baseline for future anthropological research. His results also present in a remote ancestor) or evolutionary patterns as being ances- recent "recent humans" are not always similar to those of their predecessors. Basically, the issue is whether the 'big' Neandertal face is simply "recent humans" or derived (traits that have under- "recent humans" are not always similar to those of their predecessors. Basically, the issue is whether the 'big' Neandertal face is simply "recent humans" or derived (traits that have under- derived (traits that have under-"recent humans". Trinkaus first measured the projection of the linear distance from the middle of the condyles (a point on the jaw joint) to the midpoint between the incisors. Together, the two measure- ments take into account how far the incisors project relative to the size of the skull.

Data for older specimens — which are limited both in number and by degree of preservation — were taken from previously documented discoveries from around the world. For the recent humans, however, Trinkaus worked in a more hands-on fashion, spending a day measuring the skulls of 18th and 19th century "Old World humans" at the American Museum of Natural History in New York, which boasts the most geographically diverse sample of skeletons in North America. After compiling the data for different groups of hominids, Trinkaus concluded that the Neandertal's overall facial projec- tion was, if anything, average for a Pleistocene epoch sample and was.

The National Science Foundation is sponsoring 15 undergradu- U.S. National Science Foundation is sponsoring 15 undergradu- ures from around the country in a program known as Research Experience for Undergraduates (REU). Five Washington Universi- five Washington Universi- ty undergraduates also are par- ty undergraduates also are par- taking in REU, thus funding from ind- taking in REU, thus funding from individual research grants. Brian A. Wrenn, Ph.D., assis- tant professor of civil engineering, has organized this year's program. "For many students," Wrenn said, "this is the first real lab expe- rience that they have had.

For more information, contact the Stelio and Quinette Jens Professor of Environmental Engineering Science and director of Environmental Engineering Science, is one of many faculty advisers to stu- dents in the program. He noted that the University takes a distinct approach through its incorpora- tion of four special workshops.

"These workshops are really a unique aspect," Wrenn said. "This is a national program. There are many such REU sites, but Brian has taken the lead in formulating these workshops, which really are essential for someone who is getting into research."

The workshops are designed to introduce students to the basic tools and methods of formal research. First is a review of basic statistics, followed by a workshop dealing with the design of manipulative experiments. A third workshop, led by Jay Turner, Ph.D., associate professor of chemical engineer- ing, is tailored for students working with observational studies, where the environment sur- rounding the data collection isn't controllable. The fourth work- shop, run by Sofia Falka, Ph.D., assistant professor of mechanical engineering, deals with analysis of spatial data.

"The workshops present the types of things that all people who are involved in quantitative research have to do for which they frequently aren't good train- ing," Wrenn said. "Through these workshops, we're trying to intro- duce them to these tools as well as the philosophy of how to design a research project."

In addition to the workshops, the student must prepare an independent research project that will be completed under the guid- ance of a faculty member. This provides practical experience with scientific skill development, data collection, data analysis and its application in environmental engineering.

Each student will then present his or her research findings at a formal public symposium Aug. 1 in Lopata Hall, Room 101. Prior to the symposium, how- ever, students are given the opportunity to present their hypotheses at low- to semi-low- key seminars. Here they receive feedback from both fellow students and fac- ulty on how to improve both their projects and presentations.

"We try to teach them the art of talking to people about what they expect to observe, how they expect to analyze their data, etc. We try to get them to think about that from the start," Wrenn explained, this opportunity to give students experience doing research, we're also teaching them how to communicate the results of their research. "Research that doesn't get com- municated is the equivalent of not having been done.

Other "real world" experience in the program consists of several field trips to environmental engi- neering facilities such as Doc San Co, and the Conoco-Phillips waste treatment refinery. Wrenn focuses on the differences and simi- larities between regulatory moni- toring and research monitoring.

"We try to get the people giving tours to talk about data collection and analysis in the context of a real, practical application; how somebody outside of research might deal with data, what they are interested in, and other aspects of industrial environmental engi- neering," he said.

NSF program gives undergrads research experience

BY TERESA SHIPLEY

W

ile some students occupy their summers with carefree activities, others are spending 10 weeks at the University designing research projects focused on cleaning up the envi- ronment. The National Science Found- nation is sponsoring 15 undergradu- ures from around the country in a program known as Research Experience for Undergraduates (REU). Five Washington Universi- five Washington Universi- ty undergraduates also are par-

During the University's centennial celebration, on Oct. 10, 1983, representatives of the First Ullian Church of St. Louis — the church William Greenleaf Eliot founded — presented a plaque, embedded in the ground beneath the plaque, is also recognized on the plaque for University Police Web site at police.wustl.edu.

The following incidents were reported to University Police June 6-July 8. Readers with information that could assist in investigating these incidents are urged to call 935-5555. This information is provided as a public service to promote safety awareness and is available on the University Police Web site at police.wustl.edu.

The following incidents were reported to University Police June 6-July 8. Readers with information that could assist in investigating these incidents are urged to call 935-5555. This information is provided as a public service to promote safety awareness and is available on the University Police Web site at police.wustl.edu.
Petersen named McDonnell professor

By Gila Reckes

A

pioneer in brain imaging research, Steven E. Petersen, M.D., has been named for the first James S. McDonnell Professor in Cognitive Neuroscience.

Petersen is director of the Division of Neurophysiology in the Department of Psychiatry, professor of psychology in Arts & Engineering & Applied Science and professor in Engineering in the School of Engineering & Applied Science. He also serves as associate chair for Neuroimaging in the School of Engineering & Applied Science.

In addition to his six academic appointments, Petersen is co-director of the neuroscience program in the School of Medicine.

The new professorship was established from a gift to the James S. McDonnell Foundation given by the University in 1980 to institute the McDonnell Center for Cognitive Neuroscience.

Chancellor Mark S. Wrightson and William A. Peck, M.D., former executive vice chancellor for medical affairs and dean of the School of Medicine, made the announcement.

"The McDonnell family and foundation have been extraordinary supporters of the University for many years," Wrightson said. "Their generosity and support continue to be critical in the advancement of our exceptional neuroscience program, in which Steve Petersen is an influential participant and leader."

Peck added, "His research is a prime example of the importance of understanding how the brain works, a goal that the McDonnell family has helped to pursue for many years. I think of no one more qualified and capable of representing the McDonnells' commitment to this University and to the field of brain research."

Petersen is known for his research on how the brain processes information and functions during daily life. As one of the pioneers in brain imaging, Petersen uses several modern techniques, including positron emission tomography and functional magnetic resonance imaging to directly observe the human brain during learning, memory and attention tasks.

He also investigates the effects of disease and brain damage on these cognitive processes, recruiting a range of psychological and neurobiological methods. Numerous molecular and genetic studies have established links between neuropsychiatric disorders and structural and functional anomalies of the brain.

The late James S. McDonnell, a University alumnus, is one of the country's honored aerospace pioneers. He learned to fly in the Army Air Service, serving as a second lieutenant between earning a bachelor's degree in engineering from Princeton University in 1921 and a master's degree in aeronautical engineering from Massachusetts Institute of Technology in 1926.

After working in many of the small but numerous aircraft plants of that era, McDonnell founded his own company in 1939, known as the McDonnell Aircraft Corporation, in St. Louis.

The company grew from its modest beginnings at Lambert Field into one of the world's largest aerospace companies. In 1967, the company merged with Douglas Aircraft, and in 1997 McDonnell Douglas merged with The Boeing Co., forming the world's largest aerospace company. Its Integrated Defense Systems group, representing one-half of Boeing's business, is headquartered in St. Louis.

In addition to leading his company's many achievements, including building the first jet aircraft to operate from a U.S. aircraft carrier and developing America's first manned spacecraft, McDonnell also was a longtime supporter of the United Nations and served as chairman of the board of the Association of the United States of America.

In 1950, he established the James S. McDonnell Foundation "to improve the quality of life."

Today, the foundation abides by that mission, and now by contributing to the generation of new knowledge through its support of research and scholarship.

McDonnell established his first University professorship in the sciences in 1964, and established the McDonnell Center for the Space Sciences in 1975.

The foundation's continued support of programs at the University reflects McDonnell's main interests, which include genetics and human cognition.

"Petersen's research is a prime example of the importance of understanding how the brain works, a goal that the McDonnell family has helped encourage for many years," William A. Peck, M.D., former executive vice chancellor for medical affairs and dean of the School of Medicine, said at the installation ceremony.

"The award is designed to honor and recognize the accomplishments of a neuroscientist whose research has been productive and who has been a good example to young people pursuing academic neuroscience careers."

"We all felt Ralph was a great example of someone the award was intended to recognize."

The international award was instituted by Sidney Goldberg, M.D., who preceded Dacey as chair of neurosurgical surgery.

"The award is designed to honor and recognize the accomplishments of a neuroscientist whose research has been productive and who has been a good example to young people pursuing academic neuroscience careers."

"We all felt Ralph was a great example of someone the award was intended to recognize."

The international award was instituted by Sidney Goldberg, M.D., who preceded Dacey as chair of neurosurgical surgery.

"The award is designed to honor and recognize the accomplishments of a neuroscientist whose research has been productive and who has been a good example to young people pursuing academic neuroscience careers."

"We all felt Ralph was a great example of someone the award was intended to recognize."

The international award was instituted by Sidney Goldberg, M.D., who preceded Dacey as chair of neurosurgical surgery.

"The award is designed to honor and recognize the accomplishments of a neuroscientist whose research has been productive and who has been a good example to young people pursuing academic neuroscience careers."

"We all felt Ralph was a great example of someone the award was intended to recognize."

The international award was instituted by Sidney Goldberg, M.D., who preceded Dacey as chair of neurosurgical surgery.

"The award is designed to honor and recognize the accomplishments of a neuroscientist whose research has been productive and who has been a good example to young people pursuing academic neuroscience careers."

"We all felt Ralph was a great example of someone the award was intended to recognize."

The international award was instituted by Sidney Goldberg, M.D., who preceded Dacey as chair of neurosurgical surgery.

"The award is designed to honor and recognize the accomplishments of a neuroscientist whose research has been productive and who has been a good example to young people pursuing academic neuroscience careers."

"We all felt Ralph was a great example of someone the award was intended to recognize."

The international award was instituted by Sidney Goldberg, M.D., who preceded Dacey as chair of neurosurgical surgery.

"The award is designed to honor and recognize the accomplishments of a neuroscientist whose research has been productive and who has been a good example to young people pursuing academic neuroscience careers."

"We all felt Ralph was a great example of someone the award was intended to recognize."

The international award was instituted by Sidney Goldberg, M.D., who preceded Dacey as chair of neurosurgical surgery.

"The award is designed to honor and recognize the accomplishments of a neuroscientist whose research has been productive and who has been a good example to young people pursuing academic neuroscience careers."

"We all felt Ralph was a great example of someone the award was intended to recognize."

The international award was instituted by Sidney Goldberg, M.D., who preceded Dacey as chair of neurosurgical surgery.

"The award is designed to honor and recognize the accomplishments of a neuroscientist whose research has been productive and who has been a good example to young people pursuing academic neuroscience careers."

"We all felt Ralph was a great example of someone the award was intended to recognize."

The international award was instituted by Sidney Goldberg, M.D., who preceded Dacey as chair of neurosurgical surgery.

"The award is designed to honor and recognize the accomplishments of a neuroscientist whose research has been productive and who has been a good example to young people pursuing academic neuroscience careers."

"We all felt Ralph was a great example of someone the award was intended to recognize."

The international award was instituted by Sidney Goldberg, M.D., who preceded Dacey as chair of neurosurgical surgery.

"The award is designed to honor and recognize the accomplishments of a neuroscientist whose research has been productive and who has been a good example to young people pursuing academic neuroscience careers."

"We all felt Ralph was a great example of someone the award was intended to recognize."

The international award was instituted by Sidney Goldberg, M.D., who preceded Dacey as chair of neurosurgical surgery.
Therapeutic Strategies • Hypertension

To help avoid contamination, Ken Kelton’s research team used an electrostatic levitator (a device used to suspend tiny metal droplets) to study liquid to solid transitions. The researchers have obtained the first complete proof of a 50-year-old hypothesis explaining how liquid metals resist turning into solids.

A team of researchers led by Kenneth PHL, professor of physics in Arts & Sciences, and Matthew Cech, researchers at the Advanced Photon Source at Argonne National Laboratory in Chicago, have developed an array of X-rays to map the average atom locations as the metal turned from liquid to solid. The experiment was repeated several times, and the data definitively verified Frank’s hypothesis. Kelton temperature was decreased to solidify the molten sample, which is then suspended in a levitator and melted back into the liquid, even in a metallic liquid. This was a critical step in determining how it solidifies. The most commonly used theories of nucleation don’t fully take this into account.

Global beauty Construction workers install aesthetic globes on top of the new office building at 270 N. Skinker Blvd., which opened June 16. The ground floor is still unfinished, although the University has a commitment from the developer to move in the Coffee Provisions to move into the office building in a few weeks. The goal is to have the coffee shop occupy the space about the time of the start of the fall semester. Members of the Office of Public Affairs and the Hilltop Research Office have taken residence.

Construction Update is published periodically and provides information about the progress of major University building and renovation projects on the Hilltop, Medical and West campuses. Information is provided to the Records by facilities management.

Earth and Planetary Sciences Building

As the concrete structure is completed, the focus shifts to the building shell and interior. The masonry contractor has continued with the installation of exterior CMU walls and has begun the stone facade. Structural steel continues with stair installation, roof steel and metal deck. The roofing is quickly progressing to provide dry conditions for interior work. Partition framing continues on all levels and drywall will begin soon in the lower level. Mechanical, electrical and plumbing contractors continue to work from the lower level up to the third floor. In the coming months, work will continue to focus on enclosing the building.

Olin Library

The two lower levels, Levels B and A, and Level 2 are complete and occupied. Abatement of the south portion of Level I is under way. The Level I atrium upper portion of the "tree"—a structural steel column in the cyber café— has been completed, and the computer flooring and HVAC is being installed in preparation to be used for temporary space. The Level 1 building enclosure, the new entrance and curtain wall have been completed, and the site work has begun. Abatement of Level 3 is in progress. The roof and penthouse HVAC work is continuing.

Phase III Housing

The masonry is complete at the west and work on the east is winding down at the south and east elevations. The caulking and flashing continue. The west side of the promenade has been placed. The drywall is complete and the finishes continue at the second and third floors. The flooring is complete up to the second floor. The air-handling equipment is charged and operating.

Shepley Drive extension

The new road section from Shepley Drive to Wallace Circle has opened, providing a connection between the University Medical Center and the west side of the medical campus. The underground utilities are being installed from south of Shepley Drive in a northerly direction to Forsyth Boulevard. Work on the north side of Forsyth is progressing without delays. Additional work will be completed to allow the Chasewar Way and Houston Way entrances on Forsyth to be closed. The new road base and asphalt paving are scheduled for substantial completion before the fall semester starts.

Friday, Aug. 15

9:15 a.m. Pediatric Grand Rounds. Matthew Cobbs, prof. of orthopedic surgery, Barnes-Jewish Hospital, 4600 Children’s Place, 362-3555.

Thursday, Aug. 14

7:30 a.m.-5 p.m. Neuroradiology CME Course. "Advanced in the Management of Stroke and Mating for Proficiency with Center for Primary Care and Other Clinical Sites" from 11 a.m.-3 p.m. at 4500 North Kingshighway Blvd. 362-4581.

Saturday, Aug. 16

Friday, Aug. 15

9:15 a.m. Pediatric Grand Rounds. Matthew Cobbs, prof. of orthopedic surgery, Barnes-Jewish Hospital, 4600 Children’s Place, 362-3555.

Tuesday, Aug. 12

7:30 a.m.-5 p.m. Gateway Festival Orchestra Concert. Barnes-Jewish Hospital, 4565 McKinley Ave. 286-2881.

Thursday, July 22

7:30 a.m.-3:40 p.m. 28th International Research Center Tuesday Conference Seminar. "Business Requirements Management: The Future." July 27 & 28 (811) 574-6469.

And more

Thursday, July 22

Tuesday, Aug. 12

6:30 p.m. Pediatric Grand Rounds. Matthew Cobbs, prof. of orthopedic surgery, Barnes-Jewish Hospital. 4600 Children’s Place, 362-3555.

Monday, Aug. 11

Washington University in St. Louis

Lectures

Friday, July 11

Tuesday, July 14

7:30 a.m.-5 p.m. Pediatric Grand Rounds. "Clinical Allergy For the Practicing Pediatrician." Robert G. Gooding, prof. of pediatrics, Washington University School of Medicine, 4600 Children’s Place, 362-3555.

Tuesday, August 15

9:15 a.m. Pediatric Grand Rounds. Mathew Cobbs, prof. of orthopedic surgery, Barnes-Jewish Hospital, 4600 Children’s Place, 362-3555.

Friday, July 25

9:15 a.m. Pediatric Grand Rounds. Matthew Cobbs, prof. of orthopedic surgery, Barnes-Jewish Hospital, 4600 Children’s Place, 362-3555.

Tuesday, July 29

Sports

WUSTL places fifth among D-III programs

Washington University finished fifth in the 2002-03 USA Today

NACDA (National Association of

Collegiate Directors of Athletics)

Directors' Cup Division III stand-

ings of the top athletic programs in

the nation. The Directors' Cup measures

the overall success of athletic
departments in the three NCAA

divisions as well as NAIA. The

standings are based on points

awarded for NCAA postseason

finishes by a school's athletic

teams. It is the highest showing

for WUSTL in the eight-year

history of the award.

The University scored points

in 11 of a possible 16 sports to

finish with 638.75 points.

Williams College ran away with top

honors with 1,158.25 points, fol-

lowed by Emory University (779),

College of New Jersey (695.75) and

Tulane University of Texas (680) in fourth.

There are 424 schools in

NCAA Division III eligible for the

Director's Cup, putting Washing-

ton University in the top 1 per-

cent. With University Athletic

Association rival Emory finishing

second, the conference was the

only one in Division III with two

schools in the USA Today

Directors' Cup rankings of the

top athletic programs in the

country.

Runner Hoelle is academic All-American

Junior Matt Hoelle was named to the first-team Verizon Academic

All-American College Division Men's Track/Cross Country Team

as selected by the College Sports

Information Directors of America

(CSIDA). Hoelle, who maintains a

4.0 grade-point average while

majoring in chemical engineer-

ing, was one of 13 student-

athletes named to the first team.

After top-10 finishes as a fresh-

man and sophomore, Hoelle was the runner-up at the 2002 USA

Cross Country Championships

and a three-time all-UAA selec-

tion in cross country and a two-
time selection in track and field.

Hoelle became the 16th male run-

ner in school history to qualify for the NCAA Cross Country

Championships after an 11th-

place finish at the Midwest

Regional in 2002. At the NCAA

Cross Country Meet, Hoelle placed 65th out of 215 runners.

Sports information director named

Chris Mitchell has been named

WUSTL's new sports information director in the Office of Public Affairs.

A 1999 graduate of McKendree

College, Mitchell has served as an assistant sports information

director for the past two years. As
director, he will oversee the pro-
motion and publicity of the

University's highly successful

NCAA Division III athletics
department.

"Chris has done an excellent job

accompanying thebanner high

for the teams on his beats," said

Judith Jasper Leicht, associate vice

chancellor and executive director

for University communications.

"We're delighted that he will be

overseeing the public relation

department."

Mitchell replaces Keith Jenkins, who left the University

in 2002 to pursue graduate studies.

Hilltop Topsorts

Employment

For complete sports schedules and

results, go to bearbears.wustl.edu.

For complete job descriptions,

please visit hr.wustl.edu.

For more information, call

hr.wustl.edu. For more

information, call 935-5906 to reach the

human resources information, call

hr.wustl.edu. For more

information, call 935-5906 to reach the

human resources department.

For the most current

Hilltop positions open-

For complete sports schedules and

results, go to bearbears.wustl.edu.
Neandertal

"They're very human, but they're not quite us" — from Page 2

similar to or even remotely derived from their possible ancestors. Neandertals and hominids

He also noted that their site

would be the right place at the

time, said Seelos, who is a gradu

date in the spring. "I feel very fortunate

Liing, very busy time," said Seelos,

The crater also promises to be a

2010. Yet another possibility was

immediately began collecting data. Panoramic camera was turned on and

As you go further back in time, the

raters!

Erik Trinkaus, Ph.D., the Mary Tileston Hemenway Professor of

Neandertal are the archaic

humanity's closest relatives. "It's not for anything, that is, for most of the last centu-

Neandertals have been com-

Neandertals who plan to earn a doctorate in

landing site, the floor of Gusev

ancient hydrological evidence. It

ripe with the possibility of

thick set of volcanic deposits that

habitable for life, since water is a

This is at the core of determining

and molecular biology. Last year,

improved with new technology and

The couple, together with the

Center

of the Boy Scouts of America, the

a community of local scientists and

defined its entrance.

socializing — all designed for

comfort, functionality and flexi-

of the Boy Scouts of America, the

Chair William F. J. Broadhead has

Chair William F. J. Broadhead has

In 1997, Farrell received the

The Farrells have also long

been a community of local scientists and

The Farrells’ generous pledge will greatly benefit not only those who attend the School of Medicine but also the entire community by allowing the University to remain at the forefront of medical education," said Farrell. "We extend our heartfelt gratitude to the Farrells for their continuous support of Washington University.

the Martin Reilly, chief executive officer

The Neandertals are the closest
to us in behavior and in many

It was to allow us to frame that

question. Because previously the

question was, "Why did Nean-

dertals have long faces?" And

that's the wrong question.

"The correct question is, 'Why do modern humans have really short jaws?"

The Farrells’ generous pledge will greatly benefit not only those who attend the School of Medicine but also the entire community by allowing the University to remain at the forefront of medical education," said Farrell. "We extend our heartfelt gratitude to the Farrells for their continuous support of Washington University.

the Martin Reilly, chief executive officer

The Neandertals are the closest
to us in behavior and in many

It was to allow us to frame that

question. Because previously the

question was, "Why did Nean-

dertals have long faces?" And

that's the wrong question.

"The correct question is, 'Why do modern humans have really short jaws?"

Mars

— from Page 1

to the presence of water on the surface

or beneath the surface. This is the

case of determining whether the planet is

habitable for life, since water is a

crucial requirement for life as we

know it. A certain site in the Meridiani

Planum, where is set to be the landing

site for the specially designed Phoenix

lander, has been noted for its potential

abundance of water ice. Either way, the

landscape looks promising for the

search for ancient hydrological evidence.

The Jovian weather will test, and the

archeological record, may provide

clues as to how life on Earth may have

evolved. The Phoenix Mission, which is

expected to land on Mars in August

2007, will carry a suite of instruments to

analyze the composition of the

surface and to search for water ice.

The Phoenix Mission, which is

expected to land on Mars in August

2007, will carry a suite of instruments to

analyze the composition of the

surface and to search for water ice.

immediacy, the more detailed record

of the climate history on Mars can be

obtained. This is crucial for

understanding the conditions that

allowed for the formation and

preservation of water on Mars.

Mars

— from Page 1

The Neandertals are the closest
to us in behavior and in many

It was to allow us to frame that

question. Because previously the

question was, "Why did Nean-

dertals have long faces?" And

that's the wrong question.

"The correct question is, 'Why do modern humans have really short jaws?"

Mars

— from Page 1

to the presence of water on the surface

or beneath the surface. This is the

case of determining whether the planet is

habitable for life, since water is a

crucial requirement for life as we

know it. A certain site in the Meridiani

Planum, where is set to be the landing

site for the specially designed Phoenix

lander, has been noted for its potential

abundance of water ice. Either way, the

landscape looks promising for the

search for ancient hydrological evidence.

The Jovian weather will test, and the

archeological record, may provide

clues as to how life on Earth may have

evolved. The Phoenix Mission, which is

expected to land on Mars in August

2007, will carry a suite of instruments to

analyze the composition of the

surface and to search for water ice.

The Phoenix Mission, which is

expected to land on Mars in August

2007, will carry a suite of instruments to

analyze the composition of the

surface and to search for water ice.

immediacy, the more detailed record

of the climate history on Mars can be

obtained. This is crucial for

understanding the conditions that

allowed for the formation and

preservation of water on Mars.

Mars

— from Page 1

The Neandertals are the closest
to us in behavior and in many

It was to allow us to frame that

question. Because previously the

question was, "Why did Nean-

dertals have long faces?" And

that's the wrong question.

"The correct question is, 'Why do modern humans have really short jaws?"

Mars

— from Page 1

The Neandertals are the closest
to us in behavior and in many

It was to allow us to frame that

question. Because previously the

question was, "Why did Nean-

dertals have long faces?" And

that's the wrong question.

"The correct question is, 'Why do modern humans have really short jaws?"

Mars

— from Page 1

The Neandertals are the closest
to us in behavior and in many

It was to allow us to frame that

question. Because previously the

question was, "Why did Nean-

dertals have long faces?" And

that's the wrong question.

"The correct question is, 'Why do modern humans have really short jaws?"

Mars

— from Page 1

The Neandertals are the closest
to us in behavior and in many

It was to allow us to frame that

question. Because previously the

question was, "Why did Nean-

dertals have long faces?" And

that's the wrong question.

"The correct question is, 'Why do modern humans have really short jaws?"
Philip D. Stahl, Ph.D., the Edward Mallinkrodt Jr. Professor and head of the Department of Cell Biology and Physiology in the School of Medicine, has been named chair of the Division of Biology and Biomedical Sciences.

Russell A. Quatrano, Ph.D., the Spencer T. Olin Professor and chair of the Department of Biology in Arts & Sciences, will serve as interim chair from June 30, 2003, at which point he will take over as chair of the division.

"I am honored to be named chair of the division," said Stahl, who was chair of the division from 1989-1992. "I'm very pleased with the opportunity to continue his leadership of this vital and exemplary program."

The DBBS now holds graduate and undergraduate programs in the biomedical sciences. Founded in the early 70s, it has become the model program for graduate education in biology and biomedical sciences through its interdisciplinary degree programs.

"Stahl's division was begun with the recognition that science was not being done along departmental boundaries," said John H. Russell, Ph.D., associate dean for research and graduate studies and professor of molecular biology and pharmacology. "In fact, we think the best medical discovery comes at the edges of the disciplines."

"We have an opportunity to create the kind of interface between and among students that will accelerate learning thinking across disciplines, because that's what the future is — collaboration," Stahl said.

In addition to his leadership in the division and in the development of the Farrell Learning and Teaching Center, a structure soon to be named for the division, Stahl is also recognized for his leadership in the interface between biological and biomedical science.

"The common theme in his work has been an understanding of the properties of advanced materials. He has been able to increase stipends and allow students to work in areas of interest to them."

Quatrano is the perfect successor to Stahl and Ralph Quatrano are the perfect successors to Stahl, Quatrano said. "Quatrano's research has been constitutive endocytosis, the process through which cells internalize intracellular substances such as proteins. He now is studying endocytosis and signal transduction in cancerous cells in an effort to understand how growth signals are internalized into cells."

In addition, he is investigating the way in which the p34cdc2 and cellular debris are transported to sites inside the cell and can be broken down and destroyed. His Ph.D. degree was in 1964 from West Liberty University and a doctorate in 1971, after completing postdoctoral training at the University of Missouri and Vanderbilt University.

Quatrano, born in 1946, is sponsored by the U.S. Department of State. Nearly 1,125 American students have been offered study and conducting research in 140 countries throughout the world. This year's U.S. Fulbright scholars include: Maria C. Brique; Kathryn A. Wills; Natalie L. Chalabi; and Christina E. Wills. Music, art and language programs are also available. The University's Office of International Student Services is responsible for administering these programs.

The division has been able to increase stipends and allow students to work in areas of interest to them.
Washington University is a way of life for Brian T. Bannister, associate dean for finance and administration in the Olin School of Business.

Thousands of dedicated staff work diligently every day to help accomplish the University’s mission, but not many can say this is the only place they have ever worked, Bannister can.

Beginning with summer jobs at the University while still in high school, and then again in college, Bannister began a relationship with WUSTL that has now spanned more than 25 years.

He earned undergraduate and master’s degrees from the University and has held positions of increasing responsibility here, first in the Office of Information Systems and since 1994 at the business school.

From helping develop FOCUS, the first University-wide computer reporting and language system, to his instrumental role in the design, construction and operation of the business school’s A steady progression in the business school — from one of its best-known faculty members to serving as senior project leader and then as assistant director — allowed him a broad exposure to many departments and schools.

Helping maintain the proper operation of the reporting systems for finance, personnel, payroll and student information for the entire University was an “around-the-clock, seven-day-a-week job.”

“I was very lucky in information systems to get to work with managers in a wide variety of University departments,” Bannister says. “I was able to act as kind of an internal consultant to assist in the application of technology to their specific needs. It gave me an excellent overview of operations University-wide.”

Bannister also assisted the offices of the dean of the faculty of Arts & Sciences, the provost, the executive vice chancellor and the executive vice chancellor’s office.

It is no wonder that he attracted the attention of Stuart J. Greenbaum, Ph.D., dean of the Olin School. Greenbaum came to the Olin School in 1995 and quickly assembled his “A-team” of top managers. Bannister is among Greenbaum’s most trusted lieutenants.

“Brian manages people and budgets with equal aplomb. His fastidious attention to detail brings accuracy, timeliness and insight to both his work and counsel. Brian’s every action supports the Olin School’s culture of caring in pursuit of excellence. He spurs all around him to greater achievement and good will,” says Marilyn Pollack, director of student life.

High-tech classrooms, 27 small group study rooms, a world-class dining room, 66 deluxe hotel rooms, an executive boardroom, a fitness center and even a pub where students can relax over a drink after a long day in class.

It’s a totally integrated residential learning facility,” Bannister says. “Building it was just a joy to be involved with, especially when it began to rise out of the ground and take form.”

Bannister visited executive education centers from coast to coast during the design and planning phase of the Knight Center.

“We went to Northwestern University’s Kellogg School of Management, the University of Chicago and Wharton (the University of Pennsylvania School of Business), to name a few,” he says, “to glean the best of the best. "Then, we had to understand the totality of everyone’s needs and balance it all with the look and feel and style of what we wanted, and of course, our budget. We wanted the Knight Center to be the premier executive education facility in the country — and it is.”

A love affair

Growing up in only child in small St. Louis County on three acres. Bannister says he was a "child of modest privilege," and "lucky to have had a typical childhood.

"My yard was the neighbor­hood baseball field, so I played a lot of ball when I was a kid. It comes in handy on Staff Day!" Bannister’s love affair with the University began early. In high school, he worked summers in information systems as "the Bus Boy.

"I ran this big machine that burst computer forms apart at about a mile a minute, so I got the nickname and it kind of stuck," he says. "Some of the folks in IT still call me that."

He even met his wife, Mary, at the University in their freshman orientation.

"We hit it off right away and started dating and married between our sophomore and junior years," he says.

Mary Dale-Bannister also graduated from the University and for several years worked in the Department of Earth and Planetary Sciences in Arts & Sciences in planetary imaging. Their daughter, Alexandra, will enter the College of Arts & Sciences this fall.

"The University is everything to me," he says. "I feel so lucky to have had all the experiences I’ve had at Washington University, and to have worked with all the great people that I’ve known here over the years.

"I still look forward to coming to work every day. Every day is fun. Every day is still a challenge.”