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Development/Plasticity/Repair

Astrocyte-Derived Thrombospondins Mediate the
Development of Hippocampal Presynaptic Plasticity In Vitro

Devon C. Crawford,"? Xiaoping Jiang,> Amanda Taylor,> and Steven Mennerick>>
!Graduate Program in Neuroscience, and Departments of 2Psychiatry and >Anatomy and Neurobiology, Washington University School of Medicine, St.
Louis, Missouri 63110

Astrocytes contribute to many neuronal functions, including synaptogenesis, but their role in the development of synaptic plasticity
remains unclear. Presynaptic muting of hippocampal glutamatergic terminals defends against excitotoxicity. Here we studied the role of
astrocytes in the development of presynaptic muting at glutamatergic synapses in rat hippocampal neurons. We found that astrocytes
were critical for the development of depolarization-dependent and G;,,-dependent presynaptic muting. The ability of cAMP analogues to
modulate presynaptic function was also impaired by astrocyte deficiency. Although astrocyte deprivation resulted in postsynaptic
glutamate receptor deficits, this effect appeared independent of astrocytes’ role in presynaptic muting. Muting was restored with chronic,
but not acute, treatment with astrocyte-conditioned medium, indicating that a soluble factor is permissive for muting. Astrocyte-derived
thrombospondins (TSPs) are likely responsible because TSP1 mimicked the effect of conditioned medium, and gabapentin, a high-
affinity antagonist of TSP binding to the a26-1 calcium channel subunit, mimicked astrocyte deprivation. We found evidence that protein
kinase A activity is abnormal in astrocyte-deprived neurons but restored by TSP1, so protein kinase A dysfunction may provide a
mechanism by which muting is disrupted during astrocyte deficiency. In summary our results suggest an important role for astrocyte-

derived TSPs, acting through «28-1, in maturation of a potentially important form of presynaptic plasticity.

Introduction

Correct development and plasticity of glutamate synapses is crit-
ical to brain function. Imbalances between excitatory and inhib-
itory neurotransmitter actions are postulated to underlie brain
disturbances as diverse as schizophrenia (Lewis and Moghad-
dam, 2006), developmental disability (Rubenstein and Mer-
zenich, 2003; Wetmore and Garner, 2010), and epilepsy
(McCormick and Contreras, 2001). Diverse cues regulate synap-
tic development; neuron-to-neuron signaling is clearly impor-
tant for synaptogenesis (Craig et al., 2006), but astrocytic factors
are also important (Eroglu and Barres, 2010; Pfrieger, 2010). Still
unclear is the breadth of astrocyte involvement in synapse devel-
opment and the signaling systems affected. Astrocytic cues likely
guide postsynaptic function, presynaptic function, synaptic plas-
ticity, and combinations of these elements.

Our group and others have studied a form of adaptive presyn-
aptic plasticity termed muting whereby the number of terminals
releasing transmitter is reduced. Mute presynaptic terminals are
found in a variety of preparations (Tong et al., 1996; Bolshakov et
al., 1997; Kannenberg et al., 1999; Ma et al., 1999; Kim et al., 2003;
Losonczy et al., 2004; Moulder et al., 2004; Cousin and Evans,
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2011; Crawford and Mennerick, 2012). Reversible muting of hip-
pocampal glutamatergic synapses occurs in cultured autaptic
neurons, conventional mass cultures, and acute hippocampal
slices (Moulder et al., 2004; Crawford et al., 2011). Muting is
induced by electrical stimulation, depolarization challenges, pro-
longed G;,, G-protein activation, and hypoxia (Moulder et al.,
2004, 2006, 2008; Crawford et al., 2011; Hogins et al., 201 1; Craw-
ford and Mennerick, 2012). Muting may play a role in defending
against excitotoxic glutamate release (Hogins et al., 2011), but it
is also engaged by physiological changes in activity (Moulder et
al., 2006). Despite the wide variety of preparations and condi-
tions under which muting occurs (Crawford and Mennerick,
2012), factors controlling development of muting have not been
explored.

Muting occurs in single-neuron networks in culture, but because
these neurons contact astrocytes it is unclear whether muting is cell
autonomous or whether astrocyte signals modulate or induce mut-
ing. Here we explored muting mechanisms in a reduced environ-
ment where astrocyte numbers could be controlled. We found that
global, permissive astrocytic signaling rather than local, instructive
astrocytic signaling is important for the development of muting.
Astrocyte deprivation prevented muting in response to both depo-
larization and G-protein-coupled receptor stimulation. Chronic,
but not acute, treatment with astrocyte-conditioned medium res-
cued muting. Thrombospondins (TSPs), astrocyte-derived glyco-
proteins previously implicated in glutamate synapse development
(Asch et al., 1986; Christopherson et al., 2005; Eroglu et al., 2009; Xu
etal., 2010), also rescued muting. Gabapentin, an antagonist of the
TSP receptor a28-1 (Gee et al., 1996; Eroglu et al., 2009), mimicked
the effects of astrocyte deprivation by preventing muting compe-
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Figure 1. Astrocyte deprivation impairs presynaptic muting but not G-protein activation. 4, Phase-contrast and fluorescence
images of autaptic neurons on viable (control) or nonviable (4% paraformaldehyde/0.2% glutaraldehyde-fixed) glial “islands”
acquired 30 min after 5 wg/ml calcein-AM treatment. Fewer islands contained live (calcein-positive) astrocytes in fixed cultures
(control: 98.8 + 0.9% live islands; fixed: 17.6 + 2.8% live islands; n = 6 dishes; p = 7.9 X 10 ~"", Student’s unpaired t test).
Scale bar, 40 wm. B, Representative autaptic EPSCs from astrocyte-rich or astrocyte-poor microcultures recorded in normal saline
upto Thafter4h control treatment (30 mm NaCl) or after 4 h depolarization (30 mm KCl). €, Summary of peak EPSCamplitudes from
DIV10-14astrocyte-rich (+) or astrocyte-poor (—) autaptic neurons after indicated treatment times with 30 mum KCl (black bars),
10 nm CCPA (A1 adenosine receptor agonist) plus 50 wm baclofen (GABA; receptor agonist) (C+B; yellow bars), or 50 pm
Rp-cAMPS (Rp; cyan bars). EPSCs were normalized to the average EPSCs from control-treated sibling neurons for each recording day
(n = 14-22neurons; *p << 0.05 vs treatment controls, Student’s unpaired t test). D, EPSCs from astrocyte-rich or astrocyte-poor
cultures after acute perfusion with recording saline (control) or 20 um baclofen. E, EPSCs from astrocyte-rich or astrocyte-poor
cultures after acute perfusion with recording saline (control) or 10 nm CCPA. The same neurons were used for experiments in D and
E. D, E, Summary data are given in the Results.

tence. Gabapentin additionally prevented adaptive network plastic-
ity. Although the downstream pathways initiated by TSP binding to
«26-1 remain unclear, astrocyte deprivation led to altered protein
kinase A (PKA) activity, as suggested by abnormal responses to
cAMP analogues and hyperphosphorylation of PKA substrates. TSP

same day.
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treatment corrected these abnormalities.
Our results suggest that astrocyte-derived
TSPs are important developmental modu-
lators of presynaptic plasticity.

Materials and Methods

Primary hippocampal cultures. All experiments
were performed in accordance with National
Institutes of Health guidelines and were ap-
proved by the Washington University Animal
Studies Committee. For microcultures, culture
dishes (35 mm) were first covered with a thin
layer of 0.15% agarose and then stamped with
150- to 200-mm-diameter microdots of 0.5
mg/ml collagen using a polydimethylsiloxane
microstamp as previously described (Moulder
etal., 2007). Cortical astrocytes from postnatal
d 4 male and female rat pups were seeded on
these islands in Eagle’s medium (Life Technol-
ogies) supplemented with 5% heat-inactivated
horse serum, 5% fetal bovine serum, 17 mMm
D-glucose, 400 uMm glutamine, 50 U/ml penicil-
lin, and 50 ug/ml streptomycin. Glial preplates
were maintained in a humidified and atmo-
spherically controlled incubator (5% CO,/
95% air at 37°C) before neuronal plating.
Astrocyte-poor cultures were prepared 7-10 d
after glial plating by fixation with 4% parafor-
maldehyde/0.2% glutaraldehyde in PBS at
room temperature (RT) for 5 min before at
least 3 washes in PBS. Alternatively, 70% etha-
nol at —20°C was applied for 30 min before
PBS rinses. Although most experiments used
aldehyde fixation, both astrocyte fixation pro-
tocols produced the finding shown in Figure
1 B. For mass cultures used in Figure 5 (see be-
low), a confluent layer of polylysine/laminin
was applied to the culture dish before neuronal
plating.

Hippocampal neurons were dispersed on
fixed or live astrocyte beds for microcultures
while astrocytes and neurons were coplated for
mass cultures as previously described (Menn-
erick et al.,, 1995). Briefly, male and female
postnatal d 0-3 Sprague Dawley rat hip-
pocampi were dissected, incubated with 1
mg/ml papain, and mechanically dissociated.
To encourage the formation of autaptic (soli-
tary) neurons in microcultures, cells were
plated at low density (~100 cells/mm?). For
mass cultures, cells were plated at high density
(~650 cellsysmm?) to encourage neuron-—as-
trocyte cocultures to form. After 3—4 days in
vitro (DIV), 6.7 uM cytosine arabinoside was
added to inhibit cell division. One half of the
culture medium was exchanged with Neuro-
basal medium (Life Technologies) plus B27
supplement at DIV 4-5. Conditioned media
were from astrocyte cultures or from neuron—
astrocyte cocultures; similar results were ob-
tained with both. Non-conditioned medium
was fresh Neurobasal without supplements.
Unless otherwise stated, all experiments were

performed at 10—14 DIV, and controls were sibling cultures used the

Electrophysiology. Whole-cell voltage-clamp recordings were per-
formed on autaptic neurons in micro-island culture unless otherwise
stated. Data were collected using pClamp 9 software with a Multiclamp
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700B or Axopatch 200B amplifier and Digidatal322A data acquisition
board (Molecular Devices). Recording saline typically contained the fol-
lowing (in mwm): 138 NaCl, 4 KCl, 2 CaCl,, 1 MgCl,, 10 glucose, 10
HEPES, and 25 um p-aminophosphonovalerate (p-APV; Tocris Biosci-
ence) at a pH of 7.25. For current-clamp experiments, recording saline
contained 50 uM D-APV and 1 um NBQX. For experiments requiring
NMDA receptor activation, 10 um glycine (Tocris Bioscience) was added
to the saline solution and MgCl, and D-APV were excluded. Pipette
solution contained the following (in mm): 140 potassium gluconate, 4
NaCl, 0.5 CaCl,, 5EGTA, and 10 HEPES at a pH of 7.25. For experiments
in which both EPSCs and IPSCs were collected during the same recording
session from autaptic neurons, potassium gluconate was replaced with
140 mm KCI. For network activity experiments that measured spontane-
ous EPSCs and IPSCs in mass cultures, 130 mm cesium methanesulfonate
replaced potassium gluconate.

Recordings were performed at room temperature. Electrode pipettes
were pulled from borosilicate glass (World Precision Instruments) and
typically had 3—6 M) resistance, except for current-clamp experiments
in which resistances were 4—7 M{). Access resistance was compensated
85-100% for autaptic EPSC and IPSC recordings, and membrane poten-
tial was typically held at —70 mV. For network activity experiments in
mass cultures, neurons were voltage-clamped at —30 mV or —35 mV,
midway between IPSC and EPSC reversal potentials, to measure sponta-
neous network activity due to excitation and inhibition simultaneously.
Autaptic EPSCs and IPSCs were evoked by a 1.5 ms pulse depolarization
to 0 mV. Paired-pulse responses were obtained by evoking two such
depolarizing pulses 50 ms apart. Signals were sampled at 10 kHz and
low-pass filtered at 4 kHz, except for miniature EPSCs collected at 5
kHz and filtered at 1 kHz and spontaneous EPSCs and IPSCs collected
at 5 kHz and filtered at 2 kHz. Autaptic PSCs were recorded up to 1 h
after switch to recording saline. When solutions were applied acutely
to neurons, a multibarrel perfusion system was used with a common
port placed within 0.5 mm of the neuron; solution exchange times
were ~100 ms. Wherever possible, acute effects of drugs were evalu-
ated by interleaving control and drug treatments and averaging 2—5
responses per condition.

Glutamate receptor blockers (50 um pb-APV and 1 um NBQX) were
present during all depolarization challenges (30 mm KCl for depolar-
ization or NaCl as a nondepolarized osmotic control) to prevent
toxicity and NMDA receptor-dependent plasticity. Control treat-
ments for all other experiments consisted of vehicle treatment unless
otherwise specified.

Immunostaining and microscopy. FM1-43 dye labeling was performed
as previously described (Moulder et al., 2010). Briefly, microcultures
were treated for 2 min with 10 pwm fixable FM1-43 (FM1-43FX; Life
Technologies) in recording saline supplemented with 45 mm KCl and 1
uM NBQX. Immediately following, the culture dishes were briefly
washed (5 s) in saline supplemented with 500 um Advasep-7 (CyDex
Pharmaceuticals) and 1 um NBQX. Cells rested during 10 min of washes
with saline plus 1 um NBQX and were then fixed for 10 min.

Fixation before immunostaining was 4% paraformaldehyde at RT, 4%
paraformaldehyde/0.2% glutaraldehyde at RT, 4% paraformaldehyde/
0.02% glutaraldehyde at RT, or 100% methanol at —20°C for 10 min. All
culture dishes were washed with PBS at RT followed by 2—4% normal
goat serum in PBS blocking solution plus 0% (for surface protein levels),
0.1%, or 0.04% Triton X-100. Primary antibodies were vesicular gluta-
mate transporter 1 (vGluT-1; 1:2000; Millipore), GluA2/GluR2 (1:500,
Millipore), microtubule-associated protein 2 (MAP2; 1:2000; Millipore),
phospho-synapsin (1:400; Millipore), synapsin (1:2000; Millipore),
phospho-cAMP response element binding protein (phospho-CREB;
1:400; Millipore), GABA (1:500), and phospho-dynamin 1 (1:100; Santa
Cruz Biotechnology). Primary antibodies were applied for 2-3 h at RT
before PBS wash, 30 —40 min secondary antibody incubation with Alexa
Fluor conjugates (Life Technologies), and glass coverslipping with Fluo-
romount G (Southern Biotechnology Associates).

FM1-43FX and immunostaining images were acquired on an inverted
Eclipse TE2000-S microscope with a 60X objective (1.4 numerical aper-
ture) using a C1 scanning confocal laser (488, 543, and/or 633 nm) and
EZ-C1 software (Nikon). Alternating laser lines were used to obtain
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z-stack images while all gain and acquisition settings were held constant
within a given experiment. Two-dimensional projected images were cre-
ated and analyzed using MetaMorph 7 software (Universal Imaging).

Live cell images were obtained on an Eclipse TE2000-S inverted mi-
croscope (Nikon) with a 40X objective (0.6 numerical aperture; Nikon)
and a metal halide lamp. Images were acquired with MetaMorph 7 soft-
ware and a cooled 12-bit CCD camera (Photometrics).

Data analysis. Data were analyzed and graphed using MetaMorph 7,
Clampfit 9 (Molecular Devices), Mini Analysis 6 (Synaptosoft Inc.), Ex-
cel 2007 (Microsoft), and/or SigmaPlot 10 (Systat) software. Unless oth-
erwise stated, data are displayed as mean * SEM, and Student’s unpaired
t test was used to compare 2 groups while a Bonferroni correction was
applied when experiments contained >2 groups. A corrected p value
of < 0.05 was required to reach significance. The reported n refers to the
sample size of each group within an experiment.

Atleast 3 PSC amplitudes were averaged for each autaptic neuron. For
each recording day, PSC amplitudes from experimental treatments were
normalized to the average amplitude in the control-treated sibling cul-
ture. For dual-component autaptic EPSCs, peak EPSC amplitude esti-
mated the AMPA receptor component while the average current 80—100
ms following the peak estimated the NMDA receptor component (Hes-
trin et al., 1990). Miniature EPSCs were elicited by perfusion of 100 mm
sucrose and analyzed using Mini Analysis software with manual confir-
mation. The first 57 miniature EPSC interevent interval and amplitude
values were used for Kolmogorov—Smirnov tests while values for all min-
iature EPSCs from a given neuron were averaged for Mann—-Whitney U
tests.

Atleast 10 fields per culture dish were used to calculate the percentage
of live (calcein-positive) islands. For the percentage of FM1-43-positive
vGluT-1 synapses, regions of interest were manually drawn around 10
vGluT-1 puncta per field for 5 fields per culture dish. As previously
described (Crawford et al.,, 2011), FM1-43 images were thresholded be-
fore analyzing vGluT-1-defined regions, and synapses were considered
active if at least 10 pixels reached threshold. Similarly, 10 vGluT-1-
defined regions were manually drawn per field before analyzing synapsin
and phospho-synapsin images. The number and intensity of vGluT-1-
positive synapses in autaptic neurons was quantified via automatic de-
tection in thresholded images using MetaMorph 7 software. Most
immunostaining experiments used glutamatergic autaptic neurons,
identified by vGluT-1 immunoreactivity. Glutamatergic neurons on
multicell islands were analyzed for nuclear phospho-CREB experiments,
however, and antibody incompatibility precluded double labeling in
phospho-dynamin 1 experiments. For display in figures, all images
within a panel were pseudocolored and adjusted for brightness and con-
trast equivalently.

Materials. Rp-cAMPS and 2-chloro-N°-cyclopentyladenosine (CCPA)
were obtained from Tocris Bioscience, kainic acid was purchased from Bio-
Vectra, calcein-AM was purchased from AnaSpec, human recombinant
thrombospondin 1 (TSP1) was obtained from Hematologic Technolo-
gies, and tumor necrosis factor o (TNFa) was obtained from EMD Mil-
lipore. All other materials were obtained from Sigma-Aldrich unless
otherwise specified.

Results

Failure to mute in glutamatergic neurons from
astrocyte-poor cultures

We manipulated glial signaling in rat hippocampal cultures by
growing neurons on fixed or live astrocyte beds (Fig. 1 A). This
strategy, similar to prior studies using fixation to kill one cell type
before coculturing with other cell types (Amur-Umarjee et al.,
1993; Sola et al., 2002; Alexanian, 2005), permitted identical cul-
ture conditions for astrocyte-rich and astrocyte-poor cultures
except for the number of viable astrocytes. It also allowed control
neurons the full benefit of local and global astrocytic cues, unlike
preparations where control neurons only receive soluble astro-
cytic signals (Kaech and Banker, 2006). Electrophysiological
measures of input resistance (astrocyte-rich: 189.3 = 39.3 M{();
astrocyte-poor: 212.4 = 76.3 M{); n = 11-12 neurons; p = 0.77,
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Figure 2.  Astrocyte deprivation does not impair basal presynaptic function. A, EPSCs from
autaptic neurons in astrocyte-poor cultures from islands with residual live astrocytes (calcein-
positive) or no live astrocytes (calcein-negative). B, Images of 10 pm FM1-43FX labeling of
presynaptic terminals (green) after 2 min 45 mm KCl and subsequent vGluT-1immunostaining
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Student’s unpaired t test), cell capacitance (astrocyte-rich: 73.3 =
7.3 pF; astrocyte-poor: 94.0 = 10.3 pF; n = 14—16 neurons; p =
0.11, Student’s unpaired ¢ test), and resting membrane potential
(astrocyte-rich: —58.8 == 1.7 mV; astrocyte-poor: —61.9 = 2.6 mV;
n = 10 neurons; p = 0.32, Student’s unpaired f test) were similar in
glutamatergic neurons from astrocyte-rich and astrocyte-poor cul-
tures, suggesting no differences in membrane surface area or expres-
sion of background leak channels. We also detected no qualitative
differences in morphological complexity between neurons grown in
these two culture conditions, so gross differences in neuronal devel-
opment were not apparent.

To test whether astrocytes are important for muting of
glutamatergic synapses, we attempted to induce muting in
neurons from astrocyte-rich and astrocyte-poor cultures. EP-
SCs from DIV 10-14 autaptic neurons in astrocyte-rich mi-
crocultures were persistently depressed with as little as 60 min
depolarization, as assessed up to 1 h following the removal of
depolarization (Fig. 1B,C), while 30 min of depolarization
yielded insignificant muting (p = 0.45). We have shown pre-
viously that this depolarization-induced depression is selec-
tive for glutamate synapses and arises from muting in the
absence of synapse loss or postsynaptic receptor changes
(Moulder et al., 2004, 2006). By contrast, neurons in
astrocyte-poor cultures exhibited no EPSC depression with up
to 4 h depolarization, which produced strong muting in
astrocyte-rich cultures (Fig. 1B,C). Neurons from astrocyte-
poor cultures perfused for 10 s with 30 mm KCl in recording
saline depolarized to the same steady-state membrane poten-
tial as those from astrocyte-rich cultures (astrocyte-rich:
—17.3 = 2.5 mV; astrocyte-poor: —17.4 = 2.0 mV; n = 10
neurons; p = 0.97, Student’s unpaired ¢ test), suggesting that
the induction protocol depolarizes neurons from both condi-
tions similarly. Muting, therefore, is impaired in astrocyte-
poor cultures.

To evaluate an alternative method of muting induction, we
incubated cells in G;,,-coupled receptor agonists CCPA (an Al
adenosine receptor agonist) and baclofen (a GABAj receptor ag-
onist) or in PKA antagonist Rp-cAMPS. Both treatments induce
presynaptic muting (Moulder et al., 2008; Crawford et al., 2011).
These agents depressed EPSCs in astrocyte-rich cultures, as ex-
pected, but significantly increased EPSC amplitudes in astrocyte-
poor cultures (Fig. 1C). This unexpected reversal of EPSC
depression indicated an abnormality in muting induction. Mean-
while, canonical acute presynaptic depression, mediated by GBy
subunit signaling (Brown and Sihra, 2008), did not differ in
astrocyte-poor cultures; autaptic EPSCs were acutely depressed
by both the GABAj receptor agonist baclofen (astrocyte-rich:
74.9 £ 4.5%; astrocyte-poor: 63.9 = 5.5%; n = 11; p = 0.14,
Student’s paired ¢ test; Fig. 1 D) and the Al adenosine receptor
agonist CCPA (astrocyte-rich: 61.0 * 6.2%; astrocyte-poor:
46.6 £ 4.6%; n = 11; p = 0.08, Student’s paired t test; Fig. 1E)

<«

(magenta) in autaptic neurons from astrocyte-rich and astrocyte-poor cultures (30 min,
—20°C, 70% EtOH-fixed astrocytes). Scale bar, 5 m. C, vGluT-1 (magenta) and MAP2 (cyan)
immunostaining in autaptic neurons showing similar density and intensity of presynaptic ter-
minals. Scale bar, 20 um. Summary results for A—Care given in the Results. D, Calcium concen-
tration—response curves of autaptic EPSC amplitudes from astrocyte-rich or astrocyte-poor
cultures normalized for each neuron to values obtained in 5 mm external calcium (n = 21-22).
Data from astrocyte-rich cultures were fitted to the Hill equation (ECs, value: 1.8 mu; Hill
coefficient: 2.7). Inset, Non-normalized values from the same dataset demonstrating basal
depression of EPSCs in astrocyte-poor cultures at higher calcium concentrations. *p << 0.05,
Student’s unpaired t test, Bonferroni corrected.
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similarly in astrocyte-rich and astrocyte-poor cultures. The mut-
ing deficit in astrocyte-deprived neurons, therefore, is likely
downstream of depolarization and Ge;,, subunit-mediated
cAMP signaling.

Normal basal presynaptic function in astrocyte-poor cultures
The basal EPSC amplitude was smaller in astrocyte-deprived cul-
tures than in astrocyte-rich cultures (astrocyte-rich: —18.3 £ 5.7
nA; astrocyte-poor: —5.0 = 1.4 nA; n = 15-16; p = 0.037, Stu-
dent’s unpaired ¢ test); however, IPSCs were similar (astrocyte-
rich: —7.6 £ 2.5 nA; astrocyte-poor: —8.7 = 1.9 nA; n = 14
neurons; p = 0.74, Student’s unpaired f test), suggesting that the
basal deficit in amplitude in astrocyte-poor cultures localized
specifically to glutamatergic synapses. The decreased EPSC am-
plitude was not explained by differences in local astrocytic signal-
ing because neurons in astrocyte-deprived cultures on islands
with some of the few contaminating live astrocytes did not have
larger EPSCs than neurons associated with nonviable islands, as
assessed by a vital stain (viable islands: —2.0 = 0.5 nA; nonviable
islands: —4.8 = 1.5 nA; n = 13-16 neurons; p = 0.13, Student’s
unpaired ¢ test; Fig. 2A). A global deficit in astrocyte-poor cul-
tures, therefore, likely explains the basal EPSC depression.

Decreased functionally active presynaptic terminals did not
explain the basal EPSC depression or the deficient stimulus-
induced muting in astrocyte-poor cultures. The percentage of
basally active terminals, as measured via stimulus-induced FM1-
43FX dye labeling of vesicles at vGluT-1-immunoreactive syn-
apses, was similar in astrocyte-rich and astrocyte-poor cultures
(astrocyte-rich: 48.0 = 4.1%; astrocyte-poor: 54.5 = 7.0%; n = 8
dishes; p = 0.44, Student’s unpaired ¢ test; Fig. 2B). Further-
more, neither the number (astrocyte-rich: 188.3 = 35.7 puncta;
astrocyte-poor: 174.1 = 21.8 puncta; n = 35 neurons; p = 0.74,
Student’s unpaired f test) nor the intensity [astrocyte-rich: 410 =
58 X 1000 arbitrary units (AU); astrocyte-poor: 388 = 65 X 1000
AU; n = 35 neurons; p = 0.80, Student’s unpaired ¢t test] of
vGluT-1 puncta per cell differed, suggesting normal synapse
and vesicle numbers (Fig. 2C). Paired-pulse EPSC depression
was also normal, suggesting similar vesicle release probability
(astrocyte-rich: 5.1 £ 9.2%; astrocyte-poor: 18.2 = 8.6%; n =
15-16; p = 0.3, Student’s unpaired ¢ test), and normalized
calcium concentration—response relationships were similar in
astrocyte-rich and astrocyte-poor cultures (Fig. 2D). EPSCs re-
mained depressed in astrocyte-poor cultures at the highest cal-
cium concentration (5 mM; Fig. 2 D), suggesting that deficits did
not arise from altered coupling of calcium influx to vesicle fusion.
No deficits in presynaptic function, therefore, were detected with
reduced astrocytic signaling.

Basal postsynaptic deficits in astrocyte-poor cultures

A postsynaptic deficit, rather, appeared to explain the basal EPSC
depression in astrocyte-poor cultures. AMPA receptor and
NMDA receptor components of EPSCs were reduced in parallel
(astrocyte-rich: 0.34 = 0.06 NMDA/AMPA receptor EPSC ratio;
astrocyte-poor: 0.47 = 0.12 NMDA/AMPA receptor EPSC ratio;
n = 14-15 neurons; p = 0.34, Student’s unpaired ¢ test; Fig. 3A),
and this parallel depression was associated with decreased re-
sponsiveness to exogenously applied AMPA receptor agonist
kainic acid (20 uM; astrocyte-rich: —12.2 £ 1.7 pA/pF; astrocyte-
poor: —5.9 £ 1.0 pA/pF; n = 14-15 neurons; p = 0.004, Stu-
dent’s unpaired t test; Fig. 3B) and NMDA receptor agonist
NMDA (10 uM; astrocyte-rich: —12.9 £ 1.7 pA/pF; astrocyte-
poor: —7.3 = 0.8 pA/pF; n = 14-15 neurons; p = 0.003, Stu-
dent’s unpaired ¢ test; Fig. 3B). The preserved ratio of NMDA to
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Figure 3.  Glutamate receptor levels are decreased in astrocyte-poor cultures. A, Represen-

tative dual-component (NMDA and AMPA receptor-mediated) EPSCs elicited in autaptic neu-
rons from astrocyte-rich or astrocyte-poor cultures. Note the change in vertical scale bar. B, Top,
Currents from autaptic neurons in astrocyte-rich or astrocyte-poor cultures in response to acute
kainic acid (KA) perfusion, a nondesensitizing AMPA receptor agonist. Bottom, Currents from
autaptic neurons in astrocyte-rich or astrocyte-poor cultures in response to acute NMDA perfu-
sion to selectively activate NMDA receptors. €, Top, representative miniature EPSCs from
astrocyte-rich or astrocyte-poor cultures elicited by acute perfusion of 100 mm sucrose. Bottom,
Cumulative probability plots of amplitude ( p << 0.001 with D = 0.2175) and interevent interval
(p << 0.001 with D = 0.3860) of miniature EPSCs (n = 10; Kolmogorov—Smirnov test). Addi-
tional summary data for A-Care given in the Results.

AMPA receptor responses to exogenous agonists (astrocyte-rich:
1.26 = 0.36; astrocyte-poor: 1.93 = 0.41; n = 14—15 neurons; p =
0.16, Student’s unpaired ¢ test; Fig. 3B) further implies that
NMDA receptors and AMPA receptors were reduced in parallel
and that both synaptic and extrasynaptic receptor levels were
decreased. Additionally, miniature EPSC (mEPSC) amplitude
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Student’s unpaired ¢ test). Together, these
results suggest that neurons in astrocyte-
poor cultures have fewer functional gluta-
mate receptors.

To ask whether the decreased basal EPSC
amplitude contributed to the muting deficit
in astrocyte-poor cultures, we attempted to
induce muting in young (DIV 7-38),
astrocyte-rich cultures. Despite smaller
basal EPSC amplitudes similar to those
found in DIV 10-14 astrocyte-poor cul-
tures (—3.75 = 0.95 nA; n = 17), these
younger neurons in astrocyte-rich cultures
expressed muting in response to a 4 h depo-
larization challenge (Fig. 4A,E). Con-
versely, older (DIV 21), astrocyte-poor
cultures with larger basal EPSC amplitudes
(10.27 £ 4.02 nA; n = 12) did not exhibit
muting (Fig. 4 E). Together with prior pub-
lished studies suggesting that postsynaptic
glutamate receptor function is not required
for muting induction (Moulder et al., 2004,
2006), these data suggest that the postsynap-
tic changes caused by astrocyte deficiency
did not explain the muting deficits. Because
glial modulation of glutamate receptor lev-
els and function has been studied previo-
usly (Beattie et al., 2002; Stellwagen and
Malenka, 2006; Perea et al., 2009; Sullivan et
al., 2011), we did not further characterize
the mechanisms responsible for this post-
synaptic deficit in astrocyte-poor cultures.
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was reduced (astrocyte-rich: 19.7 * 2.1 pA; astrocyte-poor:
13.4 = 1.1 pA; n = 10 neurons; p < 0.01, Mann—Whitney U test;
Fig. 3C), further suggesting that postsynaptic receptor levels were
decreased in astrocyte-poor cultures. Frequency of mEPSCs also
trended toward reduction (astrocyte-rich: 0.39 = 0.22 s inter-
event interval; astrocyte-poor: 1.03 = 0.28 s interevent interval;
n = 10 neurons; p > 0.05, Mann—Whitney U test; Fig. 3C), but it
was unclear whether this resulted from an undetected presynap-
tic change or whether the smallest mEPSCs fell below the detec-
tion threshold. Immunoreactivity for surface levels of the AMPA
receptor subunit GluA2 was also reduced, with fewer vGluT-1-
defined synapses colocalizing with GluA2 (astrocyte-rich: 66.7 =
2.3%; astrocyte-poor: 59.0 * 2.9%; n = 46—48 fields; p = 0.039,

KCI

Soluble, astrocyte-derived thrombospondin rescues presynaptic muting competence. A—D, Representative DIV 712
autaptic EPSCs after 4 h control treatment (30 mm NaCl) or depolarization (30 mm KCl). Cultures were astrocyte-rich and challenged
at DIV 7 without additional treatments (A), astrocyte-poor, treated with astrocyte-conditioned medium (CM) at DIV 7, and chal-
lenged at DIV 1012 (B), astrocyte-poor and challenged at DIV 10—121in CM (C), or astrocyte-poor, treated with 5 p.g/ml human
thrombospondin 1 (TSP) at DIV 7, and challenged at DIV 1012 (D). E, Summary of EPSCamplitudes after 4 h 30 mm KCl or 50 pum
Rp-cAMPS (Rp) with indicated pretreatments and/or cotreatments (n = 12-20 neurons; *p << 0.05 vs treatment controls,
Student’s unpaired t test). EPSCs were normalized as in Figure 1C. +, Astrocyte-rich cultures; —, astrocyte-poor cultures; GBP, 32

development of muting competence
(e.g., through global cues). In support of
the latter, conditioned medium from
mature, live-astrocyte cultures added to
astrocyte-poor cultures at DIV 7 res-
cued muting, even when conditioned
medium was replaced with fresh me-
dium during the depolarization challenge
(Fig. 4 B, E). Conditioned medium was in-
effective if applied only during the muting
induction protocol (Fig. 4C,E). Thus, glial
factors are not released instructively dur-
ing muting induction and are, instead, released permissively dur-
ing synapse development. Because older (DIV 21), astrocyte-
poor cultures failed to express muting (Fig. 4 E), it is unlikely that
muting competence was delayed in the absence of astrocytes.
Rather, it appears that astrocytes provide a fundamental develop-
mental cue that permits muting competence.

We hypothesized that astrocytes release a permissive sub-
stance for muting development rather than remove a nonpermis-
sive factor. Astrocyte-derived TSPs foster presynaptic maturation
via binding to the neuronal «268-1 subunit of voltage-gated cal-
cium channels or to neuroligin 1 (Eroglu et al., 2009; Xu et al.,
2010). Synaptogenic effects of TSPs are mediated redundantly by

KCI Rp
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the 5 TSP isoforms (Eroglu et al., 2009),
and TSPI1 is expressed strongly in hip-
pocampus (Adams and Tucker, 2000).
We, therefore, tested effects of adding hu-
man TSP1 (5 pg/ml) to astrocyte-poor
cultures. Incubation in human TSP1
starting at DIV 7 rescued presynaptic
muting competence in astrocyte-poor
cultures (Fig. 4D, E). In contrast, TNFa (1
ng/ml), an astrocyte-derived factor in-
volved in postsynaptic plasticity (Beattie
et al., 2002; Stellwagen et al., 2005; Stell-
wagen and Malenka, 2006; Steinmetz and
Turrigiano, 2010), did not rescue muting
in astrocyte-poor cultures (Fig. 4E).
These data suggest that TSP1 is capable of
promoting muting competence but do
not clarify whether TSPs are the endoge-
nous astrocytic factors responsible.

Prevention of muting by gabapentin, a
blocker of thrombospondin-a26-1
binding
To test for the receptor through which
TSP1 promotes muting, we blocked TSP
binding to the candidate receptor a26-1
using gabapentin, a clinically used drug
for the treatment of human neuropathic
pain and epilepsy. Gabapentin inter-
feres with TSP binding to «28-1 and
prevents TSP’s synaptogenic effects in
retinal ganglion neurons (Gee et al,
1996; Eroglu et al., 2009). In astrocyte-
poor cultures, gabapentin (32 um) abol-
ished conditioned medium rescue of
depolarization-induced muting (Fig. 4E),
suggesting that TSPs are likely the astrocyte-
derived regulators of muting competence.
We also evaluated the effect of gabapentin in
live-astrocyte cultures, where ongoing pro-
duction of astrocytic TSPs was an additional
consideration. In these cultures, a single
treatment with gabapentin at DIV 7 was in-
effective in preventing silencing, as assessed
at DIV 10-12 (control: 100.0 = 22.6%; de-
polarized 29.8 = 7.9%; n = 12 neurons;
p=0.008, Student’s unpaired t test; Fig. 5A);
however, 3-5 d maintenance of gabapentin
by partial medium exchange in astrocyte-
rich cultures eliminated depolarization-
induced muting (control: 100.0 % 20.0%;
depolarized 103.6 £ 19.8%; n = 12 neu-
rons; p = 0.90, Student’s unpaired ¢ test; Fig.
5B). These results suggest that gabapentin
also blocks endogenously released factors
important for muting when the ongoing
production of the factors is taken into
account.

To test whether using gabapentin to block

endogenous TSP could have implications for neural network function,
we measured spontaneous network activity after muting induction in
control and gabapentin-treated cultures. These astrocyte-rich, conven-
tional mass cultures exhibited decreased spontaneous activity after mut-
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Representative DIV 10 —12 autaptic EPSCs after 4 h control or depolarized. Astrocyte-rich cultures were treated with 32 um gabapentin at
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for each recording day (n = 23 neurons; *p << 0.05, Bonferroni corrected).

ing induction (Fig. 5C,D), consistent with an adaptive role for muting
(Hogins et al., 2011; Crawford and Mennerick, 2012). In
gabapentin-treated cultures, however, a nonsignificant increase in
network activity was observed ( p = 0.16, Bonferroni corrected), but
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Figure 6.  PKA-dependent hyperphosphorylation of synapsin is normalized by thrombospondin. A, Phospho-synapsin (PKA
phosphorylation site) immunostaining in DIV 1012 autaptic neurons from astrocyte-rich or astrocyte-poor cultures with or
without 5 pg/ml TSP treatment at DIV 7. Red circles are representative regions of interest defined by vGluT-1immunoreactivity
(data not shown). Scale bar, 5 um. B, Summary of background-subtracted phospho-synapsin at vGluT-1-positive synapses in DIV
10-12 autaptic neurons (n = 35 neurons; *p << 0.05, Bonferroni corrected). €, Synapsin immunostaining at vGluT-1-defined
synapses (red circles are representative) in autaptic neurons from astrocyte-rich or astrocyte-poor cultures. Summary immunore-
activity values are given in the Results. Scale bar, 5 pm.

network activity did not change after the muting induction protocol

J. Neurosci., September 19,2012 - 32(38):13100-13110 « 13107

PKA-dependent phosphorylation
normalization by thrombospondin in
astrocyte-poor cultures

Although the signaling pathways down-
stream of a26-1 are unclear, we hypothe-
sized that PKA signaling, which regulates
muting (Moulder et al., 2008), is altered in
astrocyte-deprived neurons. This hypothe-
sis was based in part on the observations
that both G;,,-coupled receptor agonist-
induced muting and Rp-cAMPS-induced
muting were dysfunctional (Fig. 1C). To test
whether PKA activity was normal in
astrocyte-poor cultures, we measured phos-
phorylation levels of PKA substrates in neu-
rons. We found that phosphorylation levels
of the presynaptic protein synapsin at its
PKA phosphorylation site were increased in
vGluT-1-defined synapses in astrocyte-
poor cultures (Fig. 6 A, B). Immunoreactiv-
ity of total synapsin levels was unchanged,
however (astrocyte-rich: 28.6 = 1.8 X 1000
AUj astrocyte-poor: 30.2 = 1.7 X 1000 AU;
n = 35 neurons; p = 0.51, Student’s un-
paired ¢ test; Fig. 6C). Phosphorylation of
CREB, another PKA substrate, was also ab-
normally high in neuronal nuclei from
GABA-negative neurons in astrocyte-
deprived cultures, as measured via immu-
noreactivity (astrocyte-rich: 3.8 = 0.3 X
1000 AU; astrocyte-poor 15.5 & 1.2 X 1000
AU; n = 60—89 neurons; p = 3.7 X 10",
Student’s unpaired ¢ test; Fig. 7A). In con-
trast, phosphorylation of dynamin 1, a PKC
substrate, was unchanged in astrocyte-poor
cultures (Fig. 7B), suggesting that hyper-
phosphorylation was restricted to PKA
phosphorylation sites. TSP1 incubation in
astrocyte-poor cultures reversed abnormal
presynaptic phospho-synapsin (Fig. 6 A, B),
so TSP appears to restore normal PKA tar-
geting and/or activity. Furthermore, TSP1
incubation reinstated normal Rp-cAMPS-
induced persistent EPSC depression in
astrocyte-poor cultures (Fig. 4E). Together,
these results suggest that TSP promotes
muting competence via normalization of
signaling downstream of cAMP pathways.

Discussion

Here we have demonstrated that astro-
cytes serve as permissive partners in the
development of a form of persistent syn-
aptic depression: presynaptic muting. In
glutamatergic neurons from astrocyte-
poor cultures, basal presynaptic function
remained intact, suggesting that astro-
cytes modulate presynaptic plasticity
competence differently than they regulate
other types of presynaptic development.

(Fig. 5C,D), suggesting that muting was notinduced. Together, these ~ Astrocytic signaling was permissive, but not acutely instructive,
results argue that TSP binding to a28-1 fosters development of pre-  for muting induction. Astrocyte-derived TSPs promoted the de-
synaptic muting competence. velopment of muting ability, as induced with varied stimuli,
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likely through «26-1 calcium channel
subunits. Although the signaling path-
ways immediately downstream of a28-1
remain to be clarified, PKA appears to
be an important downstream effector.
PKA-dependent phosphorylation and
synaptic behavior were abnormal in
astrocyte-poor cultures but restored by
TSP1 treatment, providing a potential
mechanism by which TSP modulates
muting competence.

TSPs were originally discovered in hu-
man blood platelets (Baenziger et al,
1971). In the brain, at least 4 TSPs are ex-
pressed in various regions and cell types
(Truela-Arispe et al., 1993; Adams and
Tucker, 2000). TSPs are released from as-
trocytes and promote synaptogenesis
(Asch et al., 1986; Christopherson et al.,
2005; Xu et al., 2010), but because TSP-
induced glutamate synapses in retinal
ganglion cells are postsynaptically silent
(Christopherson et al., 2005; Eroglu et al.,
2009), TSPs may be involved mainly in
presynaptic rather than postsynaptic dif-
ferentiation. This is especially interesting
because postsynaptic TSP actions produce
these presynaptic effects (Eroglu et al,
2009; Xu et al., 2010). TSP increases the
total number of synapses in retinal gan-
glion cells (Christopherson et al., 2005;
Eroglu et al., 2009) but accelerates synap-
togenesis without altering total synapse
number in hippocampal neurons (Xu et
al,, 2010). Glial cells exhibit regional differences in synaptogenic
effects (Steinmetz et al., 2006). This regional difference could
explain why astrocyte deprivation failed to change total presyn-
aptic terminal number in our study of hippocampal neurons and
why TSP’s effects on hippocampal synaptic plasticity have been
previously overlooked. Although muting is found in a variety of
preparations (Crawford and Mennerick, 2012), future work
should clarify whether TSP’s effects on muting are brain region-
specific or whether they constitute a widespread mechanism. Be-
cause TSP expression increases after injury and is important for
behavioral recovery after stroke, TSP may be important generally
for adaptive neuronal responses (Lin et al., 2003; Liauw et al.,
2008; but see Kim et al., 2012). Presynaptic muting, which re-
duced network activity during an excitatory insult during this
study and protected neurons against hypoxia in a prior study
(Hogins et al., 2011), could be one such TSP-mediated synaptic
mechanism contributing to adaptive neural responses during
brain insults.

TSP promoted muting competence through its interaction
with the @26-1 calcium channel subunit. This subunit serves as
the TSP receptor for synaptogenesis in retinal ganglion cells (Ero-
glu et al., 2009) and as the receptor for the antinociceptive and
anticonvulsant drug gabapentin (Gee et al., 1996). Gabapentin’s
therapeutic effects may arise from alterations in calcium channel
organization (Arikkath and Campbell, 2003; Field et al., 2006;
Bauer et al., 2009; Bauer et al., 2010; Hoppa et al., 2012), among
other neuronal changes (Freiman et al., 2001; Gu and Huang,
2001; Stefani et al., 2001; Surges et al., 2003). Gabapentin binding
to a28-1 antagonizes TSP-induced synaptic development in ret-
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Right, Quantification of background-subtracted phospho-dynamin 1 intensity from a single primary and two secondary dendrites
averaged per neuron. Asa positive control, we treated for 30 min with phorbol ester (1 wm PDBu), which increased PKC-dependent
phosphorylation of dynamin 1 (n = 30 neurons; *p << 0.05, Bonferroni corrected).

inal ganglion neurons (Eroglu et al., 2009), and we found that
gabapentin prevented the development of muting competence in
hippocampal neurons, implicating TSP binding to «26-1 in this
effect. Interestingly, calcium channel function was not detectably
altered in astrocyte-poor cultures in our study, as evidenced by
the lack of change in vesicle release probability and calcium con-
centration—response curves. Consistent with prior literature
(Eroglu et al., 2009; Hoppa et al., 2012), this suggests that throm-
bospondin’s and gabapentin’s effects do not arise via alterations
in calcium channel function. These results emphasize that future
work needs to clarify the mechanism by which «28-1 alters mut-
ing competence.

Muting incompetence caused by gabapentin could also have
clinical implications. Previous studies have demonstrated a wide
variety of effects of gabapentin on synaptic and behavioral plas-
ticity including no effect (Cilio et al., 2001; Heidegger et al.,
2010), reduced plasticity (Blake et al., 2007; Eroglu et al., 2009;
Kurokawa et al., 2011), and enhanced learning (Buccafusco et al.,
2010). In our study, gabapentin blocked adaptive network
changes in response to a stimulus known to selectively induce
muting. Although we saw a nonsignificant increase in total net-
work activity after gabapentin treatment, this likely does not ex-
plain the lack of muting since muting is promoted by increased
network activity (Moulder et al., 2004, 2006). The prevention of
adaptive muting appears counterintuitive for gabapentin because
it is a therapeutic agent. Our study and a previous study (Eroglu
et al,, 2009) suggest that synaptogenic periods might be particu-
larly vulnerable to unintended effects of gabapentin. Therapeutic
benefits have been hypothesized to arise from gabapentin’s block
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of synaptogenesis (Eroglu et al., 2009; Lo et al., 2011) and reduc-
tion of calcium channel function or trafficking (Rogawski and
Loscher, 2004). Because synapse formation was not hindered and
calcium channels did not differ functionally in astrocyte-poor
cultures compared with astrocyte-rich cultures, these effects of
gabapentin likely did not contribute to muting prevention. Ga-
bapentin’s effects on muting may instead work through a differ-
ent molecular pathway and become detrimental to the neural
network only after a secondary excitatory insult. Future work
should clarify the contexts under which multiple effects of gaba-
pentin alter neuronal function.

Our work implicates PKA signaling in TSP’s promotion of
muting competence. G;,,-linked receptor agonists and PKA in-
hibitors, which normally produce muting (Moulder et al., 2008;
Crawford et al, 2011), persistently potentiated EPSCs in
astrocyte-poor cultures. Additionally, PKA substrates in the pre-
synaptic terminal and the nucleus were hyperphosphorylated in
astrocyte-deprived cultures, indicating an abnormal increase in
PKA site phosphorylation or a decrease in dephosphorylation.
This surprising synaptic facilitation may suggest that multiple
cAMP-dependent pathways regulate synaptic transmission. It is
possible that PKA inhibition normally suppresses transmission
by dominating or masking other potentiating effects that are then
revealed in the context of astrocyte deprivation and hyperphos-
phorylated PKA substrates. Astrocyte-released TSPs, therefore,
may restrain PKA activity, or phosphorylation levels of its sub-
strates, during synaptic development so that PKA inhibition can
produce a meaningful decrease in synaptic function upon expo-
sure to the depolarization challenge. Other explanatory models
are possible, and future work may distinguish them.

In addition to effects on synaptic plasticity, we also observed
effects of astrocyte deprivation on basal postsynaptic function.
Neuronal responses to AMPA and NMDA receptor agonists were
depressed in parallel, supporting prior work suggesting that as-
trocytes are important for postsynaptic development (Beattie et
al., 2002; Stellwagen and Malenka, 2006; Perea et al., 2009; Sulli-
van et al, 2011). Because neurons near live astrocytes in
astrocyte-poor cultures produced EPSCs that were statistically
indistinguishable from those on dead astrocytes, depressed basal
EPSCs likely resulted from a deficit in global astrocytic signaling
rather than a deficit in local signaling. It is unlikely that the basal
EPSC deficit caused the deficit in muting because the failure to
mute persisted in older, astrocyte-deprived cultures with larger
basal EPSCs. Furthermore, muting persists in the presence of
complete blockade of AMPA and NMDA receptor function
(Moulder et al., 2004, 2006). Our results do not exclude a role for
TSP and 26-1 in basal postsynaptic development, however, but
TSP’s role in muting appears independent of postsynaptic recep-
tor function.

In summary, astrocyte-derived TSPs permit presynaptic
muting at hippocampal glutamate terminals. TSPs likely act
through «26-1 binding to normalize PKA signaling in devel-
oping synapses. These results reveal a novel mechanism by
which glial-neuronal communication controls adaptive syn-
aptic malleability.
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