Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma

Charles Lu
Washington University School of Medicine in St. Louis

Li Ding
Washington University School of Medicine in St. Louis

Elaine R. Mardis
Washington University School of Medicine in St. Louis

Richard K. Wilson
Washington University School of Medicine in St. Louis

et al

Follow this and additional works at: http://digitalcommons.wustl.edu/open_access_pubs

Recommended Citation

http://digitalcommons.wustl.edu/open_access_pubs/2665

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact engeszer@wustl.edu.
Recurrent Somatic Structural Variations Contribute to Tumorigenesis in Pediatric Osteosarcoma

Xiang Chen,1,12 Armita Bahrami,2,12 Alberto Pappo,3 John Easton,1 James Dalton,2 Erin Hedlund,1 David Ellison,2 Sheila Shurtleff,2 Gang Wu,1 Lei Wei,1 Matthew Parker,1 Michael Rusch,1 Panduka Nagahawatte,1 Jianrong Wu,4 Shenghua Mao,3 Kristy Boggs,1 Heather Mulder,1 Donald Yergeau,1 Charles Lu,6 Li Ding,6 Michael Edmonson,1 Chunxu Qu,1 Jianmin Wang,1 Yongjin Li,1 Fariba Navid,3 Najat C. Daw,5 Elaine R. Mardis,6,7,8 Richard K. Wilson,6,7,9 James R. Downing,3 Jinghui Zhang,1,* and Michael A. Dyer,10,11,* for the St. Jude Children’s Research Hospital–Washington University Pediatric Cancer Genome Project

1Department of Computational Biology
2Department of Pathology
3Department of Oncology
4Department of Biostatistics
St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
5University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
6The Genome Institute
7Department of Genetics
8Department of Medicine
9Siteman Cancer Center
Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
10Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
11Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
12These authors contributed equally to this work
*Correspondence: jinghui.zhang@stjude.org (J.Z.), michael.dyer@stjude.org (M.A.D.)
http://dx.doi.org/10.1016/j.celrep.2014.03.003
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

SUMMARY

Pediatric osteosarcoma is characterized by multiple somatic chromosomal lesions, including structural variations (SVs) and copy number alterations (CNAs). To define the landscape of somatic mutations in pediatric osteosarcoma, we performed whole-genome sequencing of DNA from 20 osteosarcoma tumor samples and matched normal tissue in a discovery cohort, as well as 14 samples in a validation cohort. Single-nucleotide variations (SNVs) exhibited a pattern of localized hypermutation called kataegis in 50% of the tumors. We identified p53 pathway lesions in all tumors in the discovery cohort, nine of which were translocations in the first intron of the TP53 gene. Beyond TP53, the RB1, ATRX, and DLG2 genes showed recurrent somatic alterations in 29%–53% of the tumors. These data highlight the power of whole-genome sequencing for identifying recurrent somatic alterations in cancer genomes that may be missed using other methods.

INTRODUCTION

Osteosarcoma is the most common malignant bone tumor in children and adolescents, with approximately 400 new cases each year in the United States (Ottaviani and Jaffe, 2009). Although most cases are sporadic, the risk of osteosarcoma is increased in patients with various genetic diseases, including hereditary retinoblastoma, Li Fraumeni syndrome, and germline mutations of RecQL4 (Hicks et al., 2007; Kleinerman et al., 2005; McIntyre et al., 1994). Current multimodal therapies that incorporate surgical excision and combination chemotherapy (i.e., doxorubicin, methotrexate, and cisplatin) cure approximately 70% of patients (Meyers et al., 2005). However, clinical outcomes and therapeutic strategies have remained virtually unchanged over the past 20 years (Smith et al., 2010).

RESULTS

WGS of Primary and Metastatic Osteosarcomas

Using a paired-end sequencing approach, we generated 10.265 Gb of sequence data for DNA in 20 osteosarcomas and matched...
Figure 1. WGS of Osteosarcoma

(A) Representative CIRCOS plots of validated mutations and chromosomal lesions in diagnostic and metastatic osteosarcoma tumors from different patients. LOH (orange), gain (red), and loss (blue) are shown. Intrachromosomal (green lines) and interchromosomal (purple lines) translocations are indicated. Sequence mutations in RefSeq genes included silent SNVs (green), nonsense and missense SNVs (brown), splice-site mutations (dark blue), and insertion/deletion mutations (red). An additional track was added to the innermost ring of the plot showing the density of SNVs to highlight regions adjacent to SVs characteristic of kataegis.

(legend continued on next page)
normal DNA from 19 osteosarcoma patients in a discovery cohort, and 14 tumor specimens and matched normal DNA from 13 patients in a validation cohort (Table S1); 9,671 Gb (94%) were successfully mapped to the reference genome (Table S2). In the discovery cohort, the samples included 17 pre-treatment diagnostic samples (16 primary and one metastatic), one recurrent metastatic sample (SJOS001), and two tumor specimens (SJOS010_D and SJOS010_M) from the same patient with metachronous osteosarcoma (Table S1). The average genome coverage was 44× and the average exon coverage was 39×; 99% of SNPs detected across all 39 genomes showed concordance with their corresponding SNP array genotype calls (Table S2). Validation was carried out using custom liquid capture for all SNVs, SVs, and insertions or deletions (indels) identified in the original sequence data. Combining the discovery and validation cohorts, we identified 50,426 validated somatic sequence mutations and 10,806 SVs (Table S3). These included 856 nonsilent tier 1 mutations in genes, 4,651 tier 2 mutations in evolutionarily conserved regions of the genome, and 43,782 tier 3 mutations in nonrepetitive regions of the genome that are not part of tier 1 or tier 2 (Table S3). The average number of sequence mutations was 1,483.1 per case (range 610–5,178), with 25.2 mutations per case (range 5–103) resulting in amino acid changes (Table S3). The estimated mean mutation rate was 1.15 × 10⁻⁶ per base (range 4.90 × 10⁻⁷–3.99 × 10⁻⁶). Among the validated SVs, 377 were predicted to produce an in-frame fusion protein (Table S3). Good-quality RNA sequencing (RNA-seq) data were available for five tumors with 64 predicted fusion SVs. Among them, 15 SVs (23%) were expressed (Table S3).

Primary and metastatic osteosarcomas had high rates of validated SVs (Figures 1A and S1). The number of SVs and CNVs, background mutation rate, and number of nonsilent tier 1 mutations were significantly higher in osteosarcoma compared with medulloblastoma and T-ALL (Robinson et al., 2012; Zhang et al., 2012; Figure 1B). However, only the number of SVs was significantly higher in osteosarcoma compared with another pediatric solid tumor with high rates of somatic alterations (embryonal rhabdomyosarcoma) (Chen et al., 2013; Figure 1B). The global patterns revealed by the WGS analysis of osteosarcoma suggest that the majority of SVs and CNVs were generated by sequential accumulation of SVs (Figures 1C and 1D), but chromothripsis (Stephens et al., 2011) was detected at specific genomic regions in four samples (chr14 in SJOS002_D, chr17q in SJOS003_D, chr6q in SJOS005_D, and chr13 in SJOS010_M; Supplemental Experimental Procedures). We used a modified version of GISTIC analysis to identify regions of the osteosarcoma genome with recurrent copy number alterations in the discovery cohort. The TP53, RB1, MYC, and PTEN pathways, as well as ATRX, LSAMP-AS3, CCNE1, and a genomic region on chromosome 16 containing COPS3, PMP22, MAPK7, NCOR1, and UBB, were recurrently mutated (Figure S1C). Among SNVs with sufficient coverage in both SJOS010 samples (20×), we validated 673 SNVs in both samples, 1,686 in diagnostic-only samples, and 1,408 in metastasis-only samples, indicating that these two tumors shared a limited amount of common mutations and were divergent early in the progression.

Applying the GRIN method (Pounds et al., 2013) on functional mutations (including SNVs and indels) and SVs, we identified TP53 (false discovery rate [FDR] = 3.6E-51, mutated in 28/34 samples) RB1 (FDR = 1.1E-5, mutated in 10/34 samples), ATRX (FDR = 2.4E-4, mutated in 10/34 samples), and DLG2 (FDR = 0.044, mutated in 18/34 samples) as significantly mutated genes. All genes except DLG2 were mutated by point mutations (nine for TP53, three for RB1, and five for ATRX) and SVs in multiple tumors (18 for TP53, seven for RB1, and five for ATRX). DLG2 was exclusively mutated by SVs.

Osteosarcoma Tumor Purity and Tumor Heterogeneity
Using the purity-adjusted mutant allele fraction (MAF) derived from deep sequencing of all SVs by capture enrichment and Illumina sequencing, we analyzed intratumor heterogeneity. Eleven tumors (SJOS001_M, SJOS004, SJOS005, SJOS008, SJOS012, SJOS013, SJOS015, SJOS001103_D1, SJOS001105_D1, and SJOS001123_D1, and SJOS001125_D1) were excluded from quantitative heterogeneity analysis due to an insufficient number of SNVs in copy-neutral regions. Statistical modeling demonstrated that 61% (14/23) of osteosarcomas in this group had evidence of multiple clonal, including metastatic samples SJOS010_M, SJOS001107_M1 and SJOS001107_M2 (Figure S2).

Kataegis in Osteosarcoma
To determine whether there was any relationship between the SVs and location, distribution, or type of SNV in the osteosarcoma genomes, we plotted the validated SVs and SNVs for each sample and analyzed the intermutation distance (Figure S2). Hypermutable regions with the five hallmarks of kataegis (Nik-Zainal et al., 2012) were identified in 17 of the osteosarcoma tumors (Figure 2A). These five hallmarks of kataegis are (1) enriched C->T and C->G substitutions at TpCpX trinucleotides (Figures 2B and 2C), (2) the same class of nucleotide mutation occurring for contiguous stretches before switching to a different class (Figure 2D), (3) mutations within short stretches of the genome occurring on the same parental chromosome (Figure S2), (4) clustering of heavily mutated short stretches of the genome at multiple scales (Figure 2E), and (5) association of the hypermutated region with SV breakpoints (Figure 2E). The regions of the genome with kataegis were not recurrent in our cohort and were not associated with recurrently mutated genes.

(B) Boxplots of validated basal mutation rate (BMR) and numbers of nonsilent SNVs, total SVs, and total CNVs in embryonal rhabdomyosarcoma (ERMS) and alveolar rhabdomyosarcoma (ARMS) tumors in the discovery cohort. * represents statistical significance of p < 0.001 as compared with the osteosarcoma genomes.
(C) Representative plot of sequence reads on chromosome 12 for the matched germline (green) and tumor (red) sample. Several distinct regions of copy number change are identified (arrows) spanning the MDM2 gene consistent with sequential chromosomal lesions.
(D) MDM2 FISH of SJOS018 showing amplification (red) relative to the probe for chromosome 12 (green). T-ALL, T cell acute lymphoblastic leukemia; MB, medulloblastoma.
See also Figures S1–S3 and Tables S1–S3.
Figure 2. Kataegis in Osteosarcoma

(A) Rainfall plot showing the \log_{10} of the intermutation distance versus genomic position for a representative osteosarcoma sample (SJOS005) with evidence of kataegis. The chromosomes are demarcated by gray shading and the number of SVs in each chromosome is shown in brown at the bottom. The validated SNVs are plotted and color-coded by the type of mutation.

(legend continued on next page)
in osteosarcoma (Figure S2). Tier 1 SNVs in kataegis regions were not significantly associated with the expression status (p = 0.16 by Fisher’s exact test).

Chronology of Kataegis, SVs, and Aneuploidy in SJOS005

SJOS005 had the highest proportion (11%) of kataegis SNVs in our cohort. The large number of kataegis SNVs (n = 212) coupled with the accurate measurement of the MAFs of all SNVs derived from deep sequencing allowed us to analyze the chronology of kataegis in relation to other mutational events in this tumor. First, we examined MAFs of SNVs in kataegis microclusters containing five or more consecutive kataegis SNVs within 10 kb. The MAF variance was relatively small (6.7% of overall variance) within a microcluster, although there was a wide range of MAFs across microclusters (range 0.142–0.839, median 0.364; Figure S2). This pattern, along with the observation that SNVs in a microcluster occurred on the same parental chromosome, supports the hypothesis that SNVs in a kataegis microcluster originated from a single event. MAF analysis of SVs flanking “kataegis” clusters (range 0.132–0.866, median 0.396) also showed a significant positive correlation (p = 4.56E-5) with those of “kataegis” SNVs, and there was no significant difference between them (p = 0.143 by Wilcoxon signed rank test), indicating that the neighboring SVs likely arise simultaneously with kataegis SNVs (Figure S2).

SJOS005, like most osteosarcomas, exhibits aneuploidy with copy number gains spanning more than 50% of the genome. Kataegis SNVs were significantly enriched in regions of the genome with four or more copies compared with nonkataegis SNVs (p < 2.2e-16 by Fisher’s exact test; Figure S2). However, the MAF distribution of kataegis SNVs showed a large fraction of SNVs with multiple copies of the mutant allele in amplified regions, whereas only a single copy of mutant alleles was found in the majority of the nonkataegis SNVs (Figure S2). Taken together, these data suggest that kataegis likely occurs before global aneuploidy, and nonkataegis SNVs occur primarily after the aneuploidy.

SVs in TP53

The p53 pathway was mutated in all 20 tumor samples from the 19 patients in our discovery cohort. The majority (95%, 19/20) had either sequence mutations or SVs in the TP53 gene, and one (SJOS018) had an MDM2 amplification (see Figures 3A–3C; Table S4). Surprisingly, 55% of the tumors (11/20) had SVs in the TP53 gene, and the majority of those were translocations with breakpoints that were confined to the first intron of the gene (90%, 19/21 SV breakpoints; Figures 3A–3C; Table S4). Indeed, some tumors had rearrangements in both alleles of TP53, resulting from two or more independent translocations (Table S4). One patient’s tumor (SJOS006) had a germline SNV (R337H), one (SJOS012) had a somatic splice-site mutation, and two (SJOS004 and SJOS010) had somatic missense SNVs (Figures 3A–3C; Table S4). The remaining four patients had tumors that harbored indels in the TP53 gene. Loss of heterozygosity (LOH) at the TP53 locus...
was evident in 40% (8/20) of the osteosarcoma tumors. In total, 15 tumors had biallelic inactivation of TP53, four had monoallelic inactivation of TP53, and one had MDM2 amplification (Figure 1C; Table S4).

To further validate the translocations in the TP53 gene identified by WGS, we developed a break-apart fluorescence in situ hybridization (FISH) assay with separate probes spanning the 5' and 3' regions of the gene (Figure 4A). We also developed a FISH assay with a probe spanning the entire TP53 gene (Figure 4A) to assess ploidy and determine whether the gene was deleted. To complement the FISH analysis, we performed p53 immunostaining to verify that the tumors with missense mutations had accumulated high levels of nuclear p53 protein.

We successfully performed FISH in 18 of 20 tumors and p53 immunostaining on all 20 tumors (Table S4). Overall, there was perfect concordance between the WGS data and the FISH data (Figures 4B–4M; Table S4).

In an additional cohort of patient tumor samples, we found that 50% (16/32) had TP53 rearrangements, 22% (7/32) had missense mutations, 16% (5/32) had nonsense mutations, 6% (2/32) had a TP53 deletion, and 3% (1/32) had an MDM2 amplification (Table S5). Three patients with tumor showed no evidence of a p53 pathway mutation.

We did not find any significant difference in CNV (p = 0.20 by Wilcoxon rank sum test), SV (p = 0.85), SNV (p = 0.43), nonsilent tier 1 mutations (p = 0.66), or background mutation rate (p = 0.43) in the osteosarcoma samples with mutant p53 versus those with inactivating (nonsense, deletion and truncation) mutations in TP53. Survival analysis, including event-free survival and overall survival, did not show a significant difference in outcome for the patients whose tumors carried TP53-missense mutations (ten patients) versus those with TP53-truncating mutations (34 patients), with log rank test p values of 0.88 and 0.64, respectively.

RB1, ATRX, and DLG2 Are Recurrently Mutated in Osteosarcoma

ATRX is part of a multiprotein complex that regulates chromatin remodeling, nucleosome assembly, and telomere maintenance. It was recently shown that ATRX mutations in neuroblastoma are associated with age at diagnosis (Cheung et al., 2012). Most neuroblastomas with ATRX mutations show evidence of alternative lengthening of telomeres (ALT), as measured by WGS, telomere FISH, and telomere quantitative PCR (qPCR) (Cheung et al., 2012). In our osteosarcoma discovery cohort, we identified five tumors (SJOS001, SJOS002, SJOS007, SJOS001112-M2, and SJOS001117-D1) with point mutations in ATRX, and five
Figure 5. ATRX Mutations Correlate with ALT in Osteosarcoma

(A) Diagram of the five SNVs, four deletions, and one interchromosomal SV found in the ATRX genes of the osteosarcoma cohort. Three of the samples with ATRX SVs (SJOS006, SJOS018, and SJOS011) had matching RNA-seq data. SJ006 has a short deletion at exon 23 and the RNA-seq data confirmed a readthrough

(legend continued on next page)
with focal deletions or SVs affecting the coding region of the gene (Figure 5A; Table S6). There was no significant gender bias in ATRX mutations (p = 0.25 by Fisher’s exact test) even though it is located on the X chromosome. By immunohistochemistry, 31% (6/19) of the tumors in the discovery cohort were ATRX negative (Figure 5B; Table S6). The sample with a missense mutation (SJOS007-R1803C) and one with an SV (SJOS018) were heterogeneous for ATRX protein expression. Analysis of telomere sequence reads from the WGS data and qPCR of telomeres showed that the majority of osteosarcomas had longer telomeres (Figures 5C and 5D), and ALT was found in 85% (12/14) of the samples using telomere FISH (Table S6).

Beyond TP53 and ATRX, there were significant recurrent mutations in RB1 (10/34, FDR q = 1.1E-5) and DLG2 (18/34, FDR q = 0.044). DLG2 encodes a multi-PDZ domain protein that is involved in epithelial polarity during cell division and has been implicated in cancer cell invasion. In Drosophila, DLG is a tumor suppressor, but a clear tumor-suppressor function has not yet been confirmed for DLG2 in human cancer.

SVs in Cancer Genes
SVs contributed 91% (9,605/10,523) of all functional genetic lesions in our osteosarcoma cohort. In total, 122 cancer genes had at least one SV breakpoint (Table S7) and all but one tumor (SJOS001118_D1) had at least one breakpoint (range 1–40) in a cancer gene. SV breakpoint enrichment in the cancer genes was highly significant even when we excluded TP53 from the list (p = 2.5E-6). Twelve of the 34 tumors (35%) achieved significant enrichment of SV breakpoints in cancer genes individually. In addition, some tumors have “fold-back intrachromosomal translocations” (Campbell et al., 2010) to inactivate tumor-suppressor genes (Figure S3). These results further support the hypothesis that genomic instability leads to lesions in various cancer genes.

DISCUSSION
WGS of osteosarcoma demonstrated that the rate of SVs was similar to that in other pediatric solid tumors, and only a few recurrent SVs were detected. Approximately half of the osteosarcomas in our discovery cohort had a pattern of hypermutation associated with SVs, called kataegis (Nik-Zainal et al., 2012). The regions of the genome with kataegis were not recurrent, and none of the most recurrently mutated genes were found in regions of kataegis. Chromosomal lesions, rather than SVs, were the major mechanism of recurrent mutations, and many of the most significant chromosomal lesions were found in known cancer genes, including TP53, RB1, and ATRX.

Genomic Stability and Osteosarcoma Initiation and Progression
The most frequent mutation in osteosarcoma is in TP53. By our estimates, both alleles are mutated in as many as 80% of tumors, and at least one allele was mutated in >90% of tumors. These data suggest that p53 mutations are a major oncogenic driver in osteosarcoma. Although this finding is not novel, what is surprising is the mechanism of inactivation. Most TP53 mutations are SVs in intron 1, which suggests that either the TP53 locus is particularly susceptible to SVs or SVs occur at a high rate in the osteosarcoma tumor-initiating cell. Aside from osteosarcomas and prostate cancers (Baca et al., 2013; Berger et al., 2011), there is no evidence of TP53 SVs in any other cancer, so the locus is probably not uniquely susceptible to chromosomal rearrangements. These data raise an intriguing possibility: genomic instability characterized by high rates of CNVs and SVs may precede TP53 inactivation, and may be the underlying mechanism that initiates and promotes osteosarcoma.

Kataegis in Osteosarcoma
In a recent WGS study, Nik-Zainal et al. (2012) described a distinct hypermutation phenomenon in breast cancer that they termed kataegis. Here, we found SNV clusters with the same five characteristics of kataegis in 50% of the osteosarcomas analyzed by WGS. Interestingly, genomic regions encoding TP53 and ATRX, the two most frequently mutated genes in osteosarcoma, did not exhibit this pattern of local hypermutation. Furthermore, there was no association between kataegis and TP53 mutation type (i.e., SNV, indel, or SV).

TP53-Mutant or -Null Osteosarcomas
Previous studies have estimated that 20%–70% of osteosarcomas carry mutations in the p53 pathway (Lonardo et al., 1997; Wunder et al., 2005), but our data suggest that the proportion is much higher. For example, Wunder et al. (2005) sequenced exons 4–10 of the TP53 gene in 196 osteosarcoma samples and found that 19.4% (38/196) had TP53 SNVs. The investigators concluded that the remaining 80.6% (158/196) had wild-type TP53 (Wunder et al., 2005). They went on to show that event-free survival was indistinguishable between the two groups (wild-type and mutant TP53) (Wunder et al., 2005). SVs in the first intron of TP53 were not analyzed in that study, even though such lesions had previously been reported in osteosarcoma (Miller et al., 1990). Our data suggest that the majority of the tumors identified as TP53 wild-type in the study.

Mean event that would result in a T1885 frameshift. For SJOS011, the RNA-seq and WGS data supported a junction connecting exon 1 to exon 28, creating a nonsense mutation (M6R*). For SJOS018, the RNA-seq and WGS data supported a deletion connecting exon 1 to exon 13, thereby creating an in-frame fusion protein (M6fs).

(B) Representative IHC for ATRX showing nuclear ATRX in a sample with intense staining and wild-type ATRX (SJOS012), a sample with fainter nuclear localized ATRX (SJOS005), and a sample with a nonsense mutation (SJOS001). Arrows indicate representative nuclei stained positive for ATRX. Asterisks indicate ATRX immunopositive vascular endothelial cells among the tumor cells that are negative for ATRX IHC.

(C and D) Relative telomere length in the osteosarcomas compared with that in the matched germline DNA, as analyzed by WGS and qPCR.

(E) Representative telomere FISH showing characteristics of ALT (arrow) in an osteosarcoma with an ATRX deletion.

See also Tables S6 and S7.
by Wunder et al. (2005) actually had inactivating SVs in TP53. Therefore, it may be useful to revisit the association of TP53 pathway inactivation with osteosarcoma outcome in a large cohort of patient samples.

EXPERIMENTAL PROCEDURES

Full details regarding sample acquisition, molecular and biochemical procedures, informatics, and WGS are provided in the Supplemental Information. All tumors in this study were obtained from St. Jude Children’s Research Hospital (SJCRH) patients. The SJCRH IRB approved experiments involving human subjects and informed consent was obtained from all subjects.

ACCESSION NUMBERS

The European Bioinformatics Institute accession number for the sequencing data reported in this paper is EGAS00000100263.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures, three figures, and seven tables and can be found with this article online at http://dx.doi.org/10.1016/j.celrep.2014.03.003.

ACKNOWLEDGMENTS

This work was supported, in part, by Cancer Center Support (CA21765) from the NCI, grants to M.A.D from the NIH (EY014867, EYO18599, and CA168875), and the American Lebanese Syrian Associated Charities (ALSAC). M.A.D. is an HHMI Investigator. The whole-genome sequencing was supported as part of the St. Jude Children’s Research Hospital - Washington University Pediatric Cancer Genome Project.

Received: May 10, 2013
Revised: November 22, 2013
Accepted: March 3, 2014
Published: April 3, 2014

REFERENCES

SUPPLEMENTAL DATA

A

B

C
Figure S1 related to Figure 1. Copy number analysis of osteosarcoma discovery cohort. A) Copy number analysis for all 34 osteosarcomas in the discovery cohort with red indicating gain and blue indicating loss. B) Histogram of the type of mutations (SNV, CNV, SV, indel) across the osteosarcoma tumors in the discovery cohort. C) GISTIC analysis of the copy number changes in the osteosarcoma discovery cohort with green indicating gains and red indicating loss. The dashed lines represent cutoff for statistical significance and the individual chromosomes are labeled along the bottom of the plot. D) CIRCOS plots of all 34 tumors sequenced by WGS in this study.

Table S1 related to Figure 1. Clinical features of discovery and validation cohorts.

Provided as a separate file.

Table S2 related to Figure 1. Sequence coverage data.

Provided as a separate file.

Table S3 related to Figure 1. Validated mutations.

Provided as a separate file.
Figure S2 related to Figure 2. Analysis of tumor heterogeneity and kataegis. A) Tumor purity adjusted mutant allele fraction (MAF) for samples analyzed by whole genome sequencing. The actual tumor purity that was used to adjust the MAF is shown as a percentage for each tumor. The number of qualifying SNVs (n) used to plot the density plot is shown for each tumor. B) Screenshot of WGS data with individual sequence reads showing kataegis hypermutation on the same DNA strand. C) Genomewide distribution of mutation hotspots in osteosarcoma shown as the ratio between observed mutation rate in the window over the genomewide mutation rate within a 3.2 Mb window across the genome for the 34 samples analyzed by WGS. D) Kataegis SNVs showed different MAFs among different microclusters although SNVs within a microcluster shared similar MAFs. E) Comparison of MAFs of SVs and SNVs in kataegis regions. F) The distribution of intermutation distance and distance from a SNV to nearest SV breakpoint in SJOS005, showing majority of mutations in the genome have an intermutation distance around 1 Mb while a small portion of SNVs have an intermutation distance smaller than 10 kb. G) Distribution of copy number variation and SNV intermutation distance (log10) which shows higher proportion of closely spaced SNVs (i.e. kategis SNVs) occur in amplified regions. H) Distribution of mutant allele fraction of non-kataegis SNVs (left panel) and kataegis SNVs (right panel) in regions of different copy number state in SJOS005. SNVs acquired before amplification show multiple mutant allele fraction (MAF) peaks, depending on whether the mutant allele or the reference allele is amplified while mutations acquired after amplification showed a single MAF corresponding to mutation on a single copy. I) Rainfall plot of all 34 genomes in the WGS cohort.
Figure S3 related to Figure 3. TP53 translocations in osteosarcoma. A) Diagram of the predicted fusion gene generated by the interchromosomal translocation between the **TP53** gene and the **SFSWAP** gene in SJOS007_D. B) Diagram of the fold-back translocation in the **TP53** gene in SJOS001_M (upper panel). Diagram of the fold-back translocation in the **RB1** gene in SJOS015_D (lower panel). The translocations are indicated by the red arrows.

Table S4 related to Figure 3. Analysis of p53 mutations in osteosarcoma.

Provided as a separate file.

Table S5 related to Figure 4. Analysis of p53 analysis and clinical features.

Provided as a separate file.

Table S6 related to Figure 5. ATRX analysis in osteosarcoma.

Provided as a separate file.

Table S7 related to Figure 5. Cancer gene mutations in osteosarcoma.

Provided as a separate file.
SUPPLEMENTAL EXPERIMENTAL PROCEDURES

Tumor Samples

Twenty high-grade intermedullary osteosarcoma samples with matched normal tissue from 19 patients were subjected to the whole genome sequence (WGS) analysis. The samples included 16 untreated primary and 4 metastatic tumors, the latter obtained from 3 patients, of whom two had metastatic disease at presentation and one had tumor recurrences. The tumors occurred in 11 males and 8 females ranging in age from 8-22 years of age (median age, 14 years). H&E slides of the tumors were retrieved from the Pathology Archives at St. Jude Children’s Research Hospital for review and the tumors were classified in the following histologic subtypes: osteoblastic (10 tumors), mixed pattern (3 tumors), telangiectatic (3 tumors), fibroblastic (2 tumor), chondroblastic (1 tumor), and small cell (1 tumor). Clinical features of the validation cohort are provided in Suppl. Table 1. For the p53 analysis cohort, 38 samples from 31 additional patients were analyzed for alterations in the p53 pathway. The clinicopathologic data and the results of the molecular genetic assays on validation cohort are provided in Supplemental Table 4.

TP53 Immunostaining

The corresponding formalin-fixed, paraffin-embedded (FFPE) tissue blocks for each specimen were cut at 4 micron thickness. Immunohistochemical staining was performed using an antibody directed against p53 protein (DO-7, DAKO, 1:50) and processed with standard heat-induced epitope retrieval (Ventana CC1) and the Ventana IVIEW detection systems. p53 nuclear staining was scored using a previously published scoring system(Papai et al., 1997) with a minor modification as follows: samples with no staining
cells were scored as negative; samples with <5% p53 immunopositive cells were scored as rare; samples with 5-25% immunopositive cells were scored as 1+; samples with 26-50% immunopositive cells were scored as 2+; samples with >50% immunopositive cells were scored as 3+.

TP53 and MDM2 Fluorescence In Situ Hybridization Studies

The fluorescence in situ hybridization (FISH) probe sets were designed using bacterial artificial chromosome (BAC) clones according to the UCSC Genome Bioinformatics database (http://genome.ucsc.edu). The TP53 dual-color break-apart FISH assay was developed by using RP11-1081A10 BAC clone, flanking the 3’ end of the gene– labeled with Rhodamine (red fluorochrome)– and the RP11-709J3 BAC clone, flanking the 5’ end of the gene– labeled with AlexaFluor-488 (green fluorochrome). In addition, a TP53 FISH probe mixture was constructed to enumerate the gene copy using the RP11-89D11 BAC clone, spanning the entire sequence of TP53 that was labeled with green fluorochrome and the control RP11-64J19 that was labeled with red fluorochrome. FISH for MDM2 was set up using the RP11-611O2 BAC clone spanning the entire gene (red fluorochrome) and a probe targeting ATF1 at 12q13.1 as the control probe (green fluorochrome. DNA was isolated from BAC clones (BACPAC Resources, Oakland, CA) according to a modified Qiagen (Valencia, CA) extraction protocol. The probes were labeled by nick translation using a modification of the manufacturer’s protocol (Life Technologies, Inc., Carlsbad, CA). FISH analysis was performed on 4 micron-thick FFPE tissue sections using the previously published methods(Bahrami et al., 2012).
Hybridization signals were evaluated in 200 interphase nuclei of each sample. FISH images were captured and processed as previously described (Bahrami et al., 2012).

Telomeres were analyzed in the discovery cohort using 3 different methods. The whole genome sequencing (WGS) data was analyzed for telomere length (described below) for all 20 tumors and matched normal tissue in the discovery cohort. Quantitative PCR (described below) was performed to validate the results from WGS analysis for all 10 tumors in the discovery cohort with ATRX mutations and an additional 4 samples with wild type ATRX to serve as controls. Matched normal DNA was used as internal control for each patient’s sample. Telomere FISH (see below) was performed on all tissue samples in the discovery cohort that had available FFPE material (non-decalcified tumor tissue). All of the samples that were analyzed by telomere FISH were also analyzed for ATRX protein expression by immunohistochemistry (described below).

Whole-Genome Sequencing, RNA-Seq and Exome Seq

Using a paired-end sequencing approach, we sequenced DNA from 20 tumors and their matching germline control DNA with an average of 30× haploid coverage per genome. Single nucleotide variations (SNVs) and insertions/deletions (indels) were identified independently algorithms by Washington University Genome Sequencing Center (WUGSC) and St. Jude Children’s Research Hospital (SJCRH) using different approaches. The results generated were then compared and a final candidate SNV and indel list was developed for experimental validation.

At WUGSC, SNVs were found by Somatic Sniper that defines high quality somatic predictions as those sites with a somatic score greater than 40 and an average
mapping quality greater than 40. The predicted SNVs are compared to the most current version of dbSNP (Sherry et al., 2001) (build 129-130). For SNVs, we require both positional and allele match. In addition we also compared the predicted SNVs to SNPs found in CEU and YRI trios as described (Ding et al.). All predicted SNVs were filtered through a SNV false-positive filter developed at the Genome Institute that is based on a standard set of criteria including mapping quality score, average supporting read length, average position of the variant in the read, strand bias and the presence of homopolymer. Indels were called using modified SAMtools (Li et al., 2009) indel-calling algorithm as described (Ding et al.), Pindel (Ye et al., 2009) and GATK (Zerbino and Birney, 2008).

At SJCRH, putative sequence variants including SNVs and indels were initially detected by running the variation detection module of Bambino (Edmonson et al.) using the following three parameters: (1) a high quality threshold for pooled tumor and matching normal bam files (min-quality=20, min-flanking-quality=20, min-alt-allele-count=3, min-minor-frequency=0, broad-min-quality=10, mmf-max-hq-mismatches=4, mmf-min-quality=15, mmf-max-any-mismatches=6; (2) a low quality threshold for pooled tumor and matching normal bam files (min-quality=10, min-flanking-quality=10, min-alt-allele-count=2, min-minor-frequency=0, broad-min-quality=10); and (3) a high tolerance for the number of mismatches for normal bam file alone (min-quality=20, min-flanking-quality=15, min-alt-allele-count=2, min-minor-frequency=0, mmf-max-hq-mismatches=15, mmf-min-quality=15, mmf-max-any-mismatches=20). In addition to Bambino, putative indels were also found by a de novo assembly process which construct contigs using unmapped reads and re-map them to the reference genome followed by a Smith-Waterman alignment to detect indels. In this process, unmapped reads include (1)
unmapped reads whose mate are mapped to the genome; (2) reads with indels in CIGAR (Compact Idiosyncratic Gapped Alignment Report) string; (3) reads with at least 4 high-quality (quality value >=20) mismatches; and (4) reads with high-quality (quality value at least 20) soft-clipped bases in the CIGAR string. All putative sequence variants were further assessed to determine their accuracy and somatic original using the processes described below. Velvet(Zerbino and Birney, 2008), BLAT(Kent, 2002) and SIM(Huang et al., 1990) were the three programs used for assembly, mapping, and Smith-Waterman alignment, respectively.

A putative somatic sequence mutation determined by SJCRH process was collected based on the following criteria: (1) the variant site is absent in the normal-only analysis; (2) Fisher’s exact test P value indicates that the number of reads harboring non-reference allele is significantly higher in tumor; (3) the non-reference allele frequency in normal is $<=5\%$; and (4) mutant alleles present in both orientations. Higher P value and absence of non-reference allele in normal is required for a variant to be considered somatic if it matches dbSNP build 130 or is located in an unmappable region (determined by recurrence of 75mers across the reference genome) or is inside a polynucleotide repeat. Substitution variants are classified into four categories based on combination of their P value and sequence quality scores: High quality, high P value; high quality, low P value; low quality, high P value; low quality, low P value. P value refers to the P value of Fisher’s exact test comparing the distribution of the alternative allele in tumor and normal. High P value, $P<0.05$; low P value, $0.05<P<0.10$. A final review process re-maps and re-aligns the reads harboring the non-reference allele to the reference genome to filter potential false positive calls introduced by mapping in repetitive regions and
alignment artifacts. For putative somatic indels, the review process re-aligns all reads in
tumor and normal at the indel site to a mutant allele template sequence constructed by
substituting the wild-type allele with the indel. Presence of reads in normal that cover the
mutant allele is considered a germline variant. Structural variations including the 5
deletions in \textit{ATRX} were detected using the CREST algorithm (Wang et al., 2011) and
CONSERTING algorithm. The data have been deposited in EBI with accession number:
EGAS0000100263.

Paired-end reads from mRNA-seq were aligned to the following 4 database files
using BWA (0.5.5) aligner (4): (i) human NCBI Build 37 reference sequence, (ii) RefSeq,
(iii) a sequence file that represents all possible combinations of non-sequential pairs in
RefSeq exons, and (iv) AceView flat file downloaded from UCSC and representing
transcripts constructed from human EST. The final BAM file was constructed by
selecting the best alignment in the four databases. SV detection was carried out using
CREST (1) and deFuse (5) as well as a novel algorithm that searched for the predicted
junction breakpoints from detected SVs in matching WGS samples.

For exome sequencing, OS DNA libraries were prepared from 1 ug of WGA
material from matched samples using the Illumnia TruSeq DNA library prep kit
following the recommended manufacturer’s protocol. Libraries were analyzed on an
Agilent Bioanalyzer to inspect quality of each library construction. Germline and
diagnostic library samples were independently pooled and applied for exome capture
using the Illumina TruSeq Exome Enrichment kit as described by the manufacturer.
Captured libraries were then clustered on the Illumina c-bot and were sequenced on an
Illumina HiSeq 2000 platform with 100 base pair end multiplexed reads at an equivalent of 3 samples per lane.

We used cghMCR (an R implementation of a modified version of GISTIC analysis (Aguirre et al., 2004)) to find common regions of copy number alterations. To identify genes of significant DNA copy number alterations, we defined the genes with Segments Of Gain Or Loss (SGOL) scores above the 3 standard deviations of the mean SGOL scores of all ‘gains’ scores as significantly amplified genes. The genes with SGOL scores below the 3 standard deviations of the mean SGOL scores of all ‘losses’ scores were selected as significantly deleted genes.

Sequence Validation

For enrichment of the regions containing putative alterations, genomic coordinates of the putative WGS targets were used to order Nimbelgen SeqCap EZ solution bait sets (Roche). The library construction and target enrichment was performed per manufacturer’s instructions using repli-G (Qiagen) whole genome amplified DNA. Enriched targets were sequenced on the Illumina platform using paired end 100 cycle sequencing. The resulting data was converted to FASTQ files using CASAVA 1.8.2 (Illumina) and mapped with BWA prior to pipeline analysis.

Statistical Methods

Kaplan-Meier method was used to estimate the overall survival and event-free survival curves. Log-rank test was performed to test the significant difference of survival curves.
between TP53 missense mutation group and the TP53 truncating mutation group in SAS version 9.2.

We used the MuSiC software (Dees et al., 2012) to identify significantly mutated genes with point mutations. For significantly mutated genes with SVs, the “background” base-level mutation rate for SVs in each tumor under the null hypothesis that SV breakpoints were distributed randomly within the genome and the number of tumors mutated by SVs for a specific gene follows the Poisson binomial distribution under the null hypothesis. The significance level was estimated from the Le Cam’s theorem.

Telomere Analysis

Telomere length was predicted in silico by counting the number of next-generation sequencing reads containing the telomeric-repeat sequence TTAGGG (Castle et al., 2010). The resulting number of reads was normalized to the average genomic coverage, and the difference in diagnostic and germline telomeric sizes was calculated. Telomere length was validated in vitro in NBs expressing an ATRX aberration as described previously (Cawthon, 2002; O'Callaghan et al., 2008). Briefly 15-20ng of diagnostic and germline WGA amplified DNA was subject to qPCR using two sets of primers in separate reactions, one to amplify telomeric sequence and one to amplify a common gene; 36B4 (RPLP0). Ct values obtained were compared to those of two standard curves, a telomeric standard curve performed on known quantities of a telomeric 84mer and one using an oligomer of 36B4 (RPLP0). All reactions were performed in triplicate with both tumor and germline DNA and both assays on the same plate. All reactions were carried out using Brilliant III Ultra-Fast SYBR Green master mix (Agilent) on a Stratagene
Mx3000 thermal cycler using a melting temperature of 60°C. This allowed us to determine the telomere length in Kb per diploid genome. The forward primer for telomere analysis was:

5’- CGGTTTGTGTTTGGGTTTGGGTTTGGGTTTGGGTT-3’

The reverse primer for telomere analysis was:

5’-GGCTTGCCTTACCCTACCCTACCCTACCCTACCCTACC-3’

The forward primer for the internal control 36B4 (RPL0) gene was:

5’- CAGCAAGTGGAAGGTGTAATCC-3’

The reverse primer for the internal control 36B4 (RPL0) gene was:

5’- CCCATTCTATCATCAACGGGTACAA-3’

The standard used to generate the standard curve for telomeres was:

5’-(TTAGGG)_{14}-3’

The standard used to generate the standard curve for the internal control 36B4 (RPL0) was:

5’- CAGCAAGTGGAAGGTGTAATCCGTCTCCACAGACAAGGCGCAGGACTCGTTTGACCCGTTGATGATAGAATGGG-3’

ATRX Immunohistochemistry

Formalin-fixed, paraffin-embedded tissues were cut into 4-µm-thick sections and immunostained with a polyclonal antibody against ATRX (1:600; Sigma-Aldrich) by using heat-induced epitope retrieval and Leica Polymer Refine Detection Kit (Leica Microsystems) on a Leica Bond system after 15-minute antibody incubation.

Telomere FISH
Interphase FISH was performed on 4-µm-thick, formalin-fixed, paraffin-embedded tissue sections. The Cy3-labeled TelG probe (PNAbio) was co-denatured with the target cells on a hotplate at 90 °C for 12 minutes. The slides were incubated for 48 hours at 37 °C and then washed in 4 M Urea/2× SSC at 45 °C for 5 minutes. Nuclei were counterstained with DAPI (200 ng/mL) (Vector Labs).

Tumor Purity Estimations

For germline heterogeneous SNPs, loss of heterozygosity (LOH) measures the absolute difference between the mutant allele fraction in tumor and that in germline sample (0.5). LOH is the result of copy number alterations and/or copy neutral-LOH in tumor cells. Compared to copy number gains (a single copy gain in 100% tumor results in a LOH value of 0.167), regions with copy number loss showed stronger LOH (a single copy loss in 100% tumor result in a LOH value of 0.5). Consequently, we used LOH signals in copy neutral or heterozygous copy number loss regions (CNA value between [-1, 0]) to estimate tumor purity for all WGS samples. Briefly, a single copy loss in 𝑥% tumor cells resulted in an estimated CNA value of $-\frac{𝑥}{100}$ and a LOH value of $\frac{𝑥}{400-2𝑥}$. Assuming the remaining LOH signal came from CN-LOH (CN-LOH in 𝑥% tumor cell resulted in a LOH value of $\frac{𝑥}{200}$), the tumor content in a region could be estimated as the sum of the fraction with copy number loss and the fraction with CN-LOH by: $-\text{CNA} + 2 * \left(\text{LOH} - \frac{-\text{CNA}}{4-2\text{CNA}}\right)$. Using tumor content estimates from various regions within the genome, we performed an unsupervised clustering analysis using the *mclust* package (version 3.4.8) in R (version 2.11.1). The tumor purity of the sample was defined as the highest cluster center value among all clusters.
Purity Adjusted Mutant Allele Fraction (MAF) Estimation

MAF for validated SNVs was estimated as \(\frac{\text{#Mutant reads}}{\text{(Total reads)} \times \text{(tumor purity)}} \) using deep sequencing data. The frequency of SV was determined by a process of re-mapping all reads at breakpoints to both SV and non-SV templates using a BWA Smith-Waterman based approach. To do this, we use the assembled consensus sequence from CREST result as SV template. From comparison, a pool of non-SV templates were constructed by including: 1, directly pull out the flanking sequences of 100 bp of each side of the breakpoint from reference genome (GRCh37-Lite); 2, assemble non-SV reads around the breakpoint from the bam file, where non-SV reads were defined by: any non-duplicate, non-softclipped, reads that contains at least 10 bases mapped on each side of a breakpoint, and requiring for at least one of two sides of that breakpoint, all bases are mapped in the read within a 10 bp continuous window immediately next to the breakpoint. We then extracted all reads at both SV break points, together with any unmapped or partially mapped (soft-clipped) reads within 4 kb of the breakpoints, and perform a pair-wise mapping and comparison for the SV and each of the non-SV templates to determine the status of individual read. Reads only covering the breakpoint in the SV template, but not in the non-SV template, are considered as SV supporting reads, and verse versa. If there are any reads covering breakpoint in both SV and normal template, we calculated a local alignment score within a 10-bp window of the breakpoint from SV and normal templates, and chose the template with higher score. In the end, the statuses of every read from all pair-wise comparisons were summarized to generate a consensus status. Any reads with conflicting statuses, i.e., called as SV in one run and
non-SV in another run will be considered as “unknown”. The SV mutant allele frequency was calculate by the ratio of number of SV reads to the total number of SV, non-SV, and unknown reads.

Tumor Heterogeneity Estimation

We used all validated autosomal SNVs satisfying the following criteria in heterogeneity analysis:

1) In copy neutral region (Log2ration between (-0.1, 0.1) in CNV analysis).

2) Not in regions with LOH (LOH value < 0.12 + min (0.08 purity*0.1).

3) With MAF > 0.05 or mutant allele count > 2.

We drew the kernel density estimate plot for MAFs of the qualifying SNVs using the `density` function in the `stat` package in R. For samples with at least 50 qualifying SNVs, we also estimated the number of significant peaks and the relative MAF component for each peak (peaks with less than 5 SNVs, peaks with less than 1% SNVs, and peaks with excessive variance were ignored). A sample with heterogeneity shows density peaks at a MAF smaller than 0.5 (the expected MAF assuming heterogeneous SNVs).

Kataegis Analysis

Kataegis analysis was performed on all validated Tier1-3 SNVs and SV breakpoints for each sample. The intermutation distance for a SNV was calculated as the distance to its nearest neighbor. For each SNV, its distance to the nearest validated SV breakpoint was also calculated. We defined microclusters of kataegis as clusters that contain at least 5 consecutive SNVs with inter-variant distance less than 10 kb. Mutant allele frequency
(MAF) was estimated for SNVs with at least 20X coverage in tumor BAMs based on deep sequencing of custom capture validation.

We derived copy number of SNVs from the CONSERTING analysis. For each SNV, the CNV segment covering the SNV was identified and the corresponding CN was estimated after tumor purity adjustment and rounded to the nearest integer.

Statistical evaluation of chromothripsis in OS tumors analyzed by WGS

Chromothripsis was described as localized chromosome shattering and repair occurs in a single event. The initial criterion is oscillation between restricted CNV states (Stephens *et al.* 2011(Stephens *et al.*, 2011)), which were found in 4 OS tumors in this study. Most recently, Korbel and Campbell (Korbel and Campbell, 2013) proposed four potential criteria for assessing chromothripsis: 1) clustering of breakpoints; 2) randomness of DNA fragment joins; 3) randomness of DNA fragment order; and 4) ability to walk the derivative chromosome. Since randomness of DNA fragment order (Criterion 3) was not entirely valid even in Korbel and Campbell’s own analysis, we decided not to evaluate this feature. For the 4 tumors in Supplementary Table 5, we performed Bartlett's goodness-of-fit test for exponential distribution to assess whether the distribution of SV breakpoints in each tumor departs from the null hypothesis of random distribution. A significant departure from random distribution supports clustering of SV breakpoints. To evaluate whether there is any bias in the DNA fragment joints categorized by the SV types (*i.e.* deletion, tandem duplication, head-to-head re-arrangements and tail-to-tail re-
arrangements), we applied goodness-of-fit test separately for inter- and intra-chromosomal events with a minimum of 5 SVs. A significant p value suggests biased fragment joins, which would not support chromothripsis. When both inter- and intra-chromosomal data are available, we reported the lower p value to represent a more conservative assessment of the random distribution for DNA fragment joints.

The significant chromothripsis regions were chromosome 14 in SJOS002_D ($p=2.09E-09$), chromosome 17 in SJOS003_D ($p=9.65E-05$), chromosome 6 in SJOS005_D ($p=1.75E-90$) and chromosome 13 in SJOS010_M ($p=2.21E-35$).

REFERENCES

