Money changes everything

By JENNY EVSEEN

April 15 rolls around, money on most people’s minds — whether delaying filing taxes or anxiously awaiting a refund. After all, as many have said: Money changes everything.

Now, psychologists have published research that supports that claim.

Studying delayed gratification and risk, researchers found that people are more willing to wait for full monetary rewards than they are for consumable rewards, namely, beer, candy and soda.

The findings, published in a recent edition of Psychological Science, have far-reaching implications for many fields, including marketing, economics and the psychology of self-control.

Leonard S. Green, Ph.D., professor of psychology in Arts & Sciences, working with former graduate student Jesse Leonard, analyzed 80,000 survey responses from more than 600,000 students.

They found a large area in Earth’s lower mantle beneath eastern Asia where water is dawning out the seismic waves from earthquakes.

Wysession’s research is described in the forthcoming monograph “Earth’s Deep Water Cycle,” to be published by the American Geophysical Union.

The traditional method, seismologists use to image the Earth’s interior is to measure the speed of seismic waves. Using wave speeds alone is a problem, however, because variations cannot be distinguished.

An increasingly popular method, which Wysession describes in his monograph “Earth’s Deep Water Cycle,” to be published by the American Geophysical Union.

Tumor motion a key to lung cancer treatment

By GWIN ERICKSON

Advances in radiation therapy for cancer have made it possible to fine-tune radiation beams so they match the shape and position of a patient’s tumor nearly anywhere in the body. But tumors that grow, such as those in the lung — which can change position over time — each breath — are a special problem for radiation oncologists.

A School of Medicine group has studied the way lung tissues move during breathing in hopes of improving radiation as a treatment for lung cancer.

While surgical removal of a malignant tumor is the preferred way to treat lung cancer, surgery may not be feasible if medical conditions make the operation very risky or if the tumor has grown into structures that cannot be removed.

In such cases, as long as the cancer has not metastasized, radiation therapy offers a real chance for cure. Studies show that 3-D techniques that deliver high doses of radiation in the precise shape of the tumor are more effective than older techniques.

“Ideally, the radiation should be delivered to as small an area as possible so normal tissue near the tumor isn’t damaged,” said Daniel Low, Ph.D., professor of radiation oncology and chairman of the volume Medical Physics Division. “But with a lung tumor, you need to irradiate a larger area if you want to encompass the tumor as it moves. One option to avoid this is to just turn on the radiation beams during a certain phase of the breathing cycle, but that assumes that the tumor returns to the same place with each breath.”

On the contrary, Low and his colleagues have found that people’s breathing can be quite chaotic, so they have developed mathematical descriptions of the motions of different parts of the lung as people breathe.

Low said that people change the speed of their inhalation and exhalation in response to their breathing and to change the volume.

Tumor motion asynchrony was the case: it could not be treated by conventional radiation therapy. Patients needed to be treated with a highly precise technique that could deliver high doses of radiation to the tumor while minimizing radiation to normal tissue.

Wysession’s research is described in his monograph “Earth’s Deep Water Cycle,” to be published by the American Geophysical Union.

Wood had taken on the role of the “Project Leader” for the program, which is open to juniors at eight institutions to have more than one student selected for 2007; only the University of Chicago, with three scholars this year, had more.

The 65 Scholars in the 2007 class were selected from among 385 candidates nominated by 280 colleges and universities. Washington University is one of only eight institutions to have more than one student selected for 2007; only the University of Chicago, with three scholars this year, had more.

The researchers found that people are more willing to wait for full monetary rewards than they are for consumable rewards, such as soda.

Marketing, economics and the psychology of self-control are the fields that benefit most from this research.

Leonard S. Green, Ph.D., professor of psychology, along with their graduate student Jesse Leonard, analyzed 80,000 survey responses from more than 600,000 students.

They found a large area in Earth’s lower mantle beneath eastern Asia where water is dawning out the seismic waves from earthquakes.

Wysession’s research is described in the forthcoming monograph “Earth’s Deep Water Cycle,” to be published by the American Geophysical Union.

The traditional method, seismologists use to image the Earth’s interior is to measure the speed of seismic waves. Using wave speeds alone is a problem, however, because variations cannot be distinguished.

An increasingly popular method, which Wysession describes in his monograph “Earth’s Deep Water Cycle,” to be published by the American Geophysical Union.

Tumor motion a key to lung cancer treatment

By GWIN ERICKSON

Advances in radiation therapy for cancer have made it possible to fine-tune radiation beams so they match the shape and position of a patient’s tumor nearly anywhere in the body. But tumors that grow, such as those in the lung — which can change position over time — each breath — are a special problem for radiation oncologists.

A School of Medicine group has studied the way lung tissues move during breathing in hopes of improving radiation as a treatment for lung cancer.

While surgical removal of a malignant tumor is the preferred way to treat lung cancer, surgery may not be feasible if medical conditions make the operation very risky or if the tumor has grown into structures that cannot be removed.

In such cases, as long as the cancer has not metastasized, radiation therapy offers a real chance for cure. Studies show that 3-D techniques that deliver high doses of radiation in the precise shape of the tumor are more effective than older techniques.

“Ideally, the radiation should be delivered to as small an area as possible so normal tissue near the tumor isn’t damaged,” said Daniel Low, Ph.D., professor of radiation oncology and chairman of the volume Medical Physics Division. “But with a lung tumor, you need to irradiate a larger area if you want to encompass the tumor as it moves. One option to avoid this is to just turn on the radiation beams during a certain phase of the breathing cycle, but that assumes that the tumor returns to the same place with each breath.”

On the contrary, Low and his colleagues have found that people’s breathing can be quite chaotic, so they have developed mathematical descriptions of the motions of different parts of the lung as people breathe.

Low said that people change the speed of their inhalation and exhalation in response to their breathing and to change the volume.

Tumor motion asynchrony was the case: it could not be treated by conventional radiation therapy. Patients needed to be treated with a highly precise technique that could deliver high doses of radiation to the tumor while minimizing radiation to normal tissue.

Wysession’s research is described in his monograph “Earth’s Deep Water Cycle,” to be published by the American Geophysical Union.

Wood had taken on the role of the “Project Leader” for the program, which is open to juniors at eight institutions to have more than one student selected for 2007; only the University of Chicago, with three scholars this year, had more.

The 65 Scholars in the 2007 class were selected from among 385 candidates nominated by 280 colleges and universities. Washington University is one of only eight institutions to have more than one student selected for 2007; only the University of Chicago, with three scholars this year, had more.

The researchers found that people are more willing to wait for full monetary rewards than they are for consumable rewards, such as soda.

Marketing, economics and the psychology of self-control are the fields that benefit most from this research.

Leonard S. Green, Ph.D., professor of psychology, along with their graduate student Jesse Leonard, analyzed 80,000 survey responses from more than 600,000 students.

They found a large area in Earth’s lower mantle beneath eastern Asia where water is dawning out the seismic waves from earthquakes.

Wysession’s research is described in the forthcoming monograph “Earth’s Deep Water Cycle,” to be published by the American Geophysical Union.

The traditional method, seismologists use to image the Earth’s interior is to measure the speed of seismic waves. Using wave speeds alone is a problem, however, because variations cannot be distinguished.

An increasingly popular method, which Wysession describes in his monograph “Earth’s Deep Water Cycle,” to be published by the American Geophysical Union.

Tumor motion a key to lung cancer treatment

By GWIN ERICKSON

Advances in radiation therapy for cancer have made it possible to fine-tune radiation beams so they match the shape and position of a patient’s tumor nearly anywhere in the body. But tumors that grow, such as those in the lung — which can change position over time — each breath — are a special problem for radiation oncologists.

A School of Medicine group has studied the way lung tissues move during breathing in hopes of improving radiation as a treatment for lung cancer.

While surgical removal of a malignant tumor is the preferred way to treat lung cancer, surgery may not be feasible if medical conditions make the operation very risky or if the tumor has grown into structures that cannot be removed.

In such cases, as long as the cancer has not metastasized, radiation therapy offers a real chance for cure. Studies show that 3-D techniques that deliver high doses of radiation in the precise shape of the tumor are more effective than older techniques.

“Ideally, the radiation should be delivered to as small an area as possible so normal tissue near the tumor isn’t damaged,” said Daniel Low, Ph.D., professor of radiation oncology and chairman of the volume Medical Physics Division. “But with a lung tumor, you need to irradiate a larger area if you want to encompass the tumor as it moves. One option to avoid this is to just turn on the radiation beams during a certain phase of the breathing cycle, but that assumes that the tumor returns to the same place with each breath.”

On the contrary, Low and his colleagues have found that people’s breathing can be quite chaotic, so they have developed mathematical descriptions of the motions of different parts of the lung as people breathe.

Low said that people change the speed of their inhalation and exhalation in response to their breathing and to change the volume.

Tumor motion asynchrony was the case: it could not be treated by conventional radiation therapy. Patients needed to be treated with a highly precise technique that could deliver high doses of radiation to the tumor while minimizing radiation to normal tissue.

Wysession’s research is described in his monograph “Earth’s Deep Water Cycle,” to be published by the American Geophysical Union.

Wood had taken on the role of the “Project Leader” for the program, which is open to juniors at eight institutions to have more than one student selected for 2007; only the University of Chicago, with three scholars this year, had more.

The 65 Scholars in the 2007 class were selected from among 385 candidates nominated by 280 colleges and universities. Washington University is one of only eight institutions to have more than one student selected for 2007; only the University of Chicago, with three scholars this year, had more.

The researchers found that people are more willing to wait for full monetary rewards than they are for consumable rewards, such as soda.

Marketing, economics and the psychology of self-control are the fields that benefit most from this research.

Leonard S. Green, Ph.D., professor of psychology, along with their graduate student Jesse Leonard, analyzed 80,000 survey responses from more than 600,000 students.

They found a large area in Earth’s lower mantle beneath eastern Asia where water is dawning out the seismic waves from earthquakes.

Wysession’s research is described in the forthcoming monograph “Earth’s Deep Water Cycle,” to be published by the American Geophysical Union.

The traditional method, seismologists use to image the Earth’s interior is to measure the speed of seismic waves. Using wave speeds alone is a problem, however, because variations cannot be distinguished.

An increasingly popular method, which Wysession describes in his monograph “Earth’s Deep Water Cycle,” to be published by the American Geophysical Union.
Eighteen academic areas ranked in Top 10

BY ANDY CLENDENEN

Eight WUSTL schools, academic areas rose significantly in the rankings. The U.S. News & World Report rankings of graduate and professional programs, released March 30.

For a complete list of these rankings, visit news.wustl.edu/rankings.

At the School of Medicine, several academic areas rose significantly in the rankings. The U.S. News & World Report rankings of graduate and professional programs, released March 30.

By Andy Clendenen

...
Researchers at the University and elsewhere recently huddled at the Saint Louis Science Center to probe the mysteries of a nearly 2,000-year-old baby mummy.

The mummy, part of the Science Center’s collection of artifacts for two decades, went on public display March 15 in conjunction with the arrival of an IMAX film on mummies.

The niece of a St. Louis dentist donated the mummy to the Science Center in 1985. Her uncle purchased it during a trip to the Middle East around the beginning of the 20th century.

Parts of the mummy’s wrapping had been cut away, revealing the baby’s facial features, neck and chest. To learn more without inflicting further damage, scientists called to the Malinckrodt Institute of Radiology at the School of Medicine.

David F. Hildebolt, D.D.S., Ph.D., associate professor of radiology, led a team that used X-ray computed tomography (CT) scanning to create 3-D images of the mummy, which allowed the researchers to virtually remove the mummy’s wrappings and peel back its skin.

Using data from the CT scans, Hildebolt and colleagues determined that the mummy was a boy. Because it was near the time of death, they looked at the development of his thorax, closure of the umbilical cord and formation of his hands, all of which were near completion by 7-8 months old when he died.

The team also found evidence of procedures often used in mummification. The baby’s brain, for example, had been removed. In an etiology based on the mummy’s ethmoid bone, which separates the nasal cavity from the brain. His liver, stomach, lungs and intestines were removed from the abdomen.

“Generally, the heart was not removed during mummification because the Egyptians thought it was the seat of the soul,” Hildebolt said. “They believed the soul after death would wander among the stars until it was able to return to the body.”

From left) Charles F. Hildebolt, D.D.S., Ph.D.; Li Cao, M.D., a staff scientist in human genetics; and Anne Bowcock, Ph.D., take core samples from the approximately 2,000-year-old mummified boy for DNA testing at the Saint Louis Science Center. The School of Medicine researchers were among national and international researchers using CT scans to virtually unwrap Science Center’s mummy.

The scans showed extensive damage to the mummy’s hands. Parts of the mummy’s wrappings and linaments were removed to a radiocarbon dating firm in Florida. The firm’s analysis found a 95 percent probability that the boy’s brief life occurred sometime between 60 B.C. and 150 A.D., likely the time when Egypt was a province of the Roman Empire, Hildebolt said.

The CT scans also revealed a amulet placed throughout the body. Hildebolt said this item’s condition and the superior quality of the mummification techniques suggest that the boy was from a middle-class family that could afford to pay for such services. Historians believe that when Egypt was a Roman province, both Egyptians and Romans mummies had family members mummified.

Hildebolt obtained DNA samples from different areas of the mummy and gave them to John Cirrito, Ph.D., professor of medicine and of genetics in psychiatry, for analysis. Bowcock’s group was able to extract DNA from three of the samples and to sequence DNA from the mitochondria, energy making structures in human cells that are descended from symbiotic bacteria. Mitochon- dria are passed down through the mother, and therefore the DNA suggested the boy’s moth- er might have been European and father be Middle Eastern. DNA from samples sent to the School of Medicine also revealed a genetic mutation in the boy’s Y chromosome.

Charles F. Hildebolt, D.D.S., Ph.D.; Li Cao, M.D., a staff scientist in human genetics; and Anne Bowcock, Ph.D., take core samples from the approximately 2,000-year-old mummified boy for DNA testing at the Saint Louis Science Center. The School of Medicine researchers were among national and international researchers using CT scans to virtually unwrap Science Center’s mummy.

Among other accomplishments, Hildebolt and his colleagues have studied the effects of antibiotics against amyloid beta, a key component of the plaques that appear in the brains of Alzheimer’s patients. Holtzman’s group, together with collaborators at Lilly Co. and Co., showed the antibiotics could decrease amyloid plaques over months in mice. In addition, one antibiotic improved memory function in male mice.

A human form of an antibody is now being tested. Researchers in Holtzman’s lab, including John Cirrito, Ph.D., postdoctoral research scholar, and Randy Hottman, M.D., assistant professor of neurology, have also developed ways to monitor the production and clearance of amyloid beta in both mice and humans. They hope the tech- niques will help answer lingering questions about whether the brains of Alzheimer’s patients make too much amyloid beta or fail to clear it fast enough. The answers will help scientis- tics working to develop new di- agnostic tests and treatments.

In addition, spinal fluid tests developed with colleagues including Morris Anne Fagan, Ph.D., research associate professor of neurology at Washington University School of Medicine, M.D., professor of radiology, sug- gest that Alzheimer’s changes in the brain can be detected years before clinical symptoms develop. Holtzman is a past recipient of the Potamkin Prize from the American Association for the Study of Neurodegeneration. His lab also received a MERIT award from the National Institute on Aging and a Zenith Award from the Alzhei- mer’s Association.

Type 2 diabetic patients needed for study of blood fat, heart health

Type 2 diabetic patients needed for study of blood fat, heart health

By David Holtzman

Holtzman received the honor from the Alzheimer’s Association. He is a past recipient of the Alumni Endowed Professor of Cardio- vascular Diseases and director of the Division of Cardiovascular Diseases, is principal investigator of the grant.

“We were one of the few institutions in the country that received this prestigious award and we plan to use it to support research that will help push the envelope in research that can lead to new treatments,” Schaffer said.

In an earlier study of mice, the research group found that when more fat entered heart muscle cells, the mice developed problems with the relax- ation phase of the heart’s pumping activity and a rise in the absence of blood sugar elevation. Abnor- malities in the relaxation phase of the heart cycle are often the earliest signs of heart problems in people with diabetes, according to Schaffer. This mouse study gave us further proof that fats alone could play an important role in these early heart problems,” Schaffer said. “We now, want to find if people with Type 2 diabetes, and especially with elevated blood-fat levels also show some of these early signs of heart dysfunction — even though they may not have any outward symptoms or heart attacks, as shortness of breath or fluid buildup.”

If the researchers can establish a link between high levels of fat and abnormal heart func- tion, that would suggest diabetes patients benefit greatly from new, more aggressive strategies to lower blood-fat levels.

“Type 2 Diabetes, and especially those who have elevated blood-fat levels, we think would have even more benefit from new, more aggressive strategies to lower blood-fat levels.”

Linda Peterson, M.D., assistant professor of medicine and a cardiologist at Barnes-Jewish Hospital, join Schaffer in leading the study, which is part of a National Institutes of Health-funded program called Planning Interventional Studies of the Diabetic Heart. David P. Kiley, M.D., the Alumni Endowed Professor of Cardio- vascular Diseases and director of the Division of Cardiovascular Diseases, is principal investigator of the grant.

“We were one of the few institutions in the country that received this prestigious award and we plan to use it to support research that will help push the envelope in research that can lead to new treatments,” Schaffer said.

In an earlier study of mice, the research group found that when more fat entered heart muscle cells, the mice developed problems with the relax- ation phase of the heart’s pumping activity and a rise in the absence of blood sugar elevation. Abnor- malities in the relaxation phase of the heart cycle are often the earliest signs of heart problems in people with diabetes, according to Schaffer. This mouse study gave us further proof that Holtzman received the honor from the Alzheimer’s Association. He is a past recipient of the Alumni Endowed Professor of Cardio-vascular Diseases and director of the Division of Cardiovascular Diseases, is principal investigator of the grant.

“We were one of the few institutions in the country that received this prestigious award and we plan to use it to support research that will help push the envelope in research that can lead to new treatments,” Schaffer said.

In an earlier study of mice, the research group found that when more fat entered heart muscle cells, the mice developed problems with the relax- ation phase of the heart’s pumping activity and a rise in the absence of blood sugar elevation. Abnor- malities in the relaxation phase of the heart cycle are often the earliest signs of heart problems in people with diabetes, according to Schaffer. This mouse study gave us further proof that Holtzman received the honor from the Alzheimer’s Association. He is a past recipient of the Alumni Endowed Professor of Cardio-vascular Diseases and director of the Division of Cardiovascular Diseases, is principal investigator of the grant.

“We were one of the few institutions in the country that received this prestigious award and we plan to use it to support research that will help push the envelope in research that can lead to new treatments,” Schaffer said.

In an earlier study of mice, the research group found that when more fat entered heart muscle cells, the mice developed problems with the relax- ation phase of the heart’s pumping activity and a rise in the absence of blood sugar elevation. Abnor- malities in the relaxation phase of the heart cycle are often the earliest signs of heart problems in people with diabetes, according to Schaffer. This mouse study gave us further proof that
Lectures

Thursday, April 5
3 p.m. McNair Scholars Program: "Understanding the Genetics of Folic Acid: A Potential Treatment for Neurological Disturbances". P. V. D'Amato, professor of neurology and biological sciences, Boston University School of Medicine.

Friday, April 6
10 a.m. Undergraduate Research Symposium: "The Effect of Temperature on the Growth Rate of Escherichia coli". S. Baker, freshman, and G. White, professor of biological sciences, Webster University.

Saturday, April 7
10 a.m. National Science Foundation: "The Role of the Egg Capsule in the Development of Embryonic Phenotypes". J. Brown, graduate student, and T. Murphy, professor of biology, University of Missouri-St. Louis.

Monday, April 9
3 p.m. McNair Scholars Program: "The Impact of Genetically Modified Crops on the Environment". J. Kim, graduate student, and J. Lee, professor of environmental studies, Webster University.

Tuesday, April 10
10 a.m. National Science Foundation: "The Role of the Egg Capsule in the Development of Embryonic Phenotypes". J. Brown, graduate student, and T. Murphy, professor of biology, University of Missouri-St. Louis.

Wednesday, April 11
10 a.m. Undergraduate Research Symposium: "The Effect of Temperature on the Growth Rate of Escherichia coli". S. Baker, freshman, and G. White, professor of biological sciences, Webster University.

Thursday, April 12
3 p.m. McNair Scholars Program: "Understanding the Genetics of Folic Acid: A Potential Treatment for Neurological Disturbances". P. V. D'Amato, professor of neurology and biological sciences, Boston University School of Medicine.

Friday, April 13
10 a.m. Undergraduate Research Symposium: "The Effect of Temperature on the Growth Rate of Escherichia coli". S. Baker, freshman, and G. White, professor of biological sciences, Webster University.

Saturday, April 14
10 a.m. National Science Foundation: "The Role of the Egg Capsule in the Development of Embryonic Phenotypes". J. Brown, graduate student, and T. Murphy, professor of biology, University of Missouri-St. Louis.

Monday, April 16
3 p.m. McNair Scholars Program: "Understanding the Genetics of Folic Acid: A Potential Treatment for Neurological Disturbances". P. V. D'Amato, professor of neurology and biological sciences, Boston University School of Medicine.

Tuesday, April 17
10 a.m. Undergraduate Research Symposium: "The Effect of Temperature on the Growth Rate of Escherichia coli". S. Baker, freshman, and G. White, professor of biological sciences, Webster University.

Wednesday, April 18
10 a.m. National Science Foundation: "The Role of the Egg Capsule in the Development of Embryonic Phenotypes". J. Brown, graduate student, and T. Murphy, professor of biology, University of Missouri-St. Louis.

Thursday, April 19
3 p.m. McNair Scholars Program: "Understanding the Genetics of Folic Acid: A Potential Treatment for Neurological Disturbances". P. V. D'Amato, professor of neurology and biological sciences, Boston University School of Medicine.

Friday, April 20
10 a.m. Undergraduate Research Symposium: "The Effect of Temperature on the Growth Rate of Escherichia coli". S. Baker, freshman, and G. White, professor of biological sciences, Webster University.

Saturday, April 21
10 a.m. National Science Foundation: "The Role of the Egg Capsule in the Development of Embryonic Phenotypes". J. Brown, graduate student, and T. Murphy, professor of biology, University of Missouri-St. Louis.

Monday, April 22
3 p.m. McNair Scholars Program: "Understanding the Genetics of Folic Acid: A Potential Treatment for Neurological Disturbances". P. V. D'Amato, professor of neurology and biological sciences, Boston University School of Medicine.

Tuesday, April 23
10 a.m. Undergraduate Research Symposium: "The Effect of Temperature on the Growth Rate of Escherichia coli". S. Baker, freshman, and G. White, professor of biological sciences, Webster University.

Wednesday, April 24
10 a.m. National Science Foundation: "The Role of the Egg Capsule in the Development of Embryonic Phenotypes". J. Brown, graduate student, and T. Murphy, professor of biology, University of Missouri-St. Louis.

Thursday, April 25
3 p.m. McNair Scholars Program: "Understanding the Genetics of Folic Acid: A Potential Treatment for Neurological Disturbances". P. V. D'Amato, professor of neurology and biological sciences, Boston University School of Medicine.

Friday, April 26
10 a.m. Undergraduate Research Symposium: "The Effect of Temperature on the Growth Rate of Escherichia coli". S. Baker, freshman, and G. White, professor of biological sciences, Webster University.

Saturday, April 27
10 a.m. National Science Foundation: "The Role of the Egg Capsule in the Development of Embryonic Phenotypes". J. Brown, graduate student, and T. Murphy, professor of biology, University of Missouri-St. Louis.

Monday, April 30
3 p.m. McNair Scholars Program: "Understanding the Genetics of Folic Acid: A Potential Treatment for Neurological Disturbances". P. V. D'Amato, professor of neurology and biological sciences, Boston University School of Medicine.

Tuesday, May 1
10 a.m. Undergraduate Research Symposium: "The Effect of Temperature on the Growth Rate of Escherichia coli". S. Baker, freshman, and G. White, professor of biological sciences, Webster University.

Wednesday, May 2
10 a.m. National Science Foundation: "The Role of the Egg Capsule in the Development of Embryonic Phenotypes". J. Brown, graduate student, and T. Murphy, professor of biology, University of Missouri-St. Louis.

Thursday, May 3
3 p.m. McNair Scholars Program: "Understanding the Genetics of Folic Acid: A Potential Treatment for Neurological Disturbances". P. V. D'Amato, professor of neurology and biological sciences, Boston University School of Medicine.

Friday, May 4
10 a.m. Undergraduate Research Symposium: "The Effect of Temperature on the Growth Rate of Escherichia coli". S. Baker, freshman, and G. White, professor of biological sciences, Webster University.

Saturday, May 5
10 a.m. National Science Foundation: "The Role of the Egg Capsule in the Development of Embryonic Phenotypes". J. Brown, graduate student, and T. Murphy, professor of biology, University of Missouri-St. Louis.
Examining American black history from the Turkish perspective

BY BARBARA REA

A

clamored essayist and cul-

tural critic Gerald L. Early, 

Ph.D., will give this year’s Phi Beta Kappa Lecture for the Arts & Sciences at 4 p.m. April 10 in Graham Chapel.

His talk, which is free and open to the public, will be on “Baldwin and the Bosporus or How TanglewoodTs Annual Black History Month to Students in Turkey.”

The Baldwin reference is to James Baldwin, one of the most influen-
tial black writers in America.

Early is the Merle Kling Profe-
sor of Modern Letters and profes-
sor of German, English, African & African American studies and American cultural studies, as well as director of the Center for Humanities, all in Arts & Sci-
cences.

Last fall Early received the Phi Beta Kappa Award for Disting-

uished Service to the University, a recogni-
tion that is normally awarded to an administra-
tive body for significant contributions in the humanities.

From Muhammad Ali to Mo-

town, from Miles Davis to James Brown, Early writes on the modern American condition from a per-

sonal perspective.

His latest book, “This Is Where I Came From,” is the story of a black baby born in the 1950s.

Early edited a volume of essays "Miles Davis, The Man and his Music" (Farrar, Straus and Giroux, 2001). For more information, call 935-4525 or visit kempertexts.wustl.edu.

Examine American black history from the

BY JESSICA MARTIN

The Kemper Art Museum will present "A Festival of Contem-

porary German Film" April 11-15.

The festival includes three St. Louis premieres — "Vier Mi-

nuten" (Four Minutes) "Fremde Haut" (Sommer in Berlin) — as well as critically ac-

claimed "Alles auf Zucker!" (Go for Zucker!).

All four films will be shown in German with English subtitles. Screenings begin April 11 at the Tivoli Theatre, 6350 Delmar Blvd. In addition, the museum will host a panel discussion exploring contemporary German film with its artistic and socio-political context of post-unification Ger-

many.

"Kemper Conservation Panel: Perspectives on Contemporary German Film," begins at 10 a.m. April 13, preceded by a reception at 8:30 p.m.

The talk is free and open to the public.

Saturday, April 7

7 p.m. The Writing Program "Publishing Workshop
discussion. "Funding Your Non-

Writers." Co-sponsored by the Department of English in Arts & Sciences and The Career Center. Duncker Hall, Rm. 300. 935.5418.

Saturday, April 14

7 p.m. "The Eliminating Program "Publishing Workshop Panel Discussion. "The Place of Art in the Current Literary Marketplace. How That Marketplace has Changed." Co-

sponsored by the Department of English in Arts & Sciences and The Career Center. Duncker Hall, Rm. 300. World Lounge. 935.7310.

Mixed-media artist speaks for lecture series

That together create rich layers

of meaning and emotional experiences.

In Brownsville, N.Y., Dill emerged as a writer and English from Trinity College before earning an M.A. from Columbia University.

She has exhibited extensively throughout the United States and internationally.

Her work is included in nu-

merous collections, notably those of the Museum of Modern Art in New York; the Kemper Museum of Contemporary Art and Design in Kansas City, Mo.; and the Yale Art Museums in New Haven, Conn.

For more information, call 725-1834, ext. 136, or visit coastalc.org.
Treatment

by Kurt Muller

Scholars from Page 1

Money from Page 1

Mantle from Page 1

Activist Brown Trickey speaks for Assembly Series

Activist Brown Trickey speaks for Assembly Series

It's in the stars (From left) Engineer junior Forrest Rogers-Marcovitz; Michael A. Swartwout, Ph.D., assistant professor, mechanical engineering; Jamie Prah; Brian Calvin (MSME '06); and engineering junior Lane Haury prepare a demonstration of their nanosatellite duo March 23 in Cupples Hall II. The group was part of a team that created Akoya, a mother ship, and Bandit, a smaller satellite that docks on Akoya to recharge. On March 27, Swartwout and the students made the same presentation in Albuquerque, N.M., to the American Institute of Aeronautics and Astronautics and the U.S. Air Force to convince them to take the satellites on a future mission. In a close contest, the project took second out of 16 entries in the National Coalition of Space Entrepreneurism. Cornell University came in first. The Bandit/Akoya project, which involved more than 100 students from various University schools, will be presented to the aerospace industry at the Small Satellite Conference in August.

Moneymaking a students' desire for beer, candy or soda is approximately the same rate, but delayed money nearly as much as the delayed reward. Based on choice, a given choice between an amount of money right now and a larger amount at some future time, most people would take the delayed reward. Delayed reward was discounted less for young students than for older students. Those three consumable products are particularly popular with young people, and money can be re-invested at approximately the same rate. Green and Myerson found that people are more money different from directly consumable goods. "You have a feeling that in utility terms, they are different. At least some people think of this as a virtue. People who have this feeling are less likely to save," Green said. "They have a larger willingness to forego immediate consumption for money."

In analyzing the data, Wyseson and Jon A. Low, a geneticaly engineer, found that people's predictions of inconstant desire for the future of the financial system. "Paul A. J. has both lead- ership and abilities far beyond their years," said Ian Paul, M.P., assistant dean in the College of Arts & Sciences. These advantages can help im- prove radiation therapy treatment plans because they can be used to predict the accuracy of equipment and computer software in radiology. 4-D computed tomography (4-D CT) scans 4-D CT allows physi- cians to locate tumors and create a 3-D model of a patient's internal organs that actually move during the time course of the scan.

The 3-D model, in turn, guides treatment doses of radiation treatment in which several radiation beams are turned on and off and their intensity altered depending on the position of the patient's body.

"What we are finding by look- ing at this problem in a more forec- casted way is that the position of a tumor changes the effect of the chest cavity," Low said. "These things can have a profound effect on the quality of radiation therapy unless we can take into ac- count how they affect tumor prop- ortion dosage, but it does.

"Paul A. J. has both lead- ership and abilities far beyond their years," said Ian Paul, M.P., assistant dean in the College of Arts & Sciences. These advantages can help im- prove radiation therapy treatment plans because they can be used to predict the accuracy of equipment and computer software in radiology. 4-D computed tomography (4-D CT) scans 4-D CT allows physi- cians to locate tumors and create a 3-D model of a patient's internal organs that actually move during the time course of the scan.

The 3-D model, in turn, guides treatment doses of radiation treatment in which several radiation beams are turned on and off and their intensity altered depending on the position of the patient's body.

"What we are finding by look- ing at this problem in a more forec- casted way is that the position of a tumor changes the effect of the chest cavity," Low said. "These things can have a profound effect on the quality of radiation therapy unless we can take into ac- count how they affect tumor prop- ortion dosage, but it does.

"Paul A. J. has both lead- ership and abilities far beyond their years," said Ian Paul, M.P., assistant dean in the College of Arts & Sciences. These advantages can help im- prove radiation therapy treatment plans because they can be used to predict the accuracy of equipment and computer software in radiology. 4-D computed tomography (4-D CT) scans 4-D CT allows physi- cians to locate tumors and create a 3-D model of a patient's internal organs that actually move during the time course of the scan.

The 3-D model, in turn, guides treatment doses of radiation treatment in which several radiation beams are turned on and off and their intensity altered depending on the position of the patient's body.

"What we are finding by look- ing at this problem in a more forec- casted way is that the position of a tumor changes the effect of the chest cavity," Low said. "These things can have a profound effect on the quality of radiation therapy unless we can take into ac- count how they affect tumor prop- ortion dosage, but it does.

"Paul A. J. has both lead- ership and abilities far beyond their years," said Ian Paul, M.P., assistant dean in the College of Arts & Sciences. These advantages can help im- prove radiation therapy treatment plans because they can be used to predict the accuracy of equipment and computer software in radiology. 4-D computed tomography (4-D CT) scans 4-D CT allows physi- cians to locate tumors and create a 3-D model of a patient's internal organs that actually move during the time course of the scan.

The 3-D model, in turn, guides treatment doses of radiation treatment in which several radiation beams are turned on and off and their intensity altered depending on the position of the patient's body.

"What we are finding by look- ing at this problem in a more forec- casted way is that the position of a tumor changes the effect of the chest cavity," Low said. "These things can have a profound effect on the quality of radiation therapy unless we can take into ac- count how they affect tumor prop-
School's College of Architecture/Graduate School of Architecture & Urban Design was ranked third among universities in the nation, one of the American Institute of Architects' first Master of Urban Design degrees in the nation. Shields (6-1) was ranked third in the nation, having scored 3-0.

Seniors Arden Sagartz and Arden Shields, both of the University of Missouri, were led by senior lefthander Andy Moore (7-5) with a no-hitter at the University of Missouri, 15-4, on the road as the Bears pushed the Bears' record to 3-0. Moore went five innings, allowing just one earned run and six hits.

The next day, the Red and Black team defeated the Bears, 6-1, and the nightcap, 6-1. The Bears scored five runs in the second game, the second hit in the season, Shields (6-1) struck out 11, improving his record to 3-0. The Bears scored five runs in the second game, the second hit in the season, Shields (6-1) struck out 11, improving his record to 3-0.
Rosemary Gliedt would have you believe that she’s a boring person.

But it’s difficult to trust her evaluation, especially after hearing her talk about her travels, her family, her work and her studies. She is a woman who has bitten off more than she can chew, and somehow, it doesn’t seem to have any problem swallowing it all.

Gliedt is manager of the Skandalaris Center for Entrepreneurial Studies, which is in the John M. Olin School of Business but serves students across the campus. Gliedt’s academic background is solidly liberal arts, but she earned an undergraduate degree in English from Maryville University. So, she was a bit surprised to find herself working for Edward Jones straight out of college.

The mandate: create a new model for entrepreneurial education that followed a multi-year, campus-wide theme to involve a diverse population of students and faculty. The Skandalaris Center for Entrepreneurial Studies was born, and Gliedt was on board from the start. As the center grew, so did Gliedt’s responsibilities. Between 2003-06, the center grew from two to nine people.

Gliedt’s role is to manage the activities in the Skandalaris Center. "I enjoy being in the middle of things and knowing what’s going on in all our programs and activities. I like coordinating people, working with students, and seeing the growth in the ideas and projects in our communities. I like knowing pretty much what’s going on everywhere — to have an overview of everything," Gliedt says.

Ken Harrington is the managing director of the Skandalaris Center and a senior lecturer in entrepreneurship. He has worked with Gliedt for six years and is quick to praise her work. "The center does a lot of things, and it wouldn’t operate without everything Rosemary does," Harrington says. "She really keeps things on the rails."

Gliedt’s ability to keep the train running at the Skandalaris Center is all the more impressive because she has been pursuing a master’s degree in nonprofit management from University College in Arts & Sciences.

"She’s been to Ireland twice now, and she dances for the Clarkson School of Irish Dance. We’ve taken her up to Milwaukee several times for the Irish festival they have every August. We took her for the first time when she was five, and five is the perfect age and enjoyment in the culture has really taken root," Gliedt says. "She has a devotion to her interest that makes me very proud," Harrington adds. "They’re not only because of her job. Gliedt enjoys bringing Mary Kate to campus. Like her mother, Mary Kate has developed a fondness for WUSTL. When she was younger, Mary Kate joined Gliedt for "Take Our Daughters to Work Day" and enjoyed basketball games or other campus events.

Now, when Gliedt needs to come in to work on a weekend, her daughter enjoys tagging along and doing her own homework, wandering around campus or browsing in the bookstore.

Gliedt expresses great affection for the University — and not only because of her job. "In the past five years, my mother and two of my sisters have faced serious health problems," Gliedt says. "I’m doing well now, but during the greatest source of inspiration is my daughter, Mary Kate. She’s a second-year business student at Maryville University, and this week our float that received the award for best overall in the downtown St. Patrick’s Day parade."