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Potential Implications of HCN Channel Dysfunction after
Subarachnoid Hemorrhage
Ananth K. Vellimana
Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri 63110

Review of Li et al.

Subarachnoid hemorrhage (SAH) most
commonly occurs due to rupture of a cere-
bral aneurysm, and it is responsible for ap-
proximately a quarter of all cerebrovascular
deaths. Although considerable advances
have been made in the understanding of the
pathophysiology of SAH and its complica-
tions, it is still associated with significant
mortality (�40% at 30 d) and morbidity
(�50% of survivors have long-term neuro-
logic deficits). This high morbidity and
mortality can be attributed to two distinct
yet similar phenomena: early brain injury
and delayed cerebral ischemia (DCI). Early
brain injury occurs �72 h after SAH and
is characterized by pathophysiological
changes that result in global hypoperfusion,
blood–brain barrier breakdown, cerebral
edema, and neuronal cell death. DCI begins
several days after the ictus and peaks �7 d
after SAH. DCI was initially attributed to va-
sospasm, a phenomenon characterized by
delayed narrowing of large cerebral arteries.
More recently, it has been recognized that in
addition to vasospasm, several other factors,
including cortical spreading depolarization
(CSD), microvascular dysfunction, and mi-
crothrombosis, are important contributors
to DCI and subsequent neuronal cell death
(Macdonald et al., 2008).

Among the non-vasospasm contributors
to DCI, much evidence from animal and hu-
man studies supports a critical role for CSDs
(Dreier, 2011). In brief, CSDs are character-
ized by spreading waves of sustained depolar-
ization in neurons that is initiated by a
disturbance of the cellular electrochemical
gradient. CSDs are normally accompanied by
ahemodynamicresponseconsistingofmicro-
vasculardilatationthat aims to increase tissue
perfusion and meet the energy demands of
the cell. However, in damaged regions of the
cerebral cortex, neuronal depolarization
and blood flow become inversely coupled,
leading to microvascular spasm instead of
dilatation. This phenomenon exacerbates
the energy crisis in neurons and ultimately
results in cell death.

InanarticlerecentlypublishedinTheJour-
nal of Neuroscience, Li et al. (2012) examined
the contribution of hyperpolarization-
activated cyclic nucleotide-gated (HCN)
channels to neuronal hyperexcitability after
SAH. The HCN channel family is comprised
of four homologous members (HCN1–4)
thatdiffer functionally in their current activa-
tion kinetics and response to cAMP. Li et al.
(2012) focused on the HCN1 subtype be-
cause CSDs are easily provoked in the
neocortex and hippocampus, where
HCN1 channels are abundant. They per-
formed whole-cell clamp recordings on
pyramidal neurons from CA1 in hip-
pocampal slices to examine HCN channel
activity, and they mimicked SAH by add-
ing oxyhemoglobin to the perfusate. The
authors also assessed the expression of
HCN1 channel subtype in the CA1 region
of tissue obtained from a rat SAH model
involving endovascular perforation.

A principal finding of Li et al. (2012) was
thatinfusionofoxyhemoglobininducedfiring
of pyramidal neurons in CA1, and that this
neuronal hyperexcitability was mediated by
oxyhemoglobin-induced inhibition of HCN
channels. These findings are important for
several reasons. First, this ex vivo model builds
upon previous in vivo studies (Dreier et al.,
2000), which demonstrated that superfusion
ofhemoglobinontothecorticalsurface inrats
induced CSDs and neuronal death in the
presence of high extracellular K� or low
glucose. The study by Li et al. (2012) is
therefore an important addition to the
growing body of evidence supporting neu-
ronal hyperexcitability and CSD after SAH.
Second, the finding is important because a
significant proportion of long-term disabil-
ity in patients who survive after SAH is re-
lated to cognitive impairment. Although the
etiology of SAH-induced cognitive impair-
ment is likely multifactorial and cognitive
impairment in different domains may be
observed in SAH patients (Mayer et al.,
2002), altered spatial memory has been
demonstrated in both humans and rat mod-
els of SAH (Mayer et al., 2002; Jeon et al.,
2010). Given that the hippocampus (espe-
cially the CA1 region) plays a critical role in
spatial memory, it is plausible that HCN
channel dysfunction after SAH might con-
tribute to cognitive impairment in SAH pa-
tients. This notion is supported by the
findings that long-term potentiation in the
hippocampal Schaffer collateral pathway is
impaired after experimental SAH (Tariq et
al., 2010), and that, under normal condi-
tions, pharmacological blockade of HCN
channels impairs long-term potentiation in
this pathway (He et al., 2010). Nevertheless,
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before embarking on studies examining the
contribution of HCN channel dysfunction to
cognitive impairment after SAH, it is impor-
tant to recognize that the role of HCN chan-
nels in spatial memory formation is complex,
with different studies providing conflicting re-
sults. A third reason why oxyhemoglobin-
induced inhibition of HCN channels and
consequent neuronal hyperexcitability is im-
portant is that a large proportion of patients
with SAH experience seizures, either in the
early period after the ictus or at later time
point. Presumably, early-onset seizures are
due to biochemical dysfunction of neurons,
while delayed-onset seizures may result
from structural abnormalities due to gliosis.
However, the molecular mechanisms un-
derlying seizure onset after SAH remain
poorly understood. Given the critical role of
HCN channels in the regulation of neuronal
excitability in various neural networks and
in the pathogenesis of epilepsy in animal
models and humans (Noam et al., 2011), it
is possible that inhibition of these channels
after SAH contributes to epileptogenesis.

Another pair of important observa-
tions by Li et al. (2012) are that NO lev-
els alter HCN channel activity and that
oxyhemoglobin-induced inhibition of HCN
channels might result from scavenging of NO.
Li et al. (2012) also demonstrated reversal of
oxyhemoglobin-induced inhibition of HCN
activity and neuronal hyperexcitability
by exogenous administration of NO.
Based on available evidence (Garthwaite
et al., 2006), it is likely that NO affects the
function of HCN through cGMP gating of
these channels. However, an increase in
phosphodiesterase-5 activity and conse-
quent decrease in cGMP occurs in cortical
neurons after experimental SAH (Han et
al., 2012). It is therefore possible that
cGMP downregulation seen in vivo would
further exacerbate the magnitude of HCN
channel inhibition and thereby enhance
the degree of neuronal excitability.

A third key finding by Li et al. (2012) is
that HCN1 gene and protein expression are
reduced in CA1 for at least 72 h after ictus in
a rat endovascular perforation model of
SAH. While this favors a role for the HCN1
subtype in the aforementioned electrophys-
iological observations, it does not exclude
the potential contribution of other sub-
types, especially HCN2, which is ubiqui-
tously expressed in the brain and is more
abundant than HCN1 (Postea and Biel,
2011). Future studies using a similar exper-
imental design in genetically modified mice
that lack one or more of these channel sub-
types (e.g., HCN1 knock-out mice) may fill
this lacuna.

It is also important to understand the
limitations of the work of Li et al. (2012).
First, the authors used oxyhemoglobin to
mimic the effect of SAH. It would be inter-
esting to see whether similar results are ob-
tained when the slice preparation is perfused
with aCSF containing red blood cell lysate,
an experimental paradigm that would more
closely mimic the CSF milieu in SAH. Per-
forming such an experiment is critical given
that HCN currents (Ih) are increased with
increasing extracellular K� (Biel et al.,
2009), and a perfusate containing red blood
cell lysate would contain high levels of K�.
An in vivo model would be even more likely
to replicate events occurring during SAH.
For example, one could perform electro-
physiology on hippocampal slices obtained
after induction of SAH in rats via endovas-
cular perforation or other methods. An-
other improvement would be to perform
intracellular recording in vivo after induc-
tion of experimental SAH. A second limita-
tion of the study by Li et al. (2012) is that the
authors examined only pyramidal neurons
in the hippocampus. Although the hip-
pocampus is important for learning and
memory, a larger portion of the long-term
morbidity after SAH is due to cortical in-
farcts and subsequent sensorimotor deficits.
Because several studies have demonstrated
spreading depolarizations on the cortical
surface in SAH patients, a logical next step
would be to examine the function of HCN
channels in pyramidal neurons of the
cerebral cortex and understand their
role in SAH-induced neuronal hyperex-
citability and CSD. Examination of cor-
tical neurons is also important given
that alteration of HCN channel activity
can have different consequences de-
pending on the brain region and the net
effect of different types of ion channels
present in that particular neuronal pop-
ulation (Postea and Biel, 2011). A third
limitation is that all the electrophysiol-
ogy studies by Li et al. (2012) were per-
formed on hippocampal slices from
neonatal rats. However, SAH occurs pri-
marily in adults, with a peak incidence of
45–55 years. Since it is well recognized
that neural circuits and activity are differ-
ent in adults than neonates, it is essential
to examine whether the findings of this
study are applicable to adults.

In summary, Li et al. (2012) provide
compelling evidence to suggest that dys-
function of neuronal HCN channels may
occur after SAH. Future studies need to be
performed to establish this in an in vivo
model of SAH, to characterize the subtype
of HCN channels and brain regions in-
volved, and to identify the functional conse-

quences of HCN channel dysfunction. If the
aforementioned studies are realized and
cross-validated in different experimental
models of SAH, modulation of HCN chan-
nel function may emerge as a new therapeu-
tic strategy to attenuate SAH-induced
neurovascular dysfunction.
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