Reduction of a dislocation of the hip due to developmental dysplasia: Implications for the need for future surgery

Scott J. Luhmann  
*Washington University School of Medicine in St. Louis*

George S. Bassett  
*Washington University School of Medicine in St. Louis*

J. Eric Gordon  
*Washington University School of Medicine in St. Louis*

Mario Schootman  
*Washington University School of Medicine in St. Louis*

Perry L. Schoenecker  
*Washington University School of Medicine in St. Louis*

Follow this and additional works at: [http://digitalcommons.wustl.edu/open_access_pubs](http://digitalcommons.wustl.edu/open_access_pubs)

**Recommended Citation**


[http://digitalcommons.wustl.edu/open_access_pubs/1077](http://digitalcommons.wustl.edu/open_access_pubs/1077)
Reduction of a Dislocation of the Hip Due to Developmental Dysplasia: Implications for the Need for Future Surgery

By Scott J. Luhmann, MD, George S. Bassett, MD, J. Eric Gordon, MD, Mario Schootman, PhD, and Perry L. Schoenecker, MD

Background: Recent reports on the treatment of a dislocation of the hip due to developmental dysplasia have documented conflicting data on the importance of the ossific nucleus in the development of postreduction ischemic necrosis. Delaying reduction until the ossific nucleus is present bypasses the time-period of maximal osseous remodeling of the hip, thereby possibly increasing the need for future operations. We hypothesized that hips with an ossific nucleus are more likely to have subsequent reconstructive procedures.

Methods: A retrospective review of the medical records at two tertiary-care children’s hospitals was completed to identify all patients who had had reduction of a dislocation of the hip due to developmental dysplasia, performed between 1979 and 1993, when they were less than two years old. Patients were excluded if the medical records or radiographs were inadequate, the duration of follow-up was less than three years after the final reduction, a previous reduction had been performed at an outside facility, or the patient had a neuromuscular disease or a teratologic dislocation. We identified 124 patients (153 hips) who satisfied the criteria for inclusion. The average age at the time of the reduction was eleven months, and the average duration of follow-up was 7.2 years.

Results: Overall, fourteen of the sixty-three hips without an ossific nucleus had a reconstructive procedure: thirteen had a varus rotational osteotomy of the proximal part of the femur and one had a combined pelvic and varus rotational femoral osteotomy. Forty of the ninety hips with an ossific nucleus had a reconstructive procedure: twenty-seven had a varus rotational osteotomy, eight had a pelvic osteotomy, and five had a combined pelvic and varus rotational osteotomy (p < 0.05). In addition, secondary reconstructive procedures were performed in 17% (ten) of the fifty-nine patients who were less than six months old and in 35% (thirty-three) of the ninety-four patients who were at least six months old, which was a greater than twofold increase. The effect of age was further emphasized at the other age cutoff points.

Conclusion: Delaying the reduction of a dislocated hip until the appearance of the ossific nucleus more than doubles the need for future surgery to make the hip as anatomically normal as possible. Despite finding a slight increase in the rate of ischemic necrosis after reduction of the hips without an ossific nucleus, we advocate early reduction of a dislocation of a hip due to developmental dysplasia to optimize the development of the hip with the minimum number of operations.

Level of Evidence: Prognostic study, Level II-1 (retrospective study). See Instructions to Authors for a complete description of levels of evidence.

Recent reports have documented conflicting data on the importance of the presence of the ossific nucleus in the development of postreduction ischemic necrosis in dislocations due to developmental dysplasia of the hip1-3. The presence of the ossific nucleus has been theorized to confer protection against ischemic necrosis after reduction1. Animal studies have demonstrated that the presence of the ossific nucleus increases the stiffness of the femoral head, which hypothetically would reduce the compression of the vascular system of the femoral head at reduction4. In a previous report, we failed to identify an association between the status of the ossific nucleus and the prevalence of ischemic necrosis1. With
use of the criteria described by Bucholz and Ogden,
the overall prevalence of ischemic necrosis in our patient population
was 6% (nine of 153 hips). Ischemic necrosis developed in five
(8%) of the sixty-three hips in which the ossific nucleus was
absent and in four (4%) of ninety hips in which it was present
(p = 0.489). Previous treatment with a Pavlik harness, preopera-
tive use of traction, secondary reductions, and concomi-
tant adductor tenotomies at the time of the reduction were
not associated with postreduction ischemic necrosis.

A delay in the reduction of a dislocated hip, in order to
visualize the ossific nucleus of the femoral head, could have a
negative impact on the development of the hip. In a dislocated
hip, the ossific nucleus in the femoral head may not be present
until the patient is more than twelve months old. Maximal os-
escous remodeling of the hip occurs within the first year of life,
and delaying reduction may increase the need for future oper-
ations in order to normalize the anatomy of the hip joint. If
the remaining development of the acetabulum and the femo-
ral head is estimated to be insufficient, secondary reconstructive
procedures, such as a pelvic or femoral osteotomy, will be
needed to correct residual hip dysplasia.

The purpose of this study was to analyze the association
between the age of the patient as well as the status of the ossific
nucleus at the time of reduction and the frequency of surgical
procedures performed to correct the residual hip dysplasia af-
after reduction of a dislocation due to developmental dysplasia.
Our hypothesis was that more reconstructive procedures are
needed to normalize the hip joint if the reduction is delayed.

Materials and Methods

A computer search was completed to identify all patients
who had been managed because of developmental dyspla-
sia of the hip at our two tertiary-care children's hospitals be-
tween January 1, 1979, and December 31, 1993. The medical
records were reviewed to identify patients who were less than
two years old when they underwent reduction of a dislocation
of the hip that was due to developmental dysplasia. Patients
were excluded if their medical records or radiographs were in-
adequate, the duration of follow-up was less than three years
after the final reduction, a previous operative reduction had
been performed at another medical center, or the dislocation
was due to neuromuscular causes or was a teratological dislo-
cation. Patients who had been previously managed with a Pav-
lik harness were not excluded from this analysis. The patient
population in this study was previously analyzed to identify
the status of the ossific nucleus and the development of pos-
treduction ischemic necrosis.

We identified 124 patients with 153 dislocated hips who
met the study criteria for inclusion. There were 117 girls and
seven boys. The mean age at the time of the reduction was
eleven months (range, one to twenty-four months). Eighty-
four hips were in patients who were less than twelve months
old at the time of the reduction, and sixty-nine hips were in
patients who were more than twelve months old. The disloca-
tions were unilateral in ninety-five patients (seventy-four left
hips and twenty-one right hips) and bilateral in twenty-nine
patients. Treatment with a Pavlik harness was documented in
twenty-five of the 153 hip dislocations. The average duration
of follow-up was 7.0 years for hips with the ossific nucleus and
7.5 years for those without it. Overall, the average duration of
follow-up for the entire study population was 7.2 years (range,
3.0 to 16.3 years) after reduction.

A retrospective review of the medical charts and radi-
ographs was completed by individuals who were not involved
with the children's initial or subsequent care. The age at the
time of reduction, the method of reduction, the use of preopera-
tive traction, concomitant procedures at the time of reduc-
tion, and secondary operative procedures were documented
for all eligible patients. Treatment algorithms and techniques
for the management of dislocations due to developmental
dysplasia of the hip have been previously reported. All closed
reductions were performed with the patient under general an-
esthesia to allow gentle reduction of the hip. Fluoroscopy was
used in all hips, and arthrograms were additionally performed
in hips that had an equivocal reduction or were poorly visual-
ized with fluoroscopy. Eighty-one patients (65%; ninety-nine
hips) with a safe zone of <30°, as described by Ramsey et al.,
had a percutaneous adductor tenotomy. An open reduction
was performed if the hip was unstable following the initial
closed reduction or if a previous closed reduction had failed.
Medial approaches were an option if the hip was reducible,
but unstable, and the patient was less than one year old. An
anterior approach was used for hips that were irreducible, af-
ter a previously failed closed or open reduction, or if the pa-
tient was more than one year old. In this study, a medial
approach was used at the initial reduction in six hips. An ante-
or approach was used in eleven initial reduction attempts
and in all twenty-six secondary and tertiary reductions. After
the reduction (open or closed), all patients were managed
with a one and one-half spica cast with careful molding over
the posterior aspect of the greater trochanter with the hip in
the so-called human position described by Salter et al. After
July 1986, postoperative computerized axial tomography was
used to confirm anatomic reduction of the hip in all patients.
The hip was maintained in the initial cast between six and
eight weeks. A second cast was generally used if concentric re-
duction of the hip joint was present. After cast removal, an ab-
duction orthosis was used to maintain the hip at 60° of total
abduction. The orthosis was worn until the hip development,
as seen on serial radiographs, was considered to be normalized
or until a secondary reconstructive procedure was performed.
Failure of the reduction was defined as the lack of concentric
reduction of the femoral head within the acetabulum at any
time during treatment and included hips that had subluxated
or had frank redislocation. Failure to maintain concentric re-
duction necessitated the use of an additional general anes-
thetic for open reduction of the hip through an anterior
approach, with or without a concomitant varus rotational os-
teotomy to the proximal part of the femur (a varus rotational
osteotomy). Reductions of dislocated hips were performed at
the earliest time possible.

The primary indication for a varus rotational osteotomy
the proximal part of the femur at the time of the reduction was the need to improve the stability of the reduction; the osteotomy was included in the analysis as a reconstructive procedure. To reduce the risk of development of ischemic necrosis, a varus rotational osteotomy was not performed, at the time of the reduction, to treat decompression of the femoral head.

Radiographs performed at the time of the reduction were used to determine the status of the ossific nucleus. The ossific nucleus had been absent in sixty-three hips and present in ninety hips. In patients who were less than twelve months old, the ossific nucleus had been absent in fifty-seven hips and present in twenty-seven hips. In patients who were more than twelve months old, it had been absent in six hips and present in sixty-three.

Five attending pediatric orthopaedic surgeons had been involved in all of the reductions and had used similar treatment algorithms and techniques. Secondary periacetabular pelvic osteotomies and varus rotational osteotomies were performed after documentation of inadequate remodeling of the hip joint so that the long-term prognosis of the joint would not be jeopardized. The use of reconstructive procedures, their type and timing, was determined by the attending physician. The primary indications for secondary reconstructive procedures were failure of the acetabulum to undergo progressive development after reduction to within normal limits (for a minimum of three years after the reduction) and subluxation of the hip joint. In hips with acetabular dysplasia, without subluxation, the decision for reconstructive surgery was made on the basis of the age of the patient, the appearance and morphology of the hip joint, and the site of primary osseous abnormality. The acetabular index was used to follow the development of the hip after the reduction. The guidelines for normal hip development were an acetabular index that was $<25^\circ$ at the age of one year, $<20^\circ$ between two and three years of age, $<15^\circ$ at six years of age, and $<10^\circ$ at ten years of age.

**Statistical Methods**

We used SAS software (Statistical Analysis System, Cary, North Carolina) to perform all analyses. Chi-square tests were used to statistically test the association between the number of reconstructive procedures and the age at which reduction was performed. For patients with bilateral involvement, each hip was considered an independent occurrence for purposes of the statistical analysis. A $p$ value of $\leq 0.05$ was considered significant.

**Results**

The mean age of the fifty-one patients (sixty-three hips) in whom the ossific nucleus was absent at the time of the reduction was six months (range, one to seventeen months), and the mean age of the seventy-three patients (ninety hips) in whom it was present was fourteen months (range, three to twenty-three months). One hundred and thirty-six (89%) of the 153 hips were initially managed with closed reduction, and seventeen were managed with open reduction. Of the 136 initial closed reductions, 112 had a successful result and twenty-four failed to maintain a concentric reduction. Of the seventeen initial open reductions, fifteen had a successful result and two failed. Overall, twenty-six hips (twenty-four that had a closed reduction and two that had an open reduction) resubluxated or redislocated after the initial reduction; twenty-four of them were successfully relocated at the second reduction, which was always an open procedure. Both hips that had two unsuccessful reductions were successfully reduced at the third reduction, which was an open procedure.

In the sixty-three hips without an ossific nucleus, fourteen (22%) had a reconstructive procedure; two hips had a varus rotational osteotomy at the time of the initial reduction, and twelve had a secondary osteotomy (eleven had a varus rotational osteotomy and one, a combined varus rotational and pelvic osteotomy). In the ninety hips with an ossific nucleus, forty (44%) had a reconstructive procedure; nine had a varus rotational osteotomy at the time of the primary reduction, and thirty-one had a secondary osteotomy. The secondary reconstructive procedures included eighteen varus rotational osteotomies, eight pelvic osteotomies, and five combined varus rotational and pelvic osteotomies. The rate of reconstructive procedures in the hips with an ossific nucleus was double that in the hips without an ossific nucleus ($p < 0.05$).

The effect of age at the time of the reduction was assessed with use of six, nine, twelve, fifteen, and eighteen months of age as cutoff points (Table I). A secondary procedure was performed in ten (17%) of the fifty-nine patients who were less than six months old compared with thirty-three (35%) of the ninety-four patients who were more than six months old. The

<table>
<thead>
<tr>
<th>Age at Time of Reduction</th>
<th>No. of Hips That Had a Reconstructive Procedure</th>
<th>Age at Time of Reduction</th>
<th>No. of Hips That Had a Reconstructive Procedure</th>
<th>P Value *</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;6 mo (n = 59)</td>
<td>10 (17%)</td>
<td>≥6 mo (n = 94)</td>
<td>33 (35%)</td>
<td>0.0154</td>
</tr>
<tr>
<td>&lt;9 mo (n = 79)</td>
<td>12 (15%)</td>
<td>≥9 mo (n = 74)</td>
<td>31 (42%)</td>
<td>&lt;0.01</td>
</tr>
<tr>
<td>&lt;12 mo (n = 84)</td>
<td>13 (15%)</td>
<td>≥12 mo (n = 69)</td>
<td>30 (43%)</td>
<td>&lt;0.01</td>
</tr>
<tr>
<td>&lt;15 mo (n = 100)</td>
<td>20 (20%)</td>
<td>≥15 mo (n = 53)</td>
<td>23 (43%)</td>
<td>&lt;0.01</td>
</tr>
<tr>
<td>&lt;18 mo (n = 130)</td>
<td>26 (20%)</td>
<td>≥18 mo (n = 23)</td>
<td>17 (74%)</td>
<td>&lt;0.01</td>
</tr>
</tbody>
</table>

*Chi-square test.
Interestingly, in our analysis, we did not find an increase in the capacity of the acetabulum to remodel the dysplasia toward normal alignment dependent on many factors; however, the primary factor is necrosis of the subluxated hip joint provides poor stimulation of the acetabulum after reduction is dependent not only on the age of the patient population, we could not demonstrate whether it had an effect on the need for secondary reconstructive procedures. The capacity of the acetabulum to resume normal growth after reduction is dependent not only on the age of the patient at reduction but also on the inherent remaining growth potential of the acetabulum. The potential for growth and remodeling of the hip joint is maximal at birth and declines thereafter. Lindstrom et al. demonstrated that early treatment led to the best acetabular development, with the lowest acetabular indices in patients who were less than one year old and the highest in patients who were more than two years old. In general, the earlier the reduction of the hip the better its radiographic appearance, and hence the better its function. Malvitz and Weinstein, in a report on the long-term results in 152 hips, found that the early reductions were associated with better functional results, less proximal growth disturbances, and fewer degenerative changes. Additionally, when the radiographic results were less than anatomic, function tended to deteriorate over time. Unfortunately, the age beyond which a dysplastic hip cannot be expected to return to normal range is unknown. Analysis of our data supports early reduction of a dislocation of the hip that is due to developmental dysplasia, thereby minimizing the need for future reconstructive procedures. Despite the findings of this analysis, the development of the acetabulum is most dependent on the concentric reduction of the femoral head within the acetabulum. The status of the ossific nucleus and the age of the patient at the time of the reduction most likely play a minor role in the development of the hip compared with that played by the location of the femoral head.

A review of the literature on developmental dysplasia of the hip demonstrated that the frequency of secondary reconstructive procedures after reduction has ranged from 38% to 80% in longer-term follow-up studies. Powell et al., in a study of forty-nine hips, reported that the overall frequency of secondary procedures was 67%. In that study, the rate of secondary procedures was 29% for patients who were less than twelve months old at the time of reduction, 49% for those who were twelve to twenty-four months old, and 79% for those who were more than two years old. Roose et al., in a study of twenty-nine hips that had a medial open reduction, reported that the overall frequency of secondary procedures was 38%. The mean age of the patients who had not had a reconstructive procedure was 7.2 months at the time of the reduction, whereas the mean age of the patients who had a secondary surgery was sixteen months at the time of reduction. There is evidence in the literature that hips that are concentrically reduced earlier in life undergo fewer secondary reconstructive procedures to normalize the hip joint. Interestingly, our data demonstrated three significantly (p < 0.05) distinct age-groups: less than six months of age, six to seventeen months of age, and eighteen months of age or older. This finding most likely represents a continuum of the acetabular response to the reduction, with early reductions (those performed in patients who are less than six months old) associated with the best acetabular response; reductions in the six to seventeen-month age-group, with a moderate response; and those in the eighteen month or older age-group, with the least response. The duration of follow-up for our patients ranged from three years to sixteen years and four months. A longer duration of follow-up will un-

Discussion

The long-term goal of the treatment of developmental dysplasia of the hip is an acetabulum and femoral head that are within the normal range of alignment at the completion of skeletal growth. Normal development of the hip joint is dependent upon many factors; however, the primary factor is concentric reduction of the femoral head within the acetabulum. After reduction of the hip joint, long-term maintenance of the concentric reduction is essential to ensure continued development into the normal range. In addition, a subluxated hip joint provides poor stimulation of the acetabulum to remodel the dysplasia toward normal alignment. Interestingly, in our analysis, we did not find an increase in secondary reconstructive procedures, or an increase in ischemic necrosis, when the hips required a secondary reduction because of subluxation. Four (44%) of the nine hips with ischemic necrosis underwent a reconstructive procedure (a pelvic osteotomy and a varus rotational osteotomy in two hips each) compared with fifty-four (35%) of all 153 hips in this study. Because of the low frequency of ischemic necrosis in our patient population, we could not demonstrate whether it had an effect on the need for secondary reconstructive procedures.

The data were additionally analyzed to count concomitant operations, such as a varus rotational osteotomy and pelvic osteotomy, as two separate reconstructive procedures. The premise for this was based on the concept that more severely dysplastic hips would require osteotomies on both sides of the hip. However, when this analysis was completed, no new significant findings were demonstrated with respect to patient age or the status of the ossific nucleus.

Analysis of other factors, such as the side of the dislocation, treatment with a Pavlik harness, preoperative traction, unilateral compared with bilateral involvement, closed compared with open reduction, approach of the open reduction, and failed primary reduction, demonstrated no differences with respect to the frequency of reconstructive procedures.
doubtedly show an increase in the number of future operations for both groups. On the basis of our experience, we believe that it is unlikely that the relative difference between the groups will change enough to alter the findings of this analysis. The ossific nucleus can usually be visualized in normal hips at around six to eight months of age. However, in dislocated hips, the ossific nucleus may not be seen until up to seventeen months of age. Delaying reduction until visualization of the ossific nucleus has been advocated as a way to minimize the risk of development of ischemic necrosis of the femoral head. Our concern with this approach was that the delay would increase the need for secondary reconstructive procedures since the time of maximum acetabular remodeling would be bypassed. A delay in the reduction of a dislocated hip until the appearance of the ossific nucleus increased the frequency of reconstructive procedures in our patient population. Therefore, we advocate early reduction of a dislocated hip due to developmental dysplasia to optimize the development of the acetabulum and the femur with the minimum number of operative procedures.

References


