2009

Contribution of autolysin and sortase A during Enterococcus faecalis DNA-dependent biofilm development

Pascale S. Guiton
Washington University School of Medicine in St. Louis

Chia S. Hung
Washington University School of Medicine in St. Louis

Kimberly A. Kline
Washington University School of Medicine in St. Louis

Robyn Roth
Washington University School of Medicine in St. Louis

Andrew L. Kau
Washington University School of Medicine in St. Louis

See next page for additional authors

Follow this and additional works at: http://digitalcommons.wustl.edu/open_access_pubs

Recommended Citation
http://digitalcommons.wustl.edu/open_access_pubs/2428

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact engeszer@wustl.edu.
Contribution of Autolysin and Sortase A during Enterococcus faecalis DNA-Dependent Biofilm Development

Pascale S. Guiton, Chia S. Hung, Kimberly A. Kline, Robyn Roth, Andrew L. Kau, Ericka Hayes, John Heuser, Karen W. Dodson, Michael G. Caparon and Scott J. Hultgren

Updated information and services can be found at: http://iai.asm.org/content/77/9/3626

These include:

SUPPLEMENTAL MATERIAL

Supplemental material

REFERENCES

This article cites 79 articles, 54 of which can be accessed free at: http://iai.asm.org/content/77/9/3626#ref-list-1

CONTENT ALERTS

Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more»

Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml
To subscribe to another ASM Journal go to: http://journals.asm.org/site/subscriptions/
Contribution of Autolysin and Sortase A during Enterococcus faecalis DNA-Dependent Biofilm Development

Pascale S. Guiton, Chia S. Hung, Kimberly A. Kline, Robyn Roth, Andrew L. Kau, Ericka Hayes, John Heuser, Karen W. Dodson, Michael G. Caparon,* and Scott J. Hultgren*

Department of Molecular Microbiology and Microbial Pathogenesis, Washington University in St. Louis, St. Louis, Missouri 63110

Received 25 February 2009/Returned for modification 3 April 2009/Accepted 7 June 2009

Biofilm production is a major attribute of Enterococcus faecalis clinical isolates. Although some factors, such as sortases, autolysin, and extracellular DNA (eDNA), have been associated with E. faecalis biofilm production, the mechanisms underlying the contributions of these factors to this process have not been completely elucidated yet. In this study we define important roles for the major E. faecalis autolysin (Atn), eDNA, and sortase A (SrtA) during the developmental stages of biofilm formation under static and hydrodynamic conditions. Deletion of srtA affects the attachment stage and results in a deficiency in biofilm production. Atn-deficient mutants are delayed in biofilm development due to defects in primary adherence and DNA release, which we show to be particularly important during the accumulative phase for maturation and architectural stability of biofilms. Confocal laser scanning and freeze-dry electron microscopy of biofilms grown under hydrodynamic conditions revealed that E. faecalis produces a DNase I-sensitive fibrous network, which is important for biofilm stability and is absent in atn-deficient mutant biofilms. This study establishes the stage-specific requirements for SrtA and Atn and demonstrates a role for Atn in the pathway leading to DNA release during biofilm development in E. faecalis.

Biofilms are bacterial communities encased within an extracellular matrix composed of carbohydrates, proteins, and nucleic acids (10). They are an ideal environment for exchange of genetic materials, such as genes encoding virulence factors and antibiotic resistance determinants, among bacteria within a community (61, 76), while allowing the flow of water and nutrients, as well as ions and various small molecules, to bacteria within the community (8) and providing a protective shield against antibiotics, antimicrobial substances, and phagocytosis (33, 80). Development of a biofilm is a complex multistage process. It is initiated by primary adhesion of the bacteria to a substratum, which is followed by the formation of microcolonies and production of an exopolysaccharide matrix, and it finally culminates with the formation of a three-dimensional (3D) multicellular mature structure (48). Bacterial biofilms are important medically because they have been associated with the pathogenesis of chronic and device-related persistent infections, such as cystic fibrosis, urinary tract infections, and endocarditis (11).

Enterococcus faecalis is a gram-positive bacterium that is a commensal of the gastrointestinal tract of healthy individuals. However, it is also an important opportunistic pathogen that is responsible for a wide variety of nosocomial infections, including endocarditis, urinary tract infections, and bacteremia (14, 17, 23, 44). E. faecalis accounts for approximately 65 to 80% of all enterococcal nosocomial infections (16). The ability of E. faecalis to adhere to and develop biofilms on medical devices, such as intravascular and urinary catheters (25, 26, 36, 37, 72), is thought to contribute to its pathogenesis. The increasing resistance of enterococci to most antibiotics, including vancomycin and linezolid (62, 63), especially in biofilms (41, 59, 78), makes treatment of enterococcal infections very difficult.

Several putative virulence factors and cellular processes have been implicated in the development of biofilms in E. faecalis (36); however, very little is known about their regulation and molecular contribution to this process. One of these factors, the quorum-sensing two-component transduction signaling system encoded by the frr locus, an important virulence factor in the pathogenesis of E. faecalis, was shown to control biofilm formation via positive regulation of the extracellular zinc metalloprotease GelE (gelatinase) and the serine protease SprE (19, 38, 54–56). These proteases were recently shown to contribute to enterococcal biofilm formation via regulation of cellular autolysis and fratricidal DNA release (70, 71). In these studies, Thomas et al. also provided the first evidence for a critical role of extracellular DNA (eDNA) in E. faecalis biofilms. eDNA is an important component of the extracellular matrix of bacterial biofilms, providing structural stability to the biofilm and protection against antimicrobials (1, 2, 42, 43, 47, 51, 52, 58, 60, 65, 77). However, the function of this macromolecule throughout the establishment and growth of E. faecalis biofilms is not well characterized.

Bacterial murein hydrolases, also referred to as autolysins, have been implicated in biofilm production (58, 60). They are important contributors to cell wall growth and regulation, as well as several lytic processes (75). Two autolysins of Staphylococcus epidermidis, AtlE and Aae, are adhesins that contribute to bacterial attachment to polymeric surfaces and biofilm
Biofilms under static and hydrodynamic conditions. E. faecalis produces several autolysins, which were recently identified and characterized (12, 24, 35). The major E. faecalis autolysin, Atn (also known as AtlA), is an N-acetylglucosaminidase important for daughter cell separation during cellular division (12). Disruption of atn in E. faecalis resulted in increased chaining, a defect in primary attachment, and decreased biofilm production (3, 24, 31, 37, 57, 70). Recently, Thomas et al. (70) provided evidence that inactivation of this autolysin results in a defect in primary attachment, and decreased biofilm production. In the presence of hydrodynamic shear forces, the eDNA in E. faecalis biofilms is associated with a thick and long DNase-sensitive fibrous network that is associated with lysed cells present in the biofilm in some instances, as visualized by freeze-dry microscopy, transmission electron microscopy, and confocal laser scanning microscopy (CLSM). In contrast, atn-deficient mutants are unable to produce visible DNase-sensitive extracellular fibers under these conditions, although the biofilm remains partially sensitive to DNase treatment. These findings argue for a role for Atn in the temporal regulation of DNA release. Collectively, our data underscore the importance of SrtA, the major E. faecalis autolysin, and Atn-mediated DNA release at different stages during the establishment of E. faecalis biofilms. As a critical component of the extracellular matrix of E. faecalis biofilms, eDNA may serve as a novel target for the dissolution of these structures.

MATERIALS AND METHODS

Bacterial strains and growth conditions

Unless otherwise specified, all experiments were initiated using an overnight culture grown in brain heart infusion broth (BHI) (Becton Dickinson, Franklin Lakes, NJ) from a single colony of E. faecalis strain OG1RF from a BHI agar plate (45, 46). Liquid cultures were grown statically at 37°C for 17 to 18 h.

Genetic manipulations

Genes targeted for mutation were identified based on the complete genome of E. faecalis V583 (49); all references to genomic loci below are based on this annotation (GenBank accession number AE016830). Table 1 lists the strains and plasmids used in this study. In-frame deletion constructs were made using temperature-sensitive plasmid pJR233 (50) for genes EF3056 (pJR233-ΔEF3056) and EF0799 (pJR233-Δatn) as previously described (29) with primers listed in Table 2. OG1RFΔsrtA was transformed with pAL1::srtA, a pABG5-derived pAL1 plasmid expressing srtA under the rofA promoter (18, 29, 50) for complementation of srtA deletion.

Cultivation of biofilms

Biofilms were grown as described by Gilmore et al. (15) and modified as follows. Stationary-phase E. faecalis from overnight cultures were used to inoculate liquid brain heart infusion broth (BHI) at a concentration of approximately 10⁶ CFU/mL. Cultures were grown statically at 37°C for 17 to 18 h.

TABLE 1. Strains and plasmids

<table>
<thead>
<tr>
<th>Strain or plasmid</th>
<th>Relevant antibiotic resistance</th>
<th>Characteristics</th>
<th>Reference(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. faecalis strains</td>
<td>Rif<sup>100</sup>, Fus<sup>25</sup></td>
<td>srtA positive, atn positive</td>
<td>45, 46</td>
</tr>
<tr>
<td>OG1RF</td>
<td>Rif<sup>100</sup>, Fus<sup>25</sup></td>
<td>srtA positive, atn positive</td>
<td>This study</td>
</tr>
<tr>
<td>OG1RFΔatn (SJH-952)</td>
<td>Rif<sup>100</sup>, Fus<sup>25</sup></td>
<td>srtA positive, atn negative</td>
<td>This study</td>
</tr>
<tr>
<td>OG1RFΔsrtA (SJH-953)</td>
<td>Rif<sup>100</sup>, Fus<sup>25</sup>, Kan<sup>500</sup></td>
<td>srtA negative, atn positive</td>
<td>This study</td>
</tr>
<tr>
<td>OG1RFΔsrtA srtA (SJH-954)</td>
<td>Rif<sup>100</sup>, Fus<sup>25</sup>, Kan<sup>500</sup></td>
<td>srtA positive, atn positive</td>
<td>This study</td>
</tr>
<tr>
<td>Plasmids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pABG5</td>
<td>Kan<sup>50</sup> and Cm<sup>20</sup> (Escherichia coli); Kan<sup>500</sup> and Cm<sup>20</sup> (E. faecalis)</td>
<td>Shuttle vector containing rofA promoter for expression in gram-positive bacteria</td>
<td>18</td>
</tr>
<tr>
<td>pJRS233</td>
<td>Erm<sup>750</sup> (E. coli); Erm<sup>25</sup> (E. faecalis)</td>
<td>Temperature-sensitive plasmid for generation of in-frame deletions</td>
<td>50</td>
</tr>
<tr>
<td>pJRS233-ΔEF3056</td>
<td>Erm<sup>750</sup> (E. coli); Erm<sup>25</sup> (E. faecalis)</td>
<td>Temperature-sensitive plasmid for generation of in-frame deletion of EF3056 (srtA)</td>
<td>29</td>
</tr>
<tr>
<td>pJRS233-Δatn</td>
<td>Erm<sup>750</sup> (E. coli); Erm<sup>25</sup> (E. faecalis)</td>
<td>Temperature-sensitive plasmid for generation of in-frame deletion of EF0799 (atn)</td>
<td>This study</td>
</tr>
<tr>
<td>pAL1</td>
<td>Kan<sup>50</sup> (E. coli); Kan<sup>500</sup> (E. faecalis)</td>
<td>Derivative of pABG5, Cmr cassette, contains rofA promoter</td>
<td>29</td>
</tr>
<tr>
<td>pAL1::srtA</td>
<td>Kan<sup>50</sup> (E. coli); Kan<sup>500</sup> (E. faecalis)</td>
<td>Used for complementation of srtA deletion</td>
<td>29</td>
</tr>
</tbody>
</table>

* The superscripts indicate the concentrations of antibiotics (in μg/ml) to which the strains and plasmids are resistant. Rif, rifampin; Fus, fusidic acid; Kan, kanamycin; Cm, chloramphenicol; Erm, erythromycin.
TABLE 2. Primers

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence (5‘→3’)</th>
<th>Use</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>EF0799r1</td>
<td>GCTCTAGAAGATTTGCGATATCCGGCAATGGC</td>
<td>Amplification of upstream of att</td>
<td>This study</td>
</tr>
<tr>
<td>EF0799r2</td>
<td>GTTACCAAAAGAATGGCATTTTATTTTCTTTTTTTAAATTACCAACCAACTTGGT</td>
<td>Amplification of downstream of att</td>
<td>This study</td>
</tr>
<tr>
<td>EF0799r</td>
<td>GCTCTAGAAGATTTGCGATATCCGGCAATGGC</td>
<td>Screening of att deletion</td>
<td>This study</td>
</tr>
<tr>
<td>EF0799r2</td>
<td>GTTACCAAAAGAATGGCATTTTATTTTCTTTTTTTAAATTACCAACCAACTTGGT</td>
<td>Screening of streptid deletion</td>
<td>This study</td>
</tr>
</tbody>
</table>
| EF0356e-r1 | GGAATTCCTCCCTACCTAGCTTCTCACTCATTATACG | 3D reconstruction of biofilm images and biofilm quantification were performed using Volocity software (Improvision, Inc., Waltham, MA). For microscopy, washed plastic coverslips were placed on a Leica Ultracut UCT cryo-ultramicrotome (Leica Microsystems Inc., Bannockburn, IL). Sections (50 nm) were blocked with 5% fetal bovine serum-5% normal goat serum for 30 min and subsequently incubated with mouse anti-colloidal gold-conjugated DNA (anti-dsDNA) monoclonal antibody (Abcam, Cambridge, MA) for 1 h at room temperature. Sections were then washed in blocking buffer (5% fetal calf serum and 5% goat serum in 100 mM PIPEs) and probed with 18-nm colloidal gold-conjugated anti-mouse secondary antibody (Jackson Immunoresearch Laboratories, Inc., West Grove, PA) for 1 h at room temperature. Sols were incubated in PIPEs buffer (100 mM PIPEs, 0.5 mM MgCl2; pH 7.2), which was followed by a water rinse, and then stained with 0.3% uranyl acetate-2% polyvinyl alcohol. Samples were viewed with a JEOL 1200EX transmission electron microscope (JEOL USA Inc., Peabody, MA). All labeling experiments were conducted in parallel with controls from which the primary antibody was omitted. These controls were consistently negative with the concentration of colloidal gold-conjugated secondary antibodies used in these studies. Quantification was based on gold particle labeling in 10 to 13 independent fields at a magnification of ×30,000. Experiments were performed in duplicate.

Cellular autolysis assay. The autolysis assay was performed as previously described using sodium phosphate buffer (57). Briefly, overnight cultures were inoculated into fresh TSBG at a final OD600 of 0.002 and grown at 37°C on an orbital shaker at 100 rpm to an OD600 of 0.6 or for 24 h. The cultures were then placed on ice for 10 min, and a 1.5-mL aliquot of each culture was removed and centrifuged at 14,000 × g for 5 min at 4°C. The supernatants were discarded, and the pellets were resuspended in 1.5 mL of ice-cold water and washed three times with centrifugation at 14,000 × g for 5 min at 4°C. After the third wash, the pellets were resuspended in 10 mL of sodium sulfate buffer (pH 6.8) supplemented with 0.5 μg/mL of trypsin (Sigma Aldrich, Inc., St. Louis, MO). Portions of the suspensions were dispensed into 96-well flat-bottom microtiter plates in quintuplicate, and the remaining wells were filled with deionized water. Samples were incubated at 37°C, and OD600 were determined every 30 min for up to 9 h with a spectrophotometer. Autolysis was expressed as percentage of the initial OD600.
Statistical methods. Data are expressed as means ± standard errors of the means of biofilm values derived from the absorbance of solubilized crystal violet at 595. Comparisons of biofilm biomasses among groups were carried out using the Mann-Whitney test.

RESULTS

E. faecalis biofilm development occurs in two major steps._ In order to delineate the major stages of _E. faecalis_ biofilm development, we monitored OG1RF biofilm formation under static conditions using crystal violet staining and CLSM for 72 h. Crystal violet staining showed a biphasic growth curve (Fig. 1A). The accumulation was slow between 0 and 24 h; this was followed by significantly faster growth during the next 48 h, and there was an approximately sixfold increase in biomass from 24 h to 72 h (Fig. 1A). CLSM images of 24-h and 72-h OG1RF biofilms stained with the DNA dyes SYTO9 (green) and PI (red) and visualized with CLSM. 3D reconstructions of z stacks were generated with the Volocity software. One unit on each side of each grid equals 14.3 μm. (C) Relative biomasses of 72-h OG1RF biofilms treated for 1 h, 2 h, 3 h, or 24 h with 5 μg/ml of DNase I or iDNase I at 37°C. The error bars indicate standard errors of the means for three different experiments. *, _P_ < 0.05, as determined by the Mann-Whitney test; **, _P_ < 0.01, as determined by the Mann-Whitney test; ***, _P_ < 0.0005, as determined by the Mann-Whitney test.

FIG. 1. DNA is critical for OG1RF biofilms under static conditions. (A) Crystal violet staining of OG1RF biofilms grown statically in TSBG at 37°C in the presence or absence of 5 μg/ml DNase I and monitored for 72 h. The error bars indicate standard errors of the means for three to seven different experiments. *, _P_ < 0.05, as determined by the Mann-Whitney test. (B) Seventy-two-hour static OG1RF biofilms without DNase I treatment (left panel) or treated with 5 μg/ml of DNase continuously (middle panel) or for 3 h postformation (right panel). Biofilms were then stained with SYTO9 (green) and PI (red) and visualized with CLSM. 3D reconstructions of z stacks were generated with the Volocity software.

eDNA is required for biofilm development. To determine whether eDNA contributes to biofilm development, OG1RF biofilms were grown statically in the presence of various DNase I concentrations ranging from 0.5 μg/ml to 50 μg/ml. DNase I severely impaired the ability of OG1RF to form mature biofilms at concentrations as low as 0.5 μg/ml (data not shown). At 72 h, the biomass of OG1RF grown in the presence of 5 μg/ml DNase I was 92.3% less (_P_ = 0.0121, Mann-Whitney test) than the biomass of an untreated control (Fig. 1A). The detrimental effect of DNase I on biofilm development was not due to bactericidal or bacteriostatic activities of the enzyme, as DNase I did not inhibit OG1RF planktonic growth (data not shown). CLSM analysis revealed that in the presence of DNase I, bacteria were able to attach to the substratum; however, they failed to form the large compact 3D structures observed with untreated cells after 72 h of incubation (Fig. 1B). In addition, approximately 10 to 15% of the cells that were present in the DNase I-treated samples were stained with PI, compared to the 30 to 50% of the cells in the untreated samples that were stained with PI (see Fig. S2B and C in the supplemental material). The lower level of PI staining in biofilms treated with DNase I suggests that there was a reduction in the number of SYTO9 and PI colocalization due to the presence of dead cells or eDNA in these structures (Fig. 1B).
dead cells and/or eDNA. Together, these findings indicated that the presence of eDNA in OG1RF biofilms contributes to the establishment of mature enterococcal biofilm structures.

eDNA is required for maintenance of biofilm architectural integrity. To further characterize the function of eDNA in enterococcal biofilms, we investigated the effects of DNase I on mature biofilms. Seventy-two-hour static OG1RF biofilms were treated with 5 μg/ml of DNase I for 1 h, 2 h, 3 h, and 24 h at 37°C, followed by crystal violet staining or CLSM analysis. The biofilm biomass was significantly reduced (~30% less than an untreated control) after 2 h of treatment (P = 0.0428) (Fig. 1C). By 3 h, the biomass was reduced by 60% in the presence of 5 μg/ml of DNase I (P = 0.0003), while iDNase I had no effect (P = 0.5079) (Fig. 1C). Disintegration of the biofilm structures was visualized at 3 h following treatment with 5 μg/ml of DNase I (Fig. 1B), in contrast to 1 h after treatment with higher DNase I concentrations (see Fig. S2D in the supplemental material), suggesting that the effects of DNase I on biofilms were dose and time dependent. Overall, the data described above indicated that eDNA is an important structural component of E. faecalis biofilms and is necessary for stability of mature structures.

E. faecalis forms a DNase I-sensitive fibrous network under hydrodynamic conditions. E. faecalis withstands a variety of environmental conditions involving hydrodynamics in order to efficiently colonize medical devices, which contributes to its role as an important nosocomial pathogen. To investigate the effects of shear forces on the E. faecalis biofilm development process, we cultivated OG1RF biofilms in the presence of a fluid flow generated with an orbital shaker for the duration of the experiment. Biofilms grown for 48 h were stained with SYTO9, PI, and WGA (when indicated) for CLSM analysis. Continuous shear forces during biofilm growth resulted in clustering of cells in long fibrous structures that were observed in freeze-dry electron micrographs and CLSM images (Fig. 2A to C). These extracellular fibers were stained only with the DNA dyes and not with WGA (see Fig. S3 in the supplemental material) and disappeared within 1 h after DNase I treatment (Fig. 2D and E; see Fig. S3 in the supplemental material), which correlated with the degradation of the biofilm structure. Additionally, immunogold transmission electron microscopy analyses of OG1RF hydrodynamic biofilms labeled with mouse anti-dsDNA monoclonal antibody revealed foci inside and at the surface of cells, as well as in the extracellular matrix surrounding the cells (Fig. 3A, top left panel), while examination of biofilms after 1 h of treatment with DNase I showed a reduced presence of eDNA (Fig. 3A, top right panel). Approximately 38% of the gold particles labeled the extracellular matrix, compared to ~6% following DNase I treatment (Fig. 3B). Similar to the results for static conditions, OG1RF grown in the presence of 5 μg/ml of DNase I for 48 h failed to produce biofilms under hydrodynamic conditions, and only 2% of the gold particles were found in the extracellular milieu under such conditions (data not shown). Notably, treatment with proteinase K did not prevent OG1RF biofilm formation and did not affect the formation of the DNase I-sensitive extracellular fibers (data not shown). These results indicate that in the presence of hydrodynamic forces E. faecalis produces DNA-dependent biofilms with an architecture distinct from that of static biofilms and that eDNA is a major component of the filamentous extracellular network in biofilms formed under hydrodynamic conditions that appears to provide cell-to-cell adhesion and stability in the biofilms.

Deletion of atn results in delayed biofilm formation. Freeze-dry electron microscope analysis revealed that lysed cells are constituents of enterococcal biofilms (see Fig. S4A in the supplemental material). We hypothesized that Atn, the major autolysin of E. faecalis, facilitates DNA release and the formation of the DNase I-sensitive extracellular fibrous network seen in the experiments described above. Thus, we generated an in-frame deletion mutation in the autolysin gene (atn) in OG1RF and studied the ability of the OG1RFΔatn (SJH-952) strain to form biofilms in the presence or absence of DNase I. Deletion of atn did not affect the planktonic growth of the mutant (data not shown). As expected, based on the role of autolysis in cell division, OG1RFΔatn formed longer chains...
than the parent strain (see Fig. S4B in the supplemental material) and had a reduced rate of cellular lysis, as determined by a cellular autolysis assay of cells from hydrodynamic cultures (see Fig. S4C in the supplemental material) or cells originating from static cultures (data not shown). Compared to wild-type strain OG1RF, the ability of OG1RF\(\Delta\)atn to produce biofilms under hydrodynamic conditions was delayed, and OG1RF\(\Delta\)atn produced approximately 40% less biomass than the parental strain by 48 h (Fig. 4A). Continuous DNase I treatment resulted in a ~40% reduction in the OG1RF\(\Delta\)atn biomass accumulated by 48 h \((P = 0.038)\), compared to a 87% reduction for the wild type \((P = 0.0004)\) (Fig. 4A). Similar levels of inhibition were observed following 1 h of DNase I treatment of 48-h OG1RF\(\Delta\)atn biofilms. For OG1RF\(\Delta\)atn biofilms there was a 33% decrease in biomass \((P > 0.05)\) following DNase I treatment, compared to a 78% reduction for the wild-type structures \((P < 0.0001)\) (Fig. 4B and C). Similar to the results for wild-type cells, DNase I treatment was not bactericidal to OG1RF\(\Delta\)atn cells. Analogous results were obtained when biofilms were grown under static conditions (data not shown).

CLSM analysis of 48-h dynamic OG1RF\(\Delta\)atn biofilms revealed the absence of DNase-sensitive extracellular fibers (see Fig. S4B in the supplemental material) and very few PI-stained cells relative to the total number of stained cells compared to the results for wild-type OG1RF biofilms (Fig. 4C; see Fig. 3).
FIG. 4. Atn is required for production of DNase-sensitive biofilms under hydrodynamic conditions. (A and B) Crystal violet staining of OG1RF (WT) and OG1RFΔatn (Δatn) biofilms treated continuously for 24 h and 48 h (A) or for 1 h after 48 h of growth (B) with 5 μg/ml of DNase I under hydrodynamic conditions in TSBG. The error bars indicate standard errors of the means for three or four independent experiments. *, P < 0.05, as determined by the Mann-Whitney test; **, P < 0.005, as determined by the Mann-Whitney test; ***, P < 0.0005, as determined by the Mann-Whitney test. (C) CLSM-acquired 2-stack images of 48-h biofilms of OG1RF and OG1RFΔatn that were not treated or were treated for 1 h with 5 μg/ml of DNase I and stained with SYTO9 and PI. Long chains of bacteria were evident in OG1RFΔatn mutant biofilms. DNase I treatment dramatically reduced the biomass of the OG1RF biofilm, but not the biomass of the OG1RFΔatn biofilm. Furthermore, few SYTO9-PI-positive bacterial cells (yellow) were visible in the OG1RFΔatn mutant biofilm compared to the wild-type biofilm. Scale bars = 20 μm.
S4D and E in the supplemental material). Additionally, reduced amounts of eDNA were detected in the extracellular matrix of the mutant biofilms using cryoimmunoelectron microscopy with murine anti-dsDNA monoclonal antibody labeling (Fig. 3). Complementation studies could not be performed with OG1RFΔatn expressing atn from a vector, perhaps due to the potential cytotoxic effects of Atn in the recipients, as previously suggested (3). Nonetheless, the findings described above provide evidence supporting the hypothesis that Atn and cellular lysis play a role in DNA release during enterococcal biofilm formation. However, the ability of OG1RFΔatn to form delayed, but partially DNase-sensitive, biofilms suggests that an Atn-independent mechanism of DNA release exists as well.

Atn promotes DNA-independent attachment of E. faecalis to plastic surfaces. To assess the role of eDNA and Atn in initial attachment of E. faecalis to plastic coverslips, we performed an assay of primary attachment in the presence or absence of DNase I under static and shaking conditions using OG1RF and OG1RFΔatn. Very few cells were adhered to the substratum after 2 h in either condition (data not shown). By 4 h and 6 h, significantly (P < 0.0001) fewer OG1RFΔatn cells (40%) than wild-type strain cells were adhered to the surface, suggesting that Atn is required for this process. In contrast to atn deletion, DNase I treatment did not affect the primary attachment at 4 h for both wild-type strain OG1RF and OG1RFΔatn. Similar levels of wild-type cells were attached to the surfaces regardless of the presence of DNase I at 4 h (P = 0.3527) (Fig. 5A), indicating that eDNA is not critical for the initial attachment stage during biofilm development. Six hours of continuous DNase I treatment prevented microcolony formation (Fig. 5B), and this corresponded with a 33.3% reduction in the number of adherent cells. Albeit not statistically significant (P = 0.4359), this reduction suggests that DNase I affects microcolony formation, which was readily visible at 6 h only in untreated samples (Fig. 5B). Furthermore, we observed a >500% increase in PI staining from 4 h to 6 h, compared to a ~200% increase in the presence of DNase I (Fig. 5C), arguing that cell death and eDNA contribute to microcolony formation.

Deletion of srtA results in a defect in primary adhesion. Given that autolysins are involved in cell wall growth and regulation, we reasoned that deletion of atn may cause mislocalization of adhesion factors critical for primary attachment and biofilm development. Sortases are ubiquitous enzymes with a critical role in the adhesion and virulence of gram-positive bacteria. Given the role of these enzymes in protein sorting, we hypothesized that a SrtA-dependent substrate on the cell surface may contribute to the initial stages of biofilm development. To investigate the role of SrtA in biofilm formation under static and hydrodynamic conditions, we generated an in-frame srtA deletion in OG1RF, resulting in OG1RFΔsrtA. Deletion of srtA has no effect on cell viability and cell growth (data not shown). Similar to OG1RFΔatn, OG1RFΔsrtA was also significantly deficient in primary attachment under static conditions (P = 0.0001) (Fig. 5A) and shaking conditions (data not shown). Forty percent fewer OG1RFΔsrtA cells than parental strain cells adhered to the coverslips after 4 h of incubation. The complemented strain OG1RFΔsrtA srtA exhibited wild-type levels of adherence by 6 h, showing significantly more adherence than OG1RFΔsrtA (P = 0.0022) (Fig. 5A). It is not clear why the complementation effect was delayed and thus not observed at 4 h; however, this may have been the result of plasmid loss in the complemented strain population, which allowed only a small subset to efficiently adhere to the substratum, leading to the observed delay. Overall, the findings described above indicate that SrtA and likely a SrtA-dependent substrate(s) play a role in promoting efficient initiation of biofilm development in E. faecalis.

Deletion of srtA results in defects in biofilm production. OG1RFΔsrtA was significantly defective in biofilm formation under static conditions; it produced ~60% less biomass than the wild type at 24 h (P = 0.0142) and exhibited less accumulated biomass than the wild type at later time points (~40% less biomass) (P = 0.0244) (Fig. 6A). The complemented strain OG1RFΔsrtA srtA produced wild-type biofilm levels under static conditions (Fig. 6B and C). DNase I treatment prevented OG1RFΔsrtA and the complemented strain from forming a 3D biofilm structure like the wild type (data not shown). Additionally, we investigated the role of srtA in biofilm formation under fluid flow conditions. The impairment of biofilm formation by the srtA-deficient mutant under hydrodynamic conditions was even more pronounced than the impairment observed under static conditions (Fig. 6D). OG1RFΔsrtA srtA exhibited a wild-type phenotype (Fig. 6D), forming mature biofilms containing SYTO9-PI-stained extracellular fibers. These findings suggest that DNA release and extracellular fibrous network formation occur independent of SrtA.

DISCUSSION

Bacterial biofilms have been associated with the establishment of chronic and persistent infections due to their ability to withstand harsh environmental stress conditions, including low nutrient availability, temperature fluctuations, antibiotic and antimicrobial treatments, and host responses (7, 10, 11, 67). Several genetic factors and cellular processes, such as sortases and autolysis, as well as eDNA, have been implicated in E. faecalis biofilm formation (6, 13, 19, 22, 28, 31, 36, 40, 68–72); however, the temporal and spatial contributions of these factors and processes during the development process remain to be characterized. In this study, we delineated two major steps during E. faecalis biofilm formation: an initial attachment stage involving binding to abiotic surfaces, followed by an accumulative phase during which intercellular interactions generate mature multicellular 3D biofilm structures. The data for biofilm development after atn and srtA deletion under static and hydrodynamic conditions support the hypothesis that there is a temporal requirement for Atn, eDNA, and SrtA during biofilm development. Our data demonstrated that Atn and SrtA were important factors in the DNA-independent initial attachment step. Additionally, Atn played a role during the accumulative stage and in DNA release, which we demonstrated to be crucial for the growth, maturation, and structural stability of E. faecalis biofilms.

Previous reports have implicated Atn in primary attachment and biofilm production (31, 37). Unlike autolysins described for other gram-positive bacteria (21, 58), Atn contributed to initial adhesion in a DNA-independent fashion. Since Atn is important for cellular growth as well as cell lysis, the adherence
FIG. 5. Primary attachment requires srtA and atn, but not eDNA. (A) OG1RF (WT), OG1RFΔatn (Δatn), OG1RFΔsrtA (ΔsrtA), and OG1RFΔsrtA srtA (ΔsrtA/srtA) were incubated statically on plastic coverslips for 4 to 6 h at 37°C in TSBG with or without 5 μg/ml of DNase I. Biofilms were stained with crystal violet and then solubilized. The degree of primary attachment was determined based on the OD595 of solubilized crystal violet. The error bars indicate the standard errors of the means for at least three independent experiments. *, *P < 0.05, as determined by the Mann-Whitney test; **, *P < 0.01, as determined by the Mann-Whitney test; ***, *P < 0.0001, as determined by the Mann-Whitney test. (B) Representative CLSM images of 4-h and 6-h adherent cells in the presence or absence of DNase I following staining with SYTO9 and PI. The arrows indicate microcolonies in 6-h samples. One unit on each side of each grid equals 14.3 μm. (C) Quantification of the change in fluorescence of SYTO9 and PI relative to the total fluorescence from adhering cells from 4 h to 6 h postinoculation. The graph was generated from data obtained from 12 randomly chosen fields from two independent experiments using the Volocity software.
defect observed after *atn* deletion could be the result of increased chaining of the mutants (9, 57), leading to a reduction in binding sites or an increase in cell surface charges, causing a lower cell deposition rate. Repulsive interactions between abiotic surfaces and bacteria, as well as between adhered cells and incoming cells, due to surface charges were shown to influence the initial adhesion of bacteria to substrata (73). Alternatively, defects in autolytic processes may result in modification of the cell wall structure and mislocalization of surface proteins required for attachment during biofilm formation.

In streptococcal species, disruption of *srtA* and SrtA-dependent proteins also resulted in decreased biofilm production and bacterial colonization of abiotic surfaces (32, 79). In contrast to previous reports for *E. faecalis* (28), we show that deletion of *srtA* severely hampered adherence to plastic substrata and subsequent biofilm growth, especially under hydrodynamic conditions. Our data corroborate findings of Kristich et al. (31), who showed that transposon-mediated disruption of *srtA* resulted in an approximately 30% decrease in biofilm biomass compared to the biofilm biomass of the parental strain using the microtiter biofilm assay. Thus, we argue that SrtA plays a critical role in biofilm development in *E. faecalis*, especially under hydrodynamic conditions.

Our data reveal that in addition to its role in primary attachment, Atn is involved in DNA release during the accumulative phase of biofilm development. We corroborated previous findings highlighting the importance of eDNA for the development of mature *E. faecalis* biofilms (71). Recently, Thomas et al. demonstrated that gelatinase (GelE) and serine protease (SprE) contribute to enterococcal biofilm formation by regulating cellular autolysis (71). GelE was shown to be important for DNA release during planktonic and biofilm modes of growth, in contrast to SprE, which was shown to be a negative regulator of autolysis and biofilm production. Thomas et al. showed that DNase I treatment impaired development of a biofilm by the vancomycin-resistant strain *E. faecalis* V583. These investigators suggested that there is a fratricidal mechanism underlying cell death and DNA release,
which may be a result of the interactions between GelE and Atn (70), suggesting that this crucial event in biofilm development is under control of an unknown regulatory pathway. Similarly, our data suggest that there is a regulatory pathway leading to the expression of Atn at a specific time point for DNA release that is crucial for biofilm development. It is possible that when a critical mass is reached following attachment, the fsc quorum-sensing signaling pathway is activated, resulting in expression of autolytic factors, such as GelE, SprE, and Atn, which would cause cell death and DNA release and ultimately culminate in biofilm production and maturation. However, early reports also showed the ability of certain clinical isolates to produce DNA-dependent biofilms, albeit in a delayed fashion, consistent with slower accumulation of eDNA possibly due to the actions of other autolytic factors present in E. faecalis (53). Mesnage et al. characterized two additional peptidoglycan hydrolases, AtlB and AtlC, in the JH2-2 strain of E. faecalis, which they showed to have compensatory functions in cell separation and autolysis in the absence of the major N-acetylglucosaminidase, Atla (Atn) (35). It is likely that DNA release is the result of the synergistic activities of these autolytic enzymes during the establishment of E. faecalis biofilms.

eDNA is a crucial structural component of the biofilms of both gram-negative and gram-positive bacteria and is important for primary attachment, cell-to-cell adhesion, mature 3D biofilm architecture, and antimicrobial activities (65, 66, 71, 74, 77). It is an important component of the extracellular matrix of E. faecalis biofilms and is involved in cellular clustering during biomass accumulation. Although eDNA has similar functions under static and hydrodynamic conditions, its spatial contribution may vary. Static biofilms tend to be more compact with higher cell densities than biofilms formed in the presence of shear forces, as visualized by CLSM. Freeze-dry electron microscopy and CLSM revealed that E. faecalis produces a DNAse I-sensitive fibrous network during development of biofilms under hydrodynamic conditions. This filamentous network is reminiscent of a stable fibrous eDNA network described for the aquatic gram-negative bacterium strain F8 (4, 5). The formation of extracellular fibrous DNA networks has been also reported for biofilms of nontypeable Haemophilus influenzae formed in vivo (27). Importantly, Krishit et al. (31) reported the presence of a filamentous extracellular network in enterococcal biofilms of both wild-type and transposon-inactivated attn mutant strains grown statically on nitrocellulose membranes. However, the composition of this structure remains unknown.

Biofilm formation is a complex and highly regulated process involving a combination of several genetic and environmental factors acting at different stages. Our study uncovered a critical function for SrtA and provided strong evidence for the role of Atn in DNA release and biofilm production. Further studies are required to identify the SrtA-dependent proteins important for biofilm formation. As an opportunistic pathogen, E. faecalis may use several mechanisms for establishing biofilms. eDNA is a critical component of the extracellular matrix of DNA-dependent biofilms produced by E. faecalis, as well as E. faecium and L. gallinarum clinical isolates (data not shown). eDNA is crucial for biofilm integrity and bacterial survival. The events mediating DNA release, localization, and interactions with other components of this protective structure require further investigation. Understanding the regulation underlying the formation of the extracellular matrix of enterococcal biofilms could be of great importance in the eradication of these pathogens.

ACKNOWLEDGMENTS

We thank Wandy Beatty of the Molecular Microbiology Imaging Facility at Washington University School of Medicine in St. Louis for her technical assistance with transmission electron microscopy. This work was funded by NIH grants DK64540, DK51406 (S.J.H.), and AI46433 (M.G.C.), by AHA postdoctoral fellowship 0625736Z (K.A.K.), and by Medical Scientist Training Program grant T32 GM07200 (A.L.K.).

REFERENCES

Editor: A. Camilli

