2013

Chronic itch development in sensory neurons requires BRAF signaling pathways

Zhong-Qui Zhao
Washington University School of Medicine in St. Louis

Fu-Quan Huo
Washington University School of Medicine in St. Louis

Joseph Jeffry
Washington University School of Medicine in St. Louis

Shadmehr Demehri
Washington University School of Medicine in St. Louis

Seungil Kim
Washington University School of Medicine in St. Louis

See next page for additional authors

Follow this and additional works at: http://digitalcommons.wustl.edu/open_access_pubs

Recommended Citation
http://digitalcommons.wustl.edu/open_access_pubs/2692

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact engeszer@wustl.edu.
Authors

This open access publication is available at Digital Commons@Becker: http://digitalcommons.wustl.edu/open_access_pubs/2692
Chronic itch development in sensory neurons requires BRAF signaling pathways

Zhong-Qiu Zhao,1,2 Fu-Quan Huo,1,2 Joseph Jeffry,1,2 Lori Hampton,3 Shadmehr Demehri,4,5 Seungil Kim,1 Xian-Yu Liu,1,2 Devin M. Barry,1,5 Li Wan,1,6 Zhong-Chun Liu,1,2 Hui Li,1,7 Ahu Turkoz,4 Kaijje Ma,8 Lynn A. Cornelius,1,5 Raphael Kopan,4 James F. Battey Jr.,9 Jiahong,8,10 and Zhou-Feng Chen1,2,4

1Center for the Study of Itch and 2Departments of Anesthesiology and Psychiatry, Washington University School of Medicine Pain Center, St. Louis, Missouri, USA. 3Office of Laboratory Animal Welfare, NIH, Bethesda, Maryland, USA. 4Department of Developmental Biology and 5Division of Dermatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA. 6Department of Anesthesiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China. 7Department of Anatomy, Histology, and Embryology and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an, China. 8Burke Medical Research Institute, Weill Medical College of Cornell University, White Plains, New York, USA. 9National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, USA. 10Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, New York, USA.

Chronic itch, or pruritus, is associated with a wide range of skin abnormalities. The mechanisms responsible for chronic itch induction and persistence remain unclear. We developed a mouse model in which a constitutively active form of the serine/threonine kinase BRAF was expressed in neurons gated by the sodium channel Nav1.8 (BRAFNav1.8 mice). We found that constitutive BRAF pathway activation in BRAFNav1.8 mice results in ectopic and enhanced expression of a cohort of itch-sensing genes, including gastrin-releasing peptide (GRP) and MAS-related GPCR member A3 (MRGPRA3), in nociceptors expressing transient receptor potential vanilloid 1 (TRPV1). BRAFNav1.8 mice showed de novo neuronal responsiveness to pruritogens, enhanced pruriceptor excitability, and heightened evoked and spontaneous scratching behavior. GRP receptor expression was increased in the spinal cord, indicating augmented coding capacity for itch subsequent to amplified pruriceptive inputs. Enhanced GRP expression and sustained ERK phosphorylation were observed in sensory neurons of mice with allergic contact dermatitis– or dry skin–elicited itch; however, spinal ERK activation was not required for maintaining central sensitization of itch. Inhibition of either BRAF or GRP signaling attenuated itch sensation in chronic itch mouse models. These data uncover RAF/MEK/ERK signaling as a key regulator that confers a subset of nociceptors with pruriceptive properties to initiate and maintain long-lasting itch sensation.

Introduction

The ability of the brain to discriminate pain from itch in order to make binary decisions — eliciting either withdrawal or scratching behavior — is critically dependent on the functional connectivity of the somatosensory system. Itch information, along with pain, is conveyed by primary afferents of the dorsal root ganglion (DRG) to the spinal cord and of the trigeminal ganglion neurons to the trigeminal subnucleus caudalis of the brainstem, respectively, which in turn supplies input to the somatosensory cortex through spinothalamic tract or trigeminotegmental tract neurons (1–4). At the molecular level, emerging evidence suggests that activation of GPCRs in sensory neurons is likely responsible for relaying distinct types of acute stimulus-evoked itch (5–7). In addition, several transient receptor potential (TRP) channels, including TRP vanilloid 1 (TRPV1) and TRPA1, have been implicated in mediating histaminergic and nonhistaminergic itch, respectively (8–10). In the spinal cord, gastrin-releasing peptide (GRP) receptor (GRPR) and neurons expressing GRPR are key mediators dedicated to the coding of itch sensation (11–13). In contrast to acute itch, chronic itch may arise from an altered or diseased state of the skin or immune or nervous systems or from a dysregulation of metabolism. Chronic itch represents a significant clinical problem, largely due to its resistance to most commonly used antihistamine-based therapies (14, 15). To date, little is known about signaling mechanisms underlying chronic itch in the nervous system. At the cellular level, mice lacking the transcription factor Bhlhb5 in a subset of spinal cord cells showed a heightened itch transmission, presumably resulting from a loss of inhibitory interneurons expressing Bhlhb5 during development (16). In contrast, mice lacking spinal GRPR+ neurons lack the ability to sense chronic itch (13). In sensory neurons, the conditional deletion of vesicular glutamate transporter 2 (Vglut2) results in spontaneous itch sensation (17, 18), and TRPA1 is important for dry skin itch (19). Ablation of neurons expressing MAS-related GPCR member A3 (MRGPR) attenuates dry skin and allergic itch, suggesting that MRGPR3+ neurons are also important for the development of chronic itch (20). Although GRPR has emerged as an important receptor for mediating acute itch, the function of GRPR and its cognate ligand GRP in chronic itch has not been characterized.

BRAF is a serine/threonine kinase that activates ERK, a member of the MAPKs superfamily, through the RAF/MEK/ERK cascade. Upon activation, ERK triggers the expression of a plethora of transcription factors in the nucleus to regulate a wide array of cellular functions (21, 22). Our previous studies of conditional BRAF loss-of-function mice have uncovered an...
essential role for RAF signaling in the extension of peripheral sensory projections as well as in the initial development of some of the DRG’s molecular makeup and central projections (23).

To further explore potential roles of BRAF signaling in sensory transduction, we generated BRAFNav1.8 mice in which the BRAF kinase is selectively activated in sensory neurons expressing the sodium channel Nav1.8 by genetically replacing the wild-type Braf gene with a kinase-activated one in these neurons (24, 25).

BRAF Nav1.8 mice exhibited spontaneous scratching behavior, prompting us to hypothesize that BRAF signaling plays a role in pruriceptive transmission.

Results

Peptidergic and nonpeptidergic fibers maintain their cellular identity but show aberrant central projections in BRAFNav1.8 mice. The mutant V600EBRAF protein was strongly expressed in DRG neurons of BRAFNav1.8 mice (Supplemental Figure 1; supplemental material available online with this article; doi:10.1172/JCI70528DS1), and, as expected, the levels of phosphorylated MEK1/2 and ERK1/2 (pMEK1/2 and pERK1/2) were significantly elevated in DRG neurons of BRAFNav1.8 mice relative to those of wild-type mice (Figure 1, A and B). Total BRAF and CRAF expression levels did not differ in DRG neurons between BRAFNav1.8 and wild-type mice.
Spontaneous and enhanced evoked scratching behavior of BRAFNav1.8 mice. At around 6 weeks of age, about 50% of BRAFNav1.8 mice showed spontaneous scratching behavior, followed by skin lesions (Figure 2, A and B, and Supplemental Video 1). By 2 months of age, the majority of BRAFNav1.8 mice had visible skin lesions, most notably around the craniofacial areas (Figure 2B) and the neck region. Prior to the onset of spontaneous scratching, BRAFNav1.8 mice demonstrated a markedly enhanced scratching response to nape intradermal (i.d.) injection of a number of pruritogens, including chloroquine (CQ), a nonhistaminergic pruritogen mediated in part through MRGPRα3 (27), histamine, compound 48/80, and endothelin-1 (ET-1) or to GRP injected i.t. Saline was the vehicle control. *P < 0.05, ***P < 0.001, BRAFNav1.8 compared to WT littermates in the same test, BRAFNav1.8 vs. wild-type. n = 5–9.

Massive ectopic expression of GRP/GRPR signaling in BRAFNav1.8 mice. The enhanced itch behavior prompted us to assess the expression of GRP in DRG neurons of BRAFNav1.8 mice. The number of GRP cells nearly doubled in BRAFNav1.8 mice (13.5%) compared with that in wild-type mice (7.2%) (Figure 3, A–C). Consistent with the observation of little variability in pERK+ staining in DRGs or skin regions at different levels (Supplemental Figures 2 and 3), the proportion of neurons expressing NeuN (neuronal-specific nuclear protein, a neuronal marker), NF200 (a large-diameter and myelinated neuronal marker), peripherin (a small-diameter neuronal marker), CGRP, IB4, TRPV1, and P2X3 (a pain-sensing ATP-gated ion channel also expressed in IB4+ cells) were comparable between the 2 groups (Figure 1, E and F). In contrast, the proportions of neurons expressing NeuN (neuronal-specific nuclear protein, a neuronal marker), NF200 (a large-diameter and myelinated neuronal marker), peripherin (a small-diameter neuronal marker), CGRP, IB4, TRPV1, and P2X3 (a pain-sensing ATP-gated ion channel also expressed in IB4+ cells) were comparable between the 2 groups (Figure 1, E and F). Thus, the fates of peptidergic, nonpeptidergic, and large-diameter neurons were maintained in BRAFNav1.8 mice.

Peptidergic and nonpeptidergic fibers innervate laminae I and II outer layer (Iio) and lamina II inner layer (IiI) in the spinal cord, respectively (Figure 1, N–P). In BRAFNav1.8 mice, CGRP+ fibers expanded to laminae III and were colocalized with IB4, whereas the nonpeptidergic IB4+ fibers invaded laminae I and IIO domains (Figure 1, N–P). These findings reveal that an appropriate level of BRAF signaling is important in directing the segregation of peptidergic and nonpeptidergic primary afferents to their respective target zones of the spinal cord.

Spontaneous and enhanced evoked scratching behavior of BRAFNav1.8 mice. At around 6 weeks of age, about 50% of BRAFNav1.8 mice showed spontaneous scratching behavior, followed by skin lesions (Figure 2, A and B, and Supplemental Video 1). By 2 months of age, the majority of BRAFNav1.8 mice had visible skin lesions, most notably around the craniofacial areas (Figure 2B) and the neck region. Prior to the onset of spontaneous scratching, BRAFNav1.8 mice demonstrated a markedly enhanced scratching response to nape intradermal (i.d.) injection of a number of pruritogens, including chloroquine (CQ), a nonhistaminergic pruritogen mediated in part through MRGPRα3 (27), histamine, compound 48/80, and endothelin-1 (ET-1) or to GRP injected i.t. Saline was the vehicle control. *P < 0.05, ***P < 0.001, BRAFNav1.8 compared to WT littermates in the same test, BRAFNav1.8 vs. wild-type. n = 5–9.

The enhanced itch behavior prompted us to assess the expression of GRP in DRG neurons of BRAFNav1.8 mice. The number of GRP cells nearly doubled in BRAFNav1.8 mice (13.5%) compared with that in wild-type mice (7.2%) (Figure 3, A–C). Consistent with the observation of little variability in pERK+ staining in DRGs or skin regions at different levels (Supplemental Figures 2 and 3), the percentage of GRP cells detected was similar at different spinal segmental levels (Supplemental Figure 6). The proportion of cells expressing Mrgpra3, as detected by in situ hybridization (ISH), increased strikingly from 5.2% to 19.0% (Figure 3, D–F). The percentage of cells expressing histamine 1 receptor (H1R), a key receptor implicated in mediating histaminergic itch (28), increased from 12.7% to 20.0% (Figure 3, G–I). The ectopic expression of GRP, Mrgpra3, and H1R was found predominantly in TRPV1+ cells...
but also in TRPV1– cells (Figure 3, J–R); this was verified by their double staining with Trpv1 ISH (Figure 3, J–L and P–R) or TRPV1 antibody staining (Figure 3, M–O).

We next examined coexpression of Mrgpra3 with other markers in DRG neurons. The proportion of pERK/Mrgpra3-coexpressing cells was not significantly increased in BRAFNav1.8 mice (Supplemental Figure 7, A, B, and J). In wild-type mice, Mrgpra3 was mainly expressed in P2X3+/peripherin+/NF200–/CGRP– cells (Supplemental Figure 7I). In BRAFNav1.8 DRG, despite the overall marked increase of Mrgpra3+ cells, the expression pattern of Mrgpra3 in P2X3+/peripherin+/NF200–/CGRP– cells was unchanged. However, the proportion of Mrgpra3+ cells coexpressing CGRP+, H1R+, and GRP+ significantly increased (Supplemental Figure 7J). Moreover, the numbers of cells coexpressing Mrgpra3 with pERK, NF200, peripherin, P2X3, GRP, CGRP, and H1R all markedly increased in BRAFNav1.8 mice (Supplemental Figure 7K), indicating that Mrgpra3 was ectopically expressed in several major types of DRG neurons, including both TRPV1+ and TRPV1– cells (Figure 3N), and most prominently in GRP+ cells (Supplemental Figure 7K).

To examine GRPR expression, we took advantage of GRPR-EGFP mice that allow the detection of GRPR+ neurons by anti-GFP staining. As expected, GFP expression was primarily restricted to lamina I of the spinal cords of GRPR-EGFP mice (Figure 3S), but its expression expanded entirely into lamina II of the spinal cords in GRPR-EGFP/BRAFNav1.8 mice (Figure 3T). This expression was validated by similar Grpr mRNA expansion detected by ISH (Figure 3, V and W). Consistently, GRP+ fibers were much more abundant and expanded into entire lamina II in BRAFNav1.8 mice (Figure 3, Y–AA), matching the marked increase of GRP in DRG neurons (Figure 3, A–C). Notably, we did not observe an upregulation of GRP immunostaining intrinsic to dorsal horn interneurons of BRAFNav1.8 mice relative to the control (Figure 3, Y–AA).
Increased percentage of DRG neurons responding to CQ and histamine. We next analyzed the response of dissociated DRG neurons to CQ and histamine using calcium imaging. The percentage of cells responsive to CQ significantly increased in BRAF^{Nav1.8} neurons (8.5% wild-type vs. 19.4% BRAF^{Nav1.8}), whereas that of histamine-responsive cells increased without statistical significance (10.6% wild-type vs. 13.1% BRAF^{Nav1.8}) (Figure 4, A–C). Few wild-type cells responded to both CQ and histamine, whereas there were significantly more cells responsive to both in BRAF^{Nav1.8} neurons (1.6% wild-type vs. 6.1% BRAF^{Nav1.8}) (Figure 4, A, C, E, and F). Of capsaicin-responsive cells, the percentage of cells responsive to CQ (7.9% wild-type vs. 25.1% BRAF^{Nav1.8}) or to both CQ and histamine (3.8% wild-type vs. 15.2% BRAF^{Nav1.8}) increased significantly (Figure 4, D–F). Taken together, these data provide physiological evidence supporting de novo responsiveness of BRAF^{Nav1.8} DRG neurons to pruritogens but not to capsaicin.

Increased excitability of DRG neurons in response to histamine and CQ. We next measured basic electrophysiological parameters of dissociated DRG neurons using current clamp recording. Among cells ranging in size from 17.5 to 32.5 μm, 3 firing patterns were observed: single spike (SS), delayed, and tonic firing (Figure 5, A–C, and Supplemental Table 1). Overall, SS cells showed a larger diameter, more hyperpolarized resting membrane potential, decreased input resistance, and higher rheobase values than delayed and tonic firing cells (Supplemental Table 1). Interestingly, the percentage of SS cells was much smaller in BRAF^{Nav1.8} mice compared with that in wild-type mice (36.3% wild-type vs. 16.3% BRAF^{Nav1.8}), whereas the percentage of tonic firing cells almost doubled in BRAF^{Nav1.8} mice (25.0% wild-type vs. 47.5% BRAF^{Nav1.8}) (Supplemental Table 1). The number of delayed firing cells remained the same (Supplemental Table 1). For either wild-type or BRAF^{Nav1.8} mice, the cells responsive to pruritogens were typically tonic firing cells, which were readily excitable (Figure 5, D, E, G, and H). Only on rare occasion did SS cells respond to pruritogens. The tonic firing population of cells in BRAF^{Nav1.8} mice exhibited a small increase in soma diameter, whereas SS neurons showed a smaller rheobase value relative to that of the control (Supplemental Table 1). The percentage of small-diameter cells responsive to histamine and CQ increased substantially in BRAF^{Nav1.8} mice (Figure 5, F and I). Despite this expansion, the response magnitudes, in terms of firing frequency in response to histamine or CQ, were largely the same (Figure 5, D, E, G, and H). Thus, there was a dramatic expansion of tonic firing cells at the expense of SS cells in tandem with increased expression of itch mediators. These changes might underlie the enhanced and spontaneous itch in BRAF^{Nav1.8} mice.

Attenuated itch sensation of BRAF^{Nav1.8} mice by a blockade of histaminergic and GRP/GRPR signaling. To distinguish whether incessant scratching behavior was a result of aberrant projection of primary afferents or ectopic expression of itch mediators, we generated Grp−/− mice (Figure 6, A–C). Consistent with our previous observations (27), neither DRG neurons nor the spinal cords showed GRP staining in Grp−/− mice (Figure 6, D–G). A recent study claimed that GRP immunostaining is largely attributable to neurons intrinsic to the dorsal spinal cord (29). To clarify this, we repeated the dorsal rhizotomy experiment (12). As expected, on the ipsilateral side almost all CGRP+ fiber staining in the dorsal horn...
was lost, confirming the success of dorsal rhizotomy (Figure 6, H–J and P). Similarly, GRP+ immunostaining was nearly abolished on the ipsilateral side of the surgery but remained intact on the contralateral side (Figure 6, K–P), confirming that the presence of GRP+ immunostaining in the superficial dorsal horn was primary afferents dependent. These results directly challenge a previous study showing strong GRP staining in the spinal cord after the dorsal root rhizotomy (29). Importantly, spontaneous scratching of BRAF Nav1.8 mice was markedly diminished in either Grp−/− or Grpr KO mice and nearly abolished when GRPR + neurons were ablated with bombesin-saporin (Figure 7A and ref. 13). Scratching induced by i.t. GRP was also dramatically reduced after i.p. injection of 77427, a small-molecule GRP blocker (ref. 30 and Figure 7B). Neither Grp−/− nor Grpr KO mice showed an inhibitory effect of 77427 on CQ-elicited scratching observed in wild-type mice (Figure 7B), demonstrating the specificity of 77427 as a GRP blocker and supporting the role of GRP as an itch neurotransmitter in acute and chronic itch. Consistently, i.p. injection of 77427 significantly reduced spontaneous scratching in BRAFNav1.8 mice (Figure 7C) as did chlorpheniramine, a histamine antagonist (28), and U0126, a MEK inhibitor (31) (Figure 7C). U0126 failed to attenuate scratching behavior elicited by CQ and histamine (Figure 7D). Hence, these results demonstrate that ectopic ERK activation and expression of GRP and H1R are responsible for the spontaneous scratching of BRAFNav1.8 mice.

Mice with chronic itch induced by allergic contact dermatitis and dry skin recapitulate ectopic ERK activation and expression of itch mediators in BRAFNav1.8 mice. To assess the relevance of BRAF signaling to the development of chronic itch, we used a mouse model of allergic contact dermatitis (ACD), a prevalent skin disease triggered by direct skin contact with haptens or allergens, induced by topical application of a chemical hapten, 2, 4-dinitrofluorobenzene (DNFB) (32). A hallmark of ACD is intractable chronic itch that is resistant to antihistamines (33, 34). DNFB induces a T cell–mediated hypersensitivity reaction in human skin (35, 36) and similarly initiates sensitization and elicitation phases in mice that manifest
as spontaneous scratching behavior (ref. 37 and see below). DNFB treatment resulted in thickening of epidermis, increased lymph node and spleen size, increased number of neutrophils, infiltration of inflammatory mast cells, and elevated serum IgE levels (Figure 8, A–E). The number of white blood cells also increased, but the difference was not statistically significant (Figure 8C). Thymic stromal lymphopoietin (TSLP), a marker for skin inflammation and dermatitis (38), also increased significantly (Figure 8F). Importantly, DNFB-induced spontaneous scratching was significantly diminished by i.t. U0126 (Figure 9C). In mice treated with DNFB, ectopic ERK activation and expression of GRP and Mrgpra3 were detected in DRG neurons (Figure 9, D–L), and increased GRPR expression was detected in the spinal cord (Figure 9, M–O).

Finally, we analyzed whether BRAF signaling may have a role in itch induced by skin dryness (xerosis). Dry skin is caused by disrupting cutaneous barrier function and is associated with rough, scaly, and flaky skin often accompanied by chronic pruritus (39). Topical application of an acetone/ether mixture followed by water leads to spontaneous scratching (Figure 9B), resulting from skin stratum corneum dehydration and epidermal water loss, and dry skin itch is mediated by histamine-independent mechanisms (40, 41). Similarly, dry skin itch was attenuated by U0126 (Figure 9C). Ectopic ERK activation and expression of GRP, Mrgpra3, and GRPR were observed in DRG neurons of mice with dry skin itch (Supplemental Figure 8). To assess whether spinal ERK activation is required to maintain spontaneous itch, we examined ERK activation in the dorsal horns of mice 1 day after the last DNFB or dry skin treatment. For a direct comparison of pERK activation to central hypersensitivity, pERK staining after intraplantar capsaicin injection (a model of inflammatory pain) was used as the control (ref. 42 and Supplemental Figure 9). We did not detect pERK+ cells in the spinal cord, despite ongoing spontaneous itch in both chronic itch models (Supplemental Figure 9), indicating that pERK upregulation in DRG instead of the spinal cord is necessary and sufficient for maintaining both peripheral and central sensitization. Interestingly, CGRP+ and IB4+ fibers projected normally in the dorsal horns of mice with ACD and dry skin itch (Supplemental Figure 10), unlike the expansion of peptidergic and nonpeptidergic...
fibers seen in BRAF^{Nav1.8} mice, indicating that the latter was due to developmental changes and unlikely to contribute to the chronic itch behavior phenotypes. Taken together, these results reveal that, in mouse models of ACD and dry skin itch, ectopic ERK activation and expression of GRP and Mrgpra3 occurred similarly to that in BRAF^{Nav1.8} mice and suggest that pERK and GRP/GRPR signaling are critical for the progression and maintenance of long-lasting itch transmission (Figure 9P).

Discussion

Here, we identify the BRAF pathway as an upstream regulator of expression of a cohort of itch mediators in mouse sensory neurons. Our data further demonstrate that GRP/GRPR signaling plays an important role in the initiation and maintenance of long-lasting itch in 3 distinct genetic and/or clinically relevant chronic itch models. Finally, our data suggest that a phenotypic switch from nociceptors to pruriceptors underlies the transition from acute itch signaling to pathological itch state.

BRAF^{Nav1.8} mice are a new and unique genetic model for unraveling how pruritogenic transmission is progressively enhanced at the molecular and circuit levels, as increasing scratching behavior correlates well with an expression profile change of itch mediators. The fact that enhanced evoked scratching preceded the manifestation of spontaneous itch (from 3 weeks of age to around 6 weeks of age) suggests the existence of a postnatal period for developmental maturation of itch circuitry as well as a threshold for the intensity of ongoing itch signaling. We cannot exclude the possibility that skin lesion or inflammation resulting from excessive scratching might have contributed to further increase of scratching as mice age. Interestingly, we have observed more pERK⁺ fiber innervation in the skin. Coupled with increased GRP⁺ fiber innervation in skin of mice with atopic dermatitis (43), it will be interesting to see whether the interactions between skin lesion/inflammation and enhanced itch-specific nerve innervation are part of positive feedback mechanisms that are engaged to provoke more itching signaling and exacerbate scratching response. In both ACD and dry skin models, similar progressively increased scratching responses were observed, albeit in a much shorter period, suggesting that skin sensitization/inflammation may account for at least some aspects of peripheral and central sensitization of itch signaling.

Because the total number of sensory neurons remained unaltered, the finding that substantial de novo expression of GRP and Mrgpra3 primarily concentrated in TRPV1⁺ neurons implies that a small subset of nociceptors has acquired novel pruritogenic properties. Similar de novo neuronal responsiveness to pruritogens has been observed in mice with dry skin (41). Our finding that a population of tonic firing sensory neurons was significantly expanded at the expense of SS cells indicates that some nociceptors switched from unresponsive to responsive or excitable to pruritogenic stimuli. We refer to cells that express in situ GRP as “primary pruriceptors,” which form the basal circuits for acute itch transmission, while cells expressing de novo itch mediators are “secondary pruriceptors.” Mechanistically, we suggest that a recruitment of secondary pruriceptors is a prerequisite for initiating and sustaining prolonged pruritceptive transmission. This phenotypic switch mechanism may also underlie central sensitization of itch in the context of chronic itch.

Our studies reveal that enhanced and persistent expression of GRP in sensory neurons is necessary for transmitting itch-specific information to the spinal cord in chronic itch states. A sustained release of GRP may necessitate additional GRPR signaling or the secondary itch neurons, so that the capacity of the central itch circuit is expanded to accommodate the amplified itch signaling to the brain. It remains unclear, however, which subpopulation of dorsal horn neurons is capable of expressing de novo GRPR. The present study confirms the specificity of the anti-GRP antibody (27, 29) as well as primary afferents as the source of GRP protein in the superficial dorsal horn, which was first demonstrated in rats (44). While it has been known that GRP mRNA is expressed in the dorsal horn (45, 46), importantly, chronic itch did not upregulate...
GRP protein in spinal interneurons. The corroborative evidence, therefore, led us to conclude that spinal Grp mRNA does not equate to GRP protein expression. Failure to detect Grp mRNA in DRG neurons by ISH or lack of EGFP in DRGs of GRP-EGFP transgenic mice highlights the technical limitations that have resulted in differing interpretation (29, 47).

Complementary to our loss-of-function studies (12, 13), the finding that a dramatic upregulation of GRP/GRPR signaling failed to impact both acute and chronic pain behavior of BRAFNav1.8 mice in a profound manner reinforces the idea that GRP/GRPR signaling represents a dedicated molecular labeled line for itch from periphery to the spinal cord. This is in contrast to B-type natriuretic peptide (BNP), which has recently been proposed to be dedicated to activation of its receptor natriuretic peptide receptor-A (NPRA) for itch transmission from DRGs to the spinal cord (47). However, BNP-NPRA–mediated autoregulation in DRG neurons was also implicated in nociceptive processing in DRG neurons (48). Indeed, we found that i.t. injection of BNP also regulated inflammatory mediators from histaminergic itch to nonhistaminergic itch genes signaling cascade to regulate expression of a wide range of itch transcriptional events would be a logical next step to link extracellular stimuli to the expression of downstream effector genes that encode itch information. Finally, the present study supports the role of GRP as an itch-specific neuropeptide in sensory neurons, in agreement with previous findings that GRP was upregulated in primary afferents of primates with chronic itch (53) and in patients (54).

Figure 8
Analysis of skin and immune system in adult mice with ACD. (A) H&E and toluidine blue staining of the neck skin of the mice with ACD and the control mice. The mice with ACD showed epidermal hyperplasia, hyperkeratosis, acanthosis, dermal inflammation, and mast cell infiltration (insets show a few mast cells). Scale bar: 25 μm. (B and C) The systemic manifestations of allergic dermatitis were presented as highlighted by their (B) enlarged spleen and lymph nodes and (C) significantly increased blood neutrophil counts. SPL, spleen. Scale bar: 4 mm. (D) Quantitative analysis confirmed that ACD enhanced the extent of mast cell infiltration in the dermis. Mast cells in 9 random ×200 microscope fields were counted and averaged. (E) IgE levels were highly elevated in mice with ACD. (F) Tslp mRNA was overexpressed in the ACD skin. Representative RT–PCR images (bottom). *P < 0.05, **P < 0.01, ***P < 0.001, mice with ACD vs. the controls (acetone only). n = 6.
We suggest that an upregulation of GRP/GRPR represents a hallmark of the development of chronic itch. A repertoire of pharmacologic inhibitors of the BRAF cascade in clinical trials for patients with cancer (55) may be used in combination with inhibitors of GRP or GRPR to provide a more effective strategy for ameliorating chronic itch conditions than either type of inhibitor alone.

Methods
Additional details regarding this study are provided in the Supplemental Methods.

Mice. Mice with a floxed allele for Braf V600E (V600Ef/WT mice) (24) were crossed with Nav1.8Cre/+ mice (25) to generate mice with specific expression of BrafV600E in Nav1.8+ cells (referred to herein as BRAFNav1.8 mice). Littermates harboring the genotypes Nav1.8WT/WT with BrafV600E, Nav1.8Cre/WT with BrafV600E, and Nav1.8WT/WT with BrafWT/WT were used as controls. Generation of Grpr KO mice and GRPR-EGFP mice was described previously (12, 56, 57).

Behavioral studies. The motor, itch, and pain behavioral studies were performed as described previously (12, 13). Chronic itch models were used as described previously (40, 58).

Immunohistochemistry and ISH. Standard procedures were used as described previously (59).

RT-PCR and Western blot analysis. RT-PCR and Western blot analysis were carried out as described previously (11).

Calcium imaging and electrophysiology. Dissociated DRG neurons were loaded with fura 2-acetoxymethyl ester (Invitrogen) and imaged at 340 and 380 nm.
excitation to detect intracellular-free calcium for analysis of the relative proportions of DRG neurons responsive to pruritogens. Current clamp recordings were acquired on dissociated DRG neurons as described previously (60).

We thank Q. Li, J. Yin, L.R. Han, L. Zhou, A. Sure, and M. Giger for help with a chronic itch model; and X. Jian for help developing Grp−/− mice. We also thank J. Wood for Navi.1-cre mice, C. Pritchard and R. Marais for BrafV617F mice, and Q. Liu, M. Jacquin, G. Giesler, and lab members for comments. J. Jeffry has been supported by a NIDA training grant. The research was supported by RO1 grants from the National Institute of Arthritis and Musculoskeletal and Skin Diseases to Z.-F. Chen (RO1 AR056318-01A1) and the National Eye Institute (1R01EY022409-01S1), the Whithead Foundation (2010-08-61 to J. Zhong, and a NIH RO1 grant to R. Kopan (R01DK066408).

Received for publication April 17, 2013, and accepted in revised form December 12, 2013.

Address correspondence to: Zhou-Feng Chen, Center for the Study of Itch, Department of Anesthesiology, 8054 Mail Stop, Washington University School of Medicine, 600 S. Euclid Ave., St. Louis, Missouri 63110, USA. Phone: 314.745.5093; Fax: 314.362.8571; E-mail: chenz@wustl.edu. Or to: Jian Zhong, Burke Medical Research Institute, Weill Medical College of Cornell University, 785 Mamaroneck Ave., White Plains, New York 10605, USA. Phone: 914.368.3132; Fax: 914.597.2225; E-mail: jiz1010@med.cornell.edu.

Zhong-Chun Liu’s present address is: Department of Psychiatry, Renmin Hospital, Wuhan University, Wuhan, China.

Acknowledgments

We thank Q. Li, J. Yin, L.R. Han, L. Zhou, A. Sure, and M. Giger for genotyping, behavioral test, and technical support; Z.Q. Xie for help with a chronic itch model; and X. Jian for help developing Grp−/− mice. We also thank J. Wood for Navi.1-cre mice, C. Pritchard and R. Marais for BrafV617F mice, and Q. Liu, M. Jacquin, G. Giesler, and lab members for comments. J. Jeffry has been supported by a NIDA training grant. The research was supported by RO1 grants from the National Institute of Arthritis and Musculoskeletal and Skin Diseases to Z.-F. Chen (RO1 AR056318-01A1) and the National Eye Institute (1R01EY022409-01S1), the Whithead Foundation (2010-08-61 to J. Zhong, and a NIH RO1 grant to R. Kopan (R01DK066408).

Received for publication April 17, 2013, and accepted in revised form December 12, 2013.

Address correspondence to: Zhou-Feng Chen, Center for the Study of Itch, Department of Anesthesiology, 8054 Mail Stop, Washington University School of Medicine, 600 S. Euclid Ave., St. Louis, Missouri 63110, USA. Phone: 314.745.5093; Fax: 314.362.8571; E-mail: chenz@wustl.edu. Or to: Jian Zhong, Burke Medical Research Institute, Weill Medical College of Cornell University, 785 Mamaroneck Ave., White Plains, New York 10605, USA. Phone: 914.368.3132; Fax: 914.597.2225; E-mail: jiz1010@med.cornell.edu.

Zhong-Chun Liu’s present address is: Department of Psychiatry, Renmin Hospital, Wuhan University, Wuhan, China.

Acknowledgments

We thank Q. Li, J. Yin, L.R. Han, L. Zhou, A. Sure, and M. Giger for genotyping, behavioral test, and technical support; Z.Q. Xie for help with a chronic itch model; and X. Jian for help developing Grp−/− mice. We also thank J. Wood for Navi.1-cre mice, C. Pritchard and R. Marais for BrafV617F mice, and Q. Liu, M. Jacquin, G. Giesler, and lab members for comments. J. Jeffry has been supported by a NIDA training grant. The research was supported by RO1 grants from the National Institute of Arthritis and Musculoskeletal and Skin Diseases to Z.-F. Chen (RO1 AR056318-01A1) and the National Eye Institute (1R01EY022409-01S1), the Whithead Foundation (2010-08-61 to J. Zhong, and a NIH RO1 grant to R. Kopan (R01DK066408).

Received for publication April 17, 2013, and accepted in revised form December 12, 2013.

Address correspondence to: Zhou-Feng Chen, Center for the Study of Itch, Department of Anesthesiology, 8054 Mail Stop, Washington University School of Medicine, 600 S. Euclid Ave., St. Louis, Missouri 63110, USA. Phone: 314.745.5093; Fax: 314.362.8571; E-mail: chenz@wustl.edu. Or to: Jian Zhong, Burke Medical Research Institute, Weill Medical College of Cornell University, 785 Mamaroneck Ave., White Plains, New York 10605, USA. Phone: 914.368.3132; Fax: 914.597.2225; E-mail: jiz1010@med.cornell.edu.

Zhong-Chun Liu’s present address is: Department of Psychiatry, Renmin Hospital, Wuhan University, Wuhan, China.

Acknowledgments

We thank Q. Li, J. Yin, L.R. Han, L. Zhou, A. Sure, and M. Giger for genotyping, behavioral test, and technical support; Z.Q. Xie for help with a chronic itch model; and X. Jian for help developing Grp−/− mice. We also thank J. Wood for Navi.1-cre mice, C. Pritchard and R. Marais for BrafV617F mice, and Q. Liu, M. Jacquin, G. Giesler, and lab members for comments. J. Jeffry has been supported by a NIDA training grant. The research was supported by RO1 grants from the National Institute of Arthritis and Musculoskeletal and Skin Diseases to Z.-F. Chen (RO1 AR056318-01A1) and the National Eye Institute (1R01EY022409-01S1), the Whithead Foundation (2010-08-61 to J. Zhong, and a NIH RO1 grant to R. Kopan (R01DK066408).

Received for publication April 17, 2013, and accepted in revised form December 12, 2013.

Address correspondence to: Zhou-Feng Chen, Center for the Study of Itch, Department of Anesthesiology, 8054 Mail Stop, Washington University School of Medicine, 600 S. Euclid Ave., St. Louis, Missouri 63110, USA. Phone: 314.745.5093; Fax: 314.362.8571; E-mail: chenz@wustl.edu. Or to: Jian Zhong, Burke Medical Research Institute, Weill Medical College of Cornell University, 785 Mamaroneck Ave., White Plains, New York 10605, USA. Phone: 914.368.3132; Fax: 914.597.2225; E-mail: jiz1010@med.cornell.edu.

Zhong-Chun Liu’s present address is: Department of Psychiatry, Renmin Hospital, Wuhan University, Wuhan, China.

Acknowledgments

We thank Q. Li, J. Yin, L.R. Han, L. Zhou, A. Sure, and M. Giger for genotyping, behavioral test, and technical support; Z.Q. Xie for help with a chronic itch model; and X. Jian for help developing Grp−/− mice. We also thank J. Wood for Navi.1-cre mice, C. Pritchard and R. Marais for BrafV617F mice, and Q. Liu, M. Jacquin, G. Giesler, and lab members for comments. J. Jeffry has been supported by a NIDA training grant. The research was supported by RO1 grants from the National Institute of Arthritis and Musculoskeletal and Skin Diseases to Z.-F. Chen (RO1 AR056318-01A1) and the National Eye Institute (1R01EY022409-01S1), the Whithead Foundation (2010-08-61 to J. Zhong, and a NIH RO1 grant to R. Kopan (R01DK066408).

Received for publication April 17, 2013, and accepted in revised form December 12, 2013.