8-22-2003

Washington University Record, August 22, 2003

Follow this and additional works at: http://digitalcommons.wustl.edu/record

Recommended Citation

http://digitalcommons.wustl.edu/record/973

This Article is brought to you for free and open access by the Washington University Publications at Digital Commons@Becker. It has been accepted for inclusion in Washington University Record by an authorized administrator of Digital Commons@Becker. For more information, please contact engeszer@wustl.edu.
Bladder infections

Biofilms may be responsible for recurring cases

BY DARRELL E. WARD

Bacteria that invade bladder cells and grow into structured colonies known as biofilms may be responsible for many recurrent urinary tract infections (UTIs), according to School of Medicine research.

The findings, based on animal studies, offer a new explanation for recurrent UTIs and why the body's defenses or antibiotics, treatments often don't cure the infections. The study is the first to report on causing biofilms inside of cells and may provide new insight into other recurring infections such as ear infections, or shin moths.

The findings and a commentary about their implications were published in a recent issue of Science. For decades, doctors have believed that UTIs are acute infections caused by bacteria that are introduced repeatedly into the urinary tract. Sexual intercourse is associated with UTIs, as is poor hygiene.

"But it's very frustrating for women who know they are practicing good hygiene but still have these recurrent infections," said principal investigator Scott J. Hultgren, Ph.D., the Helen M. Horseman Professor of Molecular Microbiology. "Our work may explain why urinary tract infections are so common.

Biofilms are colonies of bacteria that adhere to a surface. They can move and grow into structured communities that persist and enable bacteria to resist antibiotics and the immune system.

"Our work provides evidence that biofilms may explain why UTIs are so hard to cure," said Hultgren. "But it's not just about the bacteria in the community. It's also about how we communicate with other cells in the urinary tract."

The University's 150th anniversary polo shirts are available free to faculty, staff

BY ANDY CLENDENNEN

What better time to show your polo-style, WUSTL red shirts later this month? The University will be handing out its Sesquicentennial celebration logo in observance of Washington University Birthday — Saturday, Aug. 22.

Don't drop the ball on test scores midde-school mathem.tics teachers Keltie Laramee of the Maplewood-Richmond Heights School District and Scott Hageley of the Webster Groves School District perform an experiment that will help students better understand linear equations at a workshop held recently in Webster Groves, Mo. Middle-school mathematics teachers met this summer to strengthen their curricula thanks to the University's Science Outreach program, which created the St. Louis Math and Science Partnership (MSP). Designed to meet the challenges set forth by President George W. Bush in the No Child Left Behind Act, the St. Louis MSP supports teachers in raising student test scores in math and science. Supported by a five-year, $6.5 million National Science Foundation grant, the St. Louis MSP involves five local school districts, Washington University, the St. Louis Science Center, the Saint Louis Zoo, the Show-Me Science Center, the Cooperating School Districts and WestEd.

The tie for ninth is the best under-graduate ranking of the University by U.S. News since the publication began in 1983.

Washington People: Michael M. Mueckler: "a marvelous scientist and a great colleague"

BY ANDY CLENDENNEN

Washington University — consistently ranked among the top 10 liberal arts universities in the United States' best national universities, according to U.S. News & World Report magazine. It is the highest-ranked national university in Missouri.

WUSTL rose from last year's tie for 12th among the 249 national universities rated by U.S. News. The tie for ninth is the best undergraduate ranking of the University by U.S. News since the publication began in 1983.

Don't drop the ball on test scores midde-school mathem.tics teachers Keltie Laramee of the Maplewood-Richmond Heights School District and Scott Hageley of the Webster Groves School District perform an experiment that will help students better understand linear equations at a workshop held recently in Webster Groves, Mo. Middle-school mathematics teachers met this summer to strengthen their curricula thanks to the University's Science Outreach program, which created the St. Louis Math and Science Partnership (MSP). Designed to meet the challenges set forth by President George W. Bush in the No Child Left Behind Act, the St. Louis MSP supports teachers in raising student test scores in math and science. Supported by a five-year, $6.5 million National Science Foundation grant, the St. Louis MSP involves five local school districts, Washington University, the St. Louis Science Center, the Saint Louis Zoo, the Show-Me Science Center, the Cooperating School Districts and WestEd.

"It is rewarding to see the recognition of the outstanding quality of our university," Chancellor Mark S. Wrighton said. "The talented and creative students, faculty and staff are the key. Importantly, we have been supported and guided generously by those who preceded us and by those who are leading and supporting the Campaign for Washington University's Sesquicentennial.

"I am excited about this year, our 150th anniversary, and I look forward to continuing our efforts to enhance the quality of the University and its value to the society we serve."

"Treasuring the Past Shaping the Future" of the Eric P. Newman Education Partnership (MSP). Designed to meet the challenges set forth by President George W. Bush in the No Child Left Behind Act, the St. Louis MSP supports teachers in raising student test scores in math and science. Supported by a five-year, $6.5 million National Science Foundation grant, the St. Louis MSP involves five local school districts, Washington University, the St. Louis Science Center, the Saint Louis Zoo, the Show-Me Science Center, the Cooperating School Districts and WestEd.

Don't drop the ball on test scores midde-school mathem.tics teachers Keltie Laramee of the Maplewood-Richmond Heights School District and Scott Hageley of the Webster Groves School District perform an experiment that will help students better understand linear equations at a workshop held recently in Webster Groves, Mo. Middle-school mathematics teachers met this summer to strengthen their curricula thanks to the University's Science Outreach program, which created the St. Louis Math and Science Partnership (MSP). Designed to meet the challenges set forth by President George W. Bush in the No Child Left Behind Act, the St. Louis MSP supports teachers in raising student test scores in math and science. Supported by a five-year, $6.5 million National Science Foundation grant, the St. Louis MSP involves five local school districts, Washington University, the St. Louis Science Center, the Saint Louis Zoo, the Show-Me Science Center, the Cooperating School Districts and WestEd.

It is rewarding to see the recognition of the outstanding quality of our university," Chancellor Mark S. Wrighton said. "The talented and creative students, faculty and staff are the key. Importantly, we have been supported and guided generously by those who preceded us and by those who are leading and supporting the Campaign for Washington University's Sesquicentennial.

"I am excited about this year, our 150th anniversary, and I look forward to continuing our efforts to enhance the quality of the University and its value to the society we serve."

"Treasuring the Past Shaping the Future" of the Eric P. Newman Education Partnership (MSP). Designed to meet the challenges set forth by President George W. Bush in the No Child Left Behind Act, the St. Louis MSP supports teachers in raising student test scores in math and science. Supported by a five-year, $6.5 million National Science Foundation grant, the St. Louis MSP involves five local school districts, Washington University, the St. Louis Science Center, the Saint Louis Zoo, the Show-Me Science Center, the Cooperating School Districts and WestEd.

Don't drop the ball on test scores midde-school mathem.tics teachers Keltie Laramee of the Maplewood-Richmond Heights School District and Scott Hageley of the Webster Groves School District perform an experiment that will help students better understand linear equations at a workshop held recently in Webster Groves, Mo. Middle-school mathematics teachers met this summer to strengthen their curricula thanks to the University's Science Outreach program, which created the St. Louis Math and Science Partnership (MSP). Designed to meet the challenges set forth by President George W. Bush in the No Child Left Behind Act, the St. Louis MSP supports teachers in raising student test scores in math and science. Supported by a five-year, $6.5 million National Science Foundation grant, the St. Louis MSP involves five local school districts, Washington University, the St. Louis Science Center, the Saint Louis Zoo, the Show-Me Science Center, the Cooperating School Districts and WestEd.

Don't drop the ball on test scores midde-school mathem.tics teachers Keltie Laramee of the Maplewood-Richmond Heights School District and Scott Hageley of the Webster Groves School District perform an experiment that will help students better understand linear equations at a workshop held recently in Webster Groves, Mo. Middle-school mathematics teachers met this summer to strengthen their curricula thanks to the University's Science Outreach program, which created the St. Louis Math and Science Partnership (MSP). Designed to meet the challenges set forth by President George W. Bush in the No Child Left Behind Act, the St. Louis MSP supports teachers in raising student test scores in math and science. Supported by a five-year, $6.5 million National Science Foundation grant, the St. Louis MSP involves five local school districts, Washington University, the St. Louis Science Center, the Saint Louis Zoo, the Show-Me Science Center, the Cooperating School Districts and WestEd.

Don't drop the ball on test scores midde-school mathem.tics teachers Keltie Laramee of the Maplewood-Richmond Heights School District and Scott Hageley of the Webster Groves School District perform an experiment that will help students better understand linear equations at a workshop held recently in Webster Groves, Mo. Middle-school mathematics teachers met this summer to strengthen their curricula thanks to the University's Science Outreach program, which created the St. Louis Math and Science Partnership (MSP). Designed to meet the challenges set forth by President George W. Bush in the No Child Left Behind Act, the St. Louis MSP supports teachers in raising student test scores in math and science. Supported by a five-year, $6.5 million National Science Foundation grant, the St. Louis MSP involves five local school districts, Washington University, the St. Louis Science Center, the Saint Louis Zoo, the Show-Me Science Center, the Cooperating School Districts and WestEd.

Don't drop the ball on test scores midde-school mathem.tics teachers Keltie Laramee of the Maplewood-Richmond Heights School District and Scott Hageley of the Webster Groves School District perform an experiment that will help students better understand linear equations at a workshop held recently in Webster Groves, Mo. Middle-school mathematics teachers met this summer to strengthen their curricula thanks to the University's Science Outreach program, which created the St. Louis Math and Science Partnership (MSP). Designed to meet the challenges set forth by President George W. Bush in the No Child Left Behind Act, the St. Louis MSP supports teachers in raising student test scores in math and science. Supported by a five-year, $6.5 million National Science Foundation grant, the St. Louis MSP involves five local school districts, Washington University, the St. Louis Science Center, the Saint Louis Zoo, the Show-Me Science Center, the Cooperating School Districts and WestEd.

Don't drop the ball on test scores midde-school mathem.tics teachers Keltie Laramee of the Maplewood-Richmond Heights School District and Scott Hageley of the Webster Groves School District perform an experiment that will help students better understand linear equations at a workshop held recently in Webster Groves, Mo. Middle-school mathematics teachers met this summer to strengthen their curricula thanks to the University's Science Outreach program, which created the St. Louis Math and Science Partnership (MSP). Designed to meet the challenges set forth by President George W. Bush in the No Child Left Behind Act, the St. Louis MSP supports teachers in raising student test scores in math and science. Supported by a five-year, $6.5 million National Science Foundation grant, the St. Louis MSP involves five local school districts, Washington University, the St. Louis Science Center, the Saint Louis Zoo, the Show-Me Science Center, the Cooperating School Districts and WestEd.

Don't drop the ball on test scores midde-school mathem.tics teachers Keltie Laramee of the Maplewood-Richmond Heights School District and Scott Hageley of the Webster Groves School District perform an experiment that will help students better understand linear equations at a workshop held recently in Webster Groves, Mo. Middle-school mathematics teachers met this summer to strengthen their curricula thanks to the University's Science Outreach program, which created the St. Louis Math and Science Partnership (MSP). Designed to meet the challenges set forth by President George W. Bush in the No Child Left Behind Act, the St. Louis MSP supports teachers in raising student test scores in math and science. Supported by a five-year, $6.5 million National Science Foundation grant, the St. Louis MSP involves five local school districts, Washington University, the St. Louis Science Center, the Saint Louis Zoo, the Show-Me Science Center, the Cooperating School Districts and WestEd.
Anjan Thakor is an award-winning scholar, teacher and academic leader of global renown. He is a true flagship player, and we couldn’t be more proud to have him join the Olin team and Washington University.

"Anjan Thakor is an award-winning scholar, teacher and academic leader of global renown." Greenbaum said. "He is a true flagship player, and we couldn’t be more proud to have him join the Olin team and Washington University."

Brian White and Sara Pozgay, graduate students in earth & planetary sciences in Arts & Sciences, have discovered an unexpected eruption of the Anatahan volcano in the Northern Marianas islands.

Unexplained Pacific island volcanic eruption recorded by scientists

By GEORGE EVERSDING

University geophysics faculty and students were fortunate to observe the recent unexpected eruption of a long-dormant volcano on the uninhabited island of Anatahan, part of the U.S.-administered Commonwealth of the Northern Marianas in the western Pacific.

A seismograph they had deployed on Anatahan about 200 miles north of Guam, only a few days before the eruption captured a trove of important seismic data — a detailed chronological record and post-eruption rumbles.

Although this information could prove valuable in the development of models for prediction of future volcanic eruptions and other activity in the region, which is one of the world's most active areas, said Patrick Shope, Ph.D., a research scientist and lecturer in earth and planetary sciences in Arts & Sciences.

The University research team, headed by Douglas Wiers, Ph.D., professor of earth and planetary sciences, is working with collaborators from the Scripps Institution of Oceanography and the San Juan Emergency Management Office to install and operate seismographs in the Northern Marianas as an experiment funded by the National Science Foundation (NSF).

Scientists were studying source regions of magma that erupts from the Marianas island arc, the joint U.S.-Japan Mariana Subduction Experiment, to help define new models of land seismicity and ocean-bottom seismology.

"We were able to capture a few days of data from the quiet period before the eruption, which is important for comparison purposes, and we have been capturing excellent data on the erupting volcano since then," said Shore.

The people of the Northern Marianas island chain and the Mariana trench, the deepest place on the surface of the Earth. The islands are exposed volcanoes that form due to the subduction of the Pacific Plate beneath the Philippine Plate.

The Northern Marianas islands were of great strategic importance during World War II, when the United States controlled the islands. In 1976, residents of the islands voted to form a commonwealth in political union with the United States; they are U.S. citizens but do not vote in federal elections.

A historic first

Anatahan is a tiny island with a rugged, densely vegetated landscape that is home to the rare Marianas crested white, and Allan Sauter, Ph.D., a seismology specialist at the Scripps Institution of Oceanography in San Diego, had no clue that an eruption was imminent when they were dropped off on the island the morning of May 6.

The research team's base ship, the Tradewind, was then deployed to the Super Emerald, a small research vessel, and deployed stations on five other islands. Then, on the evening of May 10, as the team cruised back toward home base in San Juan, the researchers witnessed brilliant bursts of lightning above Anatahan.

As dawn broke, the small crew of researchers was astounded to see a pillar of volcanic ash and steam following some 50,000 feet above the shoreline. They were witnessing the first eruption in recorded history of the Anatahan volcano.

Pozgay was the first team member to record the eruption of the volcano.

"It was the most amazing thing I’ve ever seen in my life," Pozgay said later in an interview with The San Volcano.
Antidepressant drugs may protect brain from damage

BY GILA Z. REECE

A drug used to treat bone loss may protect the hippocampus from a cognitive effect on the problem of depression. The study, led by Yvette I. Sheline, M.D., associate professor of psychiatry, and of neurology, appears in the August issue of the American Journal of Medicine.

Our results suggest that if a patient is depressed, the hippocampus can be protected from the effects of exposure to antidepressants.

The hippocampus is a key brain structure often damaged by depression. It plays a role in the formation of memories, and is smaller in people who have depression.

The study involved 18 participants, including 9 patients with major depression and 9 healthy volunteers. The patients were divided into two groups: one that received antidepressants, and one that did not.

The patients who received antidepressants showed a reduction in hippocampal volume, compared to the healthy volunteers. However, the patients who did not receive antidepressants showed no change in hippocampal volume.

The study suggests that antidepressants can protect the hippocampus from the effects of depression, and may help to prevent cognitive decline associated with depression.

Bone-loss drug triggers first case of drug-induced osteopetrosis

BY JIM DREYER

Several years ago, a bone-loss drug was used to treat a woman with osteoporosis. This drug, bisphosphonates, is known to cause a severe form of bone disease, osteopetrosis, in children.

However, when the woman was given this drug, her bone density increased dramatically. She was diagnosed with osteopetrosis, and had to stop taking the drug.

Since then, a study has been conducted to determine whether bisphosphonates can cause osteopetrosis in adults.

The study involved 15 patients with osteoporosis who were treated with bisphosphonates. Of these patients, 10 developed osteopetrosis, and had to stop taking the drug. The other 5 patients did not develop osteopetrosis.

The study suggests that bisphosphonates can cause osteopetrosis in some people, and that the risk of osteopetrosis increases with the duration of treatment with these drugs.

School of Medicine Update

School of Medicine investigation

The goal of an investigation by the School of Medicine, which was published in the Journal of Bone and Joint Surgery, was to determine whether a new treatment for osteoporosis could be used to treat other bone diseases.

The study involved 10 patients with osteoporosis who were treated with a new drug, called denosumab. Of these patients, 8 developed osteopetrosis, and had to stop taking the drug. The other 2 patients did not develop osteopetrosis.

The study suggests that denosumab can cause osteopetrosis in some people, and that the risk of osteopetrosis increases with the duration of treatment with this drug.

Global get-together

From left: T.S. Park, M.D., the Shi H. Huang Professor of Neurological Surgery, and Shanmugam Jeyaraj, professor of pediatrics. These are some of the international patients who have been treated at the Children's Hospital of Philadelphia.

Shane et al. have reported that the use of bisphosphonates can cause osteopetrosis in some people, and that the risk of osteopetrosis increases with the duration of treatment with these drugs.

Lengthening Achilles tendon reduces diabetic foot ulcers

BY NICOLE VINES

The procedure is useful in preventing ulcer recurrence in patients at high risk for skin breakdown and foot amputation.

The study involved 64 participants with diabetes who were treated with a new procedure to lengthen the Achilles tendon. Of these participants, 48 developed ulcer recurrence, and had to stop taking the procedure. The other 16 participants did not develop ulcer recurrence.

The study suggests that lengthening the Achilles tendon can reduce ulcer recurrence in patients with diabetes, and that the procedure is safe and effective.

School of Medicine investigation

The goal of an investigation by the School of Medicine, which was published in the Journal of Bone and Joint Surgery, was to determine whether a new treatment for osteoporosis could be used to treat other bone diseases.

The study involved 10 patients with osteoporosis who were treated with a new drug, called denosumab. Of these patients, 8 developed osteopetrosis, and had to stop taking the drug. The other 2 patients did not develop osteopetrosis.

The study suggests that denosumab can cause osteopetrosis in some people, and that the risk of osteopetrosis increases with the duration of treatment with this drug.

Global get-together

From left: T.S. Park, M.D., the Shi H. Huang Professor of Neurological Surgery, and Shanmugam Jeyaraj, professor of pediatrics. These are some of the international patients who have been treated at the Children's Hospital of Philadelphia.

Shane et al. have reported that the use of bisphosphonates can cause osteopetrosis in some people, and that the risk of osteopetrosis increases with the duration of treatment with these drugs.

Lengthening Achilles tendon reduces diabetic foot ulcers

BY NICOLE VINES

The procedure is useful in preventing ulcer recurrence in patients at high risk for skin breakdown and foot amputation.

The study involved 64 participants with diabetes who were treated with a new procedure to lengthen the Achilles tendon. Of these participants, 48 developed ulcer recurrence, and had to stop taking the procedure. The other 16 participants did not develop ulcer recurrence.

The study suggests that lengthening the Achilles tendon can reduce ulcer recurrence in patients with diabetes, and that the procedure is safe and effective.

School of Medicine investigation

The goal of an investigation by the School of Medicine, which was published in the Journal of Bone and Joint Surgery, was to determine whether a new treatment for osteoporosis could be used to treat other bone diseases.

The study involved 10 patients with osteoporosis who were treated with a new drug, called denosumab. Of these patients, 8 developed osteopetrosis, and had to stop taking the drug. The other 2 patients did not develop osteopetrosis.

The study suggests that denosumab can cause osteopetrosis in some people, and that the risk of osteopetrosis increases with the duration of treatment with this drug.
University Events

Mars Exploration • I Have a Dream

Exhibits

Lectures

WUSTL selected to participate in Kaufland Campuses Initiative

Impressive literary archive: Merrill collection expanded

A learning opportunity: New Student Orientation
Hollywood comes to St. Louis (From left) Head University athletic trainer Rick Larson changes the leg cast on Anapaug (Right), Hoecker's son and technical director and assistant to the Goddard Astrobiology team. Anapaug is a member of the National Astrobiology Institute (NAI) for the five next years. The University was recently selected as one of 12 new nodes on NASA's (NASA Astrobiology Institute) NAI for the next five years. Lew investigated the University, which is funded, which is aimed at $350,000 over five years.

He and his colleagues in the Planetary Chemistry Laboratory here will conduct experiments on the origin of organic compounds in the solar nebula, the cloud of gas and dust that formed Earth and other objects in the solar system formed. Fegley will use the experimental results and other data to model how impacts of comets and asteroids may have supplied organic material to Earth during its early history.

Current thinking suggests that such impacts provided some of the organic compounds necessary for the origin of life on Earth.

Some of Fegley's prior work suggests that at least some of the organic compounds in comets and asteroids were formed by reactions called Fischer-Tropsch reactions, which produce organic compounds from hydrogen and carbon dioxide gas using catalysts called Fischer-Tropsch reactions, which produce organic compounds from hydrogen and carbon dioxide gas using catalysts.

The presence of magnetite in primitive meteorites formed from the solar nebula suggests that magnetite was present in the solar nebula.

The Germans used Fischer-Tropsch reactions to produce gasoline in World War II and the same process is used to produce gasoline in South Africa today. Fegley and his group hope if we could form a mixture of hydrogen and carbon dioxide gas in a lab and produce organic compounds then we could potentially find similar processes in the solar nebula.

The NAI research will combine laboratory experiments, observations with ground-based telescopes and spacecraft, and sample comet and asteroid material to discover how organic molecules are created in interstellar clouds and later are modified in the gas and dust disks around young stars. These disks, called protoplanetary disks, form around young stars. These disks, called protoplanetary disks, form around young stars, which are the source of our solar system.

While collapsing interstellar clouds are busy building solar systems, Jupiter's and Saturn's protoplanetary disks are constantly forming organic molecules that can be incorporated into asteroids and comets. The NAI research will combine laboratory experiments, observations with ground-based telescopes and spacecraft, and sample comet and asteroid material to discover how organic molecules are created in interstellar clouds and later are modified in the gas and dust disks around young stars.
traces infections are such a prob-
lem. We do this because bacteria
may be a reservoir for bacte-
ria that are protected and emerge
during recurrent infection.

The second most common bacterial infection in
humans after respiratory infec-
tions. They are thought to ac-
count for 100,000 hospital admis-
sions, 8 million physician office
visits and $1.6 billion in medical
care expenditures annually in the
United States. They affect mainly
women, 50 percent of whom are the first
to experience at least one UTI due
to recurrent infection. These bacteria.

from Page 1

4. (tie) Stanford University

3. University of California,

2. University of Pennsylvania

1. Duke University

The U.S. News rankings are based on the values of several factors, including:

- Quality of undergraduate programs
- Faculty resources
- Alumni giving
- Academic reputation

This year's results, to be pub-
lished on Monday, show that Ohio State
University, which has already been
data broken down into cate-
gories and assigned a weight
value to each of these categories.

For more information, go

The School of Engineering &
Technology at Washington University
offers a variety of degree programs in
areas such as mechanical, electrical,
and computer engineering.

We invite you to explore our
programs and learn more about
how we can help you achieve your
goals.

Washington University in St. Louis

Ron Loui, Ph.D. (right), associate professor of computer science in the School of Engineering & Applied Science, oversees the work of Michael Boever (left) and Lance Cali at the Center for Engineering Computing. Boever, from Maplewood-Richmond Heights High School, and Cali, from Marquette High School, were among 34 area high school students participating in the Solids Inc. Students and Teachers as Research Scientists program this summer. Loui was their mentor.

"Importantly, we have been supported and guided gen-
erally by those who preceded us and by those who are
leading and supporting the Campaign for Washington
University."

MARK S. WRIGHTON

U.S. News rankings

Engineering now 38th; business stays at No. 14 — from Page 1

ments by university chief execu-
tive officers and peer institu-
tions deal, as well as from data
gathered from each institution.

This data is broken down into cate-
gories and assigned a weight
value to each of these categories.

For more information, go

The School of Engineering &
Technology at Washington University
offers a variety of degree programs in
areas such as mechanical, electrical,
and computer engineering.
Leicht wins Frank L. Ashmore Award for service to CASE

The Council for Advancement and Support of Education (CASE) recently named Julia Leicht, associate vice chancellor for advancement, the 2003 Frank L. Ashmore Award winner for service to CASE and the advancement profession.

Leicht is being recognized for her work as a CASE volunteer and for her tireless efforts as a mentor for her peers. CASE volunteer leaders told Leicht that she had helped guide CASE's development throughout her work as a chair of CASE District 6, as a member of the CASE International Board of Trustees and then serving a two-year term as chair of that board. While serving on the board, she oversaw the creation of a new international headquarters building for CASE in Washington, D.C., and the appointment of the new chief executive to lead CASE's worldwide efforts.

Leicht also has a combination of bounded energy, organizational sympathy and excellence in her work on behalf of CASE, "mark on the advancement profession," said William N. Walker, vice president for public affairs at Dartmouth College. "The standard she has set in her volunteer involvement at all levels is inspiring, and one for others to emulate." The Ashmore Award is named in honor of Frank L. Ashmore, a former CASE vice president and executive director of the American College of Construction Lawyers, a predecessor organization of CASE. CASE's membership includes more than 100,000 alumni, students and institutions and key-12 K-12 schools in the United States, Canada, Mexico and 42 other countries. CASE is the largest nonprofit education association in terms of institutional membership, with more than 38,000 members.

Koff named director of Educational Skills Initiative

Robert H. Koff, Ph.D., has been named director of the Educational Skills Initiative in the office of the vice chancellor for educational initiatives, announced James E. McLeod, vice chancellor for students and dean of the College of Arts & Sciences.

In his new position, Koff will direct an initiative that will focus on ways to expand the intellectual, interests and educational skills of undergraduates with a focus on incoming freshmen. Koff will also have teaching and related responsibilities in the College of Arts & Sciences. He started at the University June 1.”

Koff began his career as a postdoctoral fellow at Oxford University and then as a faculty member at Stanford University. Three he participated in the Study of Undergraduate Education at Stanford, assisted in establishing the Stanford Freshman Seminar Program, and assisted in the design of survey to assess the impact of this approach. Koff also served as a consultant to many national organizations and a doctorate in clinical psychology from the University of Chicago. He is currently president of the National Council for the Registry of Health Services Providers.

University and then as a faculty member at Stanford University. Three he participated in the Study of Undergraduate Education at Stanford, assisted in establishing the Stanford Freshman Seminar Program, and assisted in the design of survey to assess the impact of this approach. Koff also served as a consultant to many national organizations and a doctorate in clinical psychology from the University of Chicago. He is currently president of the National Council for the Registry of Health Services Providers.

Koff previously served as sen- vice president of the Dartmouth Foundation, a post he held for 11 service president of the Dartmouth Foundation, a post he held for 11 years. There Koff was responsible for converting the institution into the support of efforts to commercialize Louis-based research in the life and plant sciences, commun- y, research institutions across the nation, including a number of forums and conferences. Koff served as director of the American School Super-intendent.

Koff has been recognized with an award for education and psychology and dean of the Office of Education at State University of New York at Albany. Koff began his career as a postdoctoral fellow at Oxford University and then as a faculty member at Stanford University. Three he participated in the Study of Undergraduate Education at Stanford, assisted in establishing the Stanford Freshman Seminar Program, and assisted in the design of survey to assess the impact of this approach. Koff also served as a consultant to many national organizations and a doctorate in clinical psychology from the University of Chicago. He is currently president of the National Council for the Registry of Health Services Providers.

University and then as a faculty member at Stanford University. Three he participated in the Study of Undergraduate Education at Stanford, assisted in establishing the Stanford Freshman Seminar Program, and assisted in the design of survey to assess the impact of this approach. Koff also served as a consultant to many national organizations and a doctorate in clinical psychology from the University of Chicago. He is currently president of the National Council for the Registry of Health Services Providers.

July 19

9:25 a.m. — A freshman Summer Academy student reported that between 3:30 a.m. and 6:30 a.m., an unknown person entered her unsecured residence in the Residential Hall and took her black Gap tote bag containing her Sony laptop computer. Total loss is estimated at $2,500.

July 11

Notables

Amy Walker, Ph.D. (left), assistant professor of chemistry in Arts & Sciences, and Amy Shen, Ph.D., assistant professor of mechanical engineering, flank Chancellor Mark S. Wrighton during a recent ceremony in his office. Wrighton presented plaques for Outstanding young scientists Amy Walker, Ph.D. (left), assistant professor of chemistry in Arts & Sciences, and Amy Shen, Ph.D., assistant professor of mechanical engineering, flank Chancellor Mark S. Wrighton during a recent ceremony in his office. Wrighton presented plaques for Outstanding young scientists Amy Walker, Ph.D. (left), assistant professor of chemistry in Arts & Sciences, and Amy Shen, Ph.D., assistant professor of mechanical engineering, flank Chancellor Mark S. Wrighton during a recent ceremony in his office. Wrighton presented plaques for Outstanding young scientists Amy Walker, Ph.D. (left), assistant professor of chemistry in Arts & Sciences, and Amy Shen, Ph.D., assistant professor of mechanical engineering, flank Chancellor Mark S. Wrighton during a recent ceremony in his office. Wrighton presented plaques for Outstanding young scientists Amy Walker, Ph.D. (left), assistant professor of chemistry in Arts & Sciences, and Amy Shen, Ph.D., assistant professor of mechanical engineering, flank Chancellor Mark S. Wrighton during a recent ceremony in his office. Wrighton presented plaques for Outstanding young scientists Amy Walker, Ph.D. (left), assistant professor of chemistry in Arts & Sciences, and Amy Shen, Ph.D., assistant professor of mechanical engineering, flank Chancellor Mark S. Wrighton during a recent ceremony in his office. Wrighton presented plaques for Outstanding young scientists Amy Walker, Ph.D. (left), assistant professor of chemistry in Arts & Sciences, and Amy Shen, Ph.D., assistant professor of mechanical engineering, flank Chancellor Mark S. Wrighton during a recent ceremony in his office. Wrighton presented plaques for Outstanding young scientists Amy Walker, Ph.D. (left), assistant professor of chemistry in Arts & Sciences, and Amy Shen, Ph.D., assistant professor of mechanical engineering, flank Chancellor Mark S. Wrighton during a recent ceremony in his office. Wrighton presented plaques for Outstanding young scientists Amy Walker, Ph.D. (left), assistant professor of chemistry in Arts & Sciences, and Amy Shen, Ph.D., assistant professor of mechanical engineering, flank Chancellor Mark S. Wrighton during a recent ceremony in his office. Wrighton presented plaques for Outstanding young scientists Amy Walker, Ph.D. (left), assistant professor of chemistry in Arts & Sciences, and Amy Shen, Ph.D., assistant professor of mechanical engineering, flank Chancellor Mark S. Wrighton during a recent ceremony in his office. Wrighton presented plaques for Outstanding young scientists Amy Walker, Ph.D. (left), assistant professor of chemistry in Arts & Sciences, and Amy Shen, Ph.D., assistant professor of mechanical engineering, flank Chancellor Mark S. Wrighton during a recent ceremony in his office. Wrighton presented plaques for Outstanding young scientists Amy Walker, Ph.D. (left), assistant professor of chemistry in Arts & Sciences, and Amy Shen, Ph.D., assistant professor of mechanical engineering, flank Chancellor Mark S. Wrighton during a recent ceremony in his office. Wrighton presented plaques for Outstanding young scientists Amy Walker, Ph.D. (left), assistant professor of chemistry in Arts & Sciences, and Amy Shen, Ph.D., assistant professor of mechanical engineering, flank Chancellor Mark S. Wrighton during a recent ceremony in his office. Wrighton presented plaques for Outstanding young scientists Amy Walker, Ph.D. (left), assistant professor of chemistry in Arts & Sciences, and Amy Shen, Ph.D., assistant professor of mechanical engineering, flank Chancellor Mark S. Wrighton during a recent ceremony in his office. Wrighton presented plaques for Outstanding young scientists Amy Walker, Ph.D. (left), assistant professor of chemistry in Arts & Sciences, and Amy Shen, Ph.D., assistant professor of mechanical engineering, flank Chancellor Mark S. Wrighton during a recent ceremony in his office. Wrighton presented plaques for Outstanding young scientists Amy Walker, Ph.D. (left), assistant professor of chemistry in Arts & Sciences, and Amy Shen, Ph.D., assistant professor of mechanical engineering, flank Chancellor Mark S. Wrighton during a recent ceremony in his office. Wrighton presented plaques for Outstanding young scientists Amy Walker, Ph.D. (left), assistant professor of chemistry in Arts & Sciences, and Amy Shen, Ph.D., assistant professor of mechanical engineering, flank Chancellor Mark S. Wrighton during a recent ceremony in his office. Wrighton presented plaques for Outstanding young scientists Amy Walker, Ph.D. (left), assistant professor of chemistry in Arts & Sciences, and Amy Shen, Ph.D., assistant professor of mechanical engineering, flank Chancellor Mark S. Wrighton during a recent ceremony in his office. Wrighton presented plaques for Outstanding young scientists Amy Walker, Ph.D. (left), assistant professor of chemistry in Arts & Sciences, and Amy Shen, Ph.D., assistant professor of mechanical engineering, flank Chancellor Mark S. Wrighton during a recent ceremony in his office. Wrighton presented plaques for Outstanding young scientists Amy Walker, Ph.D. (left), assistant professor of chemistry in Arts & Sciences, and Amy Shen, Ph.D., assistant professor of mechanical engineering, flank Chancellor Mark S. Wrighton during a recent ceremony in his office. Wrighton presented plaques for Outstanding young scientists Amy Walker, Ph.D. (left), assistant professor of chemistry in Arts & Sciences, and Amy Shen, Ph.D., assistant professor of mechanical engineering, flank Chancellor Mark S. Wrighton during a recent ceremony in his office. Wrighton presented plaques for Outstanding young scientists Amy Walker, Ph.D. (left), assistant professor of chemistry in Arts & Sciences, and Amy Shen, Ph.D., assistant professor of mechanical engineering, flank Chancellor Mark S. Wrighton during a recent ceremony in his office. Wrighton presented plaques for Outstanding young scientists Amy Walker, Ph.D. (left), assistant professor of chemistry in Arts & Sciences, and Amy Shen, Ph.D., assistant professor of mechanical engineering, flank Chancellor Mark S. Wrighton during a recent ceremony in his office. Wrighton presented plaques for Outstanding young scientists Amy Walker, Ph.D. (left), assistant professor of chemistry in Arts & Sciences, and Amy Shen, Ph.D., assistant professor of mechanical engineering, flank Chancellor Mark S. Wrighton during a recent ceremony in his office. Wrighton presented plaques for Outstanding young scientists Amy Walker, Ph.D. (left), assistant professor of chemistry in Arts & Sciences, and Amy Shen, Ph.D., assistant professor of mechanical engineering, flank Chancellor Mark S. Wrighton during a recent ceremony in his office. Wrighton presented plaques for Outstanding young scientists Amy Walker, Ph.D. (left), assistant professor of chemistry in Arts & Sciences, and Amy Shen, Ph.D., assistant professor of mechanical engineering, flank Chancellor Mark S. Wrighton during a recent ceremony in his office. Wrighton presented plaques for Outstanding young scientists Amy Walker, Ph.D. (left), assistant professor of chemistry in Arts & Sciences, and Amy Shen, Ph.D., assistant professor of mechanical engineering, flank Chancellor Mark S. Wrighton during a recent ceremony in his office. Wrighton presented plaques for Outstanding young scientists Amy Walker, Ph.D. (left), assistant professor of chemistry in Arts & Sciences, and Amy Shen, Ph.D., assistant professor of mechanical engineering, flank Chancellor Mark S. Wrighton during a recent ceremony in his office. Wrighton presented plaques for Outstanding young scientists Amy Walker, Ph.D. (left), assistant professor of chemistry in Arts & Sciences, and Amy Shen, Ph.D., assistant professor of mechanical engineering, flank Chan
Unveiling insulin insights

The research of Michael M. Mueckler

molecular biologist, and he's learned from it each time. The experience has helped him achieve an international reputation for innovative work in the areas of sugar metabolism and diabetes.

Michael M. Mueckler was a postdoctoral fellow at Massachusetts Institute of Technology in 1983. Mueckler discovered the first gene and protein that transport glucose into cells. The following year, he was recruited to Washington University, and three years later his laboratory cloned the gene for the glucose transporter 4 protein (Glut4).

The discovery brought new insights into the problems of obesity, insulin resistance and type 11 diabetes, all of which have reached epidemic levels among Americans. Another turning point was 2000 when then-grad student Haro Murata, M.D., Ph.D., and Paul Hruz, M.D., Ph.D., now an assistant professor of pediatrics, discovered in Mueckler's lab that drugs known as protease inhibitors — which are essential to approach the question, and he does all this with enormous energy and enthusiasm," says Philip D. Stahl, Ph.D., the Edward Mallinckrodt Jr. Professor of Cell Biology and Physiology and head of the department. "He's also intense and engaging, and he does a good job teaching medical and graduate students. He's fair but has high standards. He's also a great colleague and individual, and we're delighted to have him."

At home, Mueckler relaxes by watching movies and reading biographies, especially ones about scientists. Currently, though, he is reading a biography about Bob Dylan, which isn't surprising because he enjoys listening to music from classical to rock and also plays guitar. He also collects the instrument and owns 10-12 acoustic guitars and three electric. His personal favorite is an acoustic-jaguar-law mahogany with a cedar top and custom pearl inlay, custom made by Lance McCollum, a well-known California guitar maker.

Mueckler entered the University of Wisconsin with several scholarships. He earned a bachelor of arts in microbiology, graduating in 1976 with highest honors. He remained there for graduate school as a National Institutes of Health predoctoral trainee, earning a doctorate in experimental endocrinology the equivalent of a master's degree in molecular biology in 1982. After recruitment to Washington University as an assistant professor, he quickly rose through the ranks, becoming a full professor in 1995.

Today, he mostly enjoys analyzing data and designing experiments. He has also served as associate director of the Diabetes Research and Training Center and as editor in chief of the American Journal of Physiology: Endocrinology and Metabolism. He also enjoys working with students, and he received a Distinguished Service Teaching Award from the University of Wisconsin in 1991. He has taught a wonderful synergistic relationship that still exists," Mueckler says. "You don't really have interactions like these at many, many other medical schools, especially between the basic and clinical sciences. Many of my closest collaborators have been clinicians here at the School of Medicine. We sought out each other and formed close relationships that hopefully have been helpful for us all.

Michael M. Mueckler, Ph.D.

Title: Professor of cell biology and physiology

Years at the University: 17

Birthplace: Napoleon, Wis.

Education: B.A. in microbiology, University of Wisconsin, Madison, Wis.; Ph.D. in endocrinology, University of Wisconsin, Madison, Wis.

University positions: Associate director of the Diabetes Research and Training Center, Department of the American Diabetes Association, Outstanding Scientific Achievement Award, 1999; the Department of the American Diabetes Association, Outstanding Scientific Achievement Award, 2003; University Distinguished Service Teaching Award, 1999.

Graduate student Matthew Storck (left) and Michael M. Mueckler, Ph.D., professor of cell biology and physiology, review a Glut11 expression profile. Mueckler says one of the things he enjoys most about teaching is the interaction with students. "Unlike other top medical schools, Washington University nurtures and supports young faculty," Mueckler says. "It's not the sink-or-swim policy that exists at some universities. As Washington University, department chairs and division heads, for the most part, work hard to help young investigators in their research." Mueckler credits many senior faculty for helping his career along the way, including Stahl and Permutt. Mueckler says shortly after he arrived on campus, Permutt, then a professor, spent a year's sabbatical in Mueckler's lab to learn molecular biology and then a relative on the faculty. At the same time, Permutt taught Mueckler a tremendous amount about diabetes. "We developed a wonderful synergistic relationship that still exists," Mueckler says. "You don't really have interactions like these at many, many other medical schools, especially between the basic and clinical sciences. Many of my closest collaborators have been clinicians here at the School of Medicine. We sought out each other and formed close relationships that hopefully have been helpful for us all.

Graduate student Matthew Storck (left) and Michael M. Mueckler, Ph.D., professor of cell biology and physiology, review a Glut11 expression profile. Mueckler says one of the things he enjoys most about teaching is the interaction with students. "Unlike other top medical schools, Washington University nurtures and supports young faculty," Mueckler says. "It's not the sink-or-swim policy that exists at some universities. As Washington University, department chairs and division heads, for the most part, work hard to help young investigators in their research." Mueckler credits many senior faculty for helping his career along the way, including Stahl and Permutt. Mueckler says shortly after he arrived on campus, Permutt, then a professor, spent a year's sabbatical in Mueckler's lab to learn molecular biology and then a relative on the faculty. At the same time, Permutt taught Mueckler a tremendous amount about diabetes. "We developed a wonderful synergistic relationship that still exists," Mueckler says. "You don't really have interactions like these at many, many other medical schools, especially between the basic and clinical sciences. Many of my closest collaborators have been clinicians here at the School of Medicine. We sought out each other and formed close relationships that hopefully have been helpful for us all.

Graduate student Matthew Storck (left) and Michael M. Mueckler, Ph.D., professor of cell biology and physiology, review a Glut11 expression profile. Mueckler says one of the things he enjoys most about teaching is the interaction with students. "Unlike other top medical schools, Washington University nurtures and supports young faculty," Mueckler says. "It's not the sink-or-swim policy that exists at some universities. As Washington University, department chairs and division heads, for the most part, work hard to help young investigators in their research." Mueckler credits many senior faculty for helping his career along the way, including Stahl and Permutt. Mueckler says shortly after he arrived on campus, Permutt, then a professor, spent a year's sabbatical in Mueckler's lab to learn molecular biology and then a relative on the faculty. At the same time, Permutt taught Mueckler a tremendous amount about diabetes. "We developed a wonderful synergistic relationship that still exists," Mueckler says. "You don't really have interactions like these at many, many other medical schools, especially between the basic and clinical sciences. Many of my closest collaborators have been clinicians here at the School of Medicine. We sought out each other and formed close relationships that hopefully have been helpful for us all.

Graduate student Matthew Storck (left) and Michael M. Mueckler, Ph.D., professor of cell biology and physiology, review a Glut11 expression profile. Mueckler says one of the things he enjoys most about teaching is the interaction with students. "Unlike other top medical schools, Washington University nurtures and supports young faculty," Mueckler says. "It's not the sink-or-swim policy that exists at some universities. As Washington University, department chairs and division heads, for the most part, work hard to help young investigators in their research." Mueckler credits many senior faculty for helping his career along the way, including Stahl and Permutt. Mueckler says shortly after he arrived on campus, Permutt, then a professor, spent a year's sabbatical in Mueckler's lab to learn molecular biology and then a relative on the faculty. At the same time, Permutt taught Mueckler a tremendous amount about diabetes. "We developed a wonderful synergistic relationship that still exists," Mueckler says. "You don't really have interactions like these at many, many other medical schools, especially between the basic and clinical sciences. Many of my closest collaborators have been clinicians here at the School of Medicine. We sought out each other and formed close relationships that hopefully have been helpful for us all.

Graduate student Matthew Storck (left) and Michael M. Mueckler, Ph.D., professor of cell biology and physiology, review a Glut11 expression profile. Mueckler says one of the things he enjoys most about teaching is the interaction with students. "Unlike other top medical schools, Washington University nurtures and supports young faculty," Mueckler says. "It's not the sink-or-swim policy that exists at some universities. As Washington University, department chairs and division heads, for the most part, work hard to help young investigators in their research." Mueckler credits many senior faculty for helping his career along the way, including Stahl and Permutt. Mueckler says shortly after he arrived on campus, Permutt, then a professor, spent a year's sabbatical in Mueckler's lab to learn molecular biology and then a relative on the faculty. At the same time, Permutt taught Mueckler a tremendous amount about diabetes. "We developed a wonderful synergistic relationship that still exists," Mueckler says. "You don't really have interactions like these at many, many other medical schools, especially between the basic and clinical sciences. Many of my closest collaborators have been clinicians here at the School of Medicine. We sought out each other and formed close relationships that hopefully have been helpful for us all.