Fasting and differential chemotherapy protection in patients

Lizzia Raffaghello
Giannina Gaslini Institute

Fernando Safdie
University of Southern California

Giovanna Bianchi
Giannina Gaslini Institute

Tanya Dorff
University of Southern California

Luigi Fontana
Washington University School of Medicine in St. Louis

Follow this and additional works at: http://digitalcommons.wustl.edu/open_access_pubs

Recommended Citation
Raffaghello, Lizzia; Safdie, Fernando; Bianchi, Giovanna; Dorff, Tanya; Fontana, Luigi; and Longo, Valter D., "Fasting and differential chemotherapy protection in patients.” Cell Cycle. 9,22. 4474-4476. (2010).
http://digitalcommons.wustl.edu/open_access_pubs/2775
Fasting and differential chemotherapy protection in patients

Lizzia Raffaghello,²† Fernando Safdie,¹† Giovanna Bianchi,² Tanya Dorff,⁵ Luigi Fontana³⁴ and Valter D. Longo¹*¹

¹Andrus Gerontology Center; Dept. of Biological Sciences; and ¹Norris Cancer Center; University of Southern California; Los Angeles, CA USA; ²Laboratory of Oncology; Giannina Gaslini Institute; Genova, Italy; ³Division of Geriatrics and Nutritional Science; Washington University in St. Louis; St. Louis, MO USA; ⁴Division of Nutrition and Aging; Istituto Superiore di Sanità; Rome, Italy

†These authors have contributed equally to this work.

Chronic calorie restriction has been known for decades to prevent or retard cancer growth, but its weight-loss effect and the potential problems associated with combining it with chemotherapy have prevented its clinical application. Based on the discovery in model organisms that short term starvation (STS or fasting) causes a rapid switch of cells to a protected mode, we described a fasting-based intervention that causes remarkable changes in the levels of glucose, IGF-I and many other proteins and molecules and is capable of protecting mammalian cells and mice from various toxins, including chemotherapy. Because oncogenes prevent the cellular switch to this stress resistance mode, starvation for 48 hours or longer protects normal yeast and mammalian cells and mice but not cancer cells from chemotherapy, an effect we termed Differential Stress Resistance (DSR). In a recent article, ten patients who fasted in combination with chemotherapy, reported that fasting was not only feasible and safe but caused a reduction in a wide range of side effects accompanied by an apparently normal and possibly augmented chemotherapy efficacy. Together with the remarkable results observed in animals, these data provide preliminary evidence in support of the human application of this fundamental biogerontology finding, particularly for terminal patients receiving chemotherapy. Here we briefly discuss the basic, pre-clinical and clinical studies on fasting and cancer therapy.

After decades of slow progress in the identification of treatments effective on a wide range of malignancies, cancer treatment is now turning to personalized therapies based in part on pharmacogenomics. By contrast, aging research is moving in the opposite direction by searching for common ways to prevent, postpone and treat a wide range of age-related diseases, based on the modulation of genetic pathways that are conserved from yeast to mammals. In fact, it may be a solid evolutionary and comparative biology-foundation, which makes this ambitious goal of biogerontologists a realistic or at least a promising one. On the other hand, the progress of biogerontology is viewed by many clinicians as too fundamental and far from translational applications. In most cases, it is not clear how aging research will be translated into FDA approved drugs or treatments that have effects that are superior to those already available or being developed. For example, it is not clear how the long-term 20–30% reduction in calorie intake (dietary restriction, DR) that we and many others before us have shown to be effective in retarding cancer...
growth in mice would not be feasible for cancer therapy for multiple reasons: (1) the effects of chronic DR in patients with a clinically evident tumor is expected to delay but not stop the progression of the disease,
and this delay may only occur for a portion of the malignancies, (2) although weight loss and cachexia in the early stages of treatment are less prevalent than commonly thought, the -15% loss of BMI and -30% long-term loss of body fat caused by a moderate (20%) calorie restriction may be tolerated by only a very small portion of cancer patients receiving treatment, (3) Because this long-term restriction is accompanied by delayed wound healing and immunologic impairment in rodents, it is not clear what risks it may impose on cancer patients receiving treatment. Our studies of DSR, which were triggered by our fundamental findings that switching yeast cells to water protected them against a wide range of toxins, started as a way to address these concerns but also as an attempt to achieve a much more potent therapeutic effect than that achieved by DR. Because starvation-induced protection can increase many fold when combined with modulation of pro-aging pathways and since it is in principle blocked by the expression of any oncogene, it has the potential to provide a method to allow common chemotherapy to selectively kill cancer cells, independently of the type of cancer. The DSR experiments in mammals were also based on our hypothesis that stress resistance and aging regulatory pathways were conserved from yeast to mammals. We found that fasting for 48 or more hours or in vitro starvation conditions that mimic fasting protected mice and/or normal cells but not cancer cells from various chemotherapy drugs and other deleterious agents. This effect was shown to depend in part on the reduction of circulating IGF-I and glucose levels. Although a differential regulation of cell division in normal and cancer cells is likely to contribute to DSR, much of it appears to be dependent on protective systems which are normally maintained in an inactive or low activity state even in non-dividing cells. In fact, in non-dividing yeast and mice, deficiencies in glucose or IGF-I signaling that match those observed after starvation promote resistance to doxorubicin, a chemotherapy drug that specifically targets muscle cells in the heart.

As expected, many clinicians were skeptical of our hypothesis that cancer treatment could be improved not by a “magic bullet” but by a “not so magic DSR shield” as underlined by Leonard Saltz, an oncologist at Memorial Sloan-Kettering Cancer Center: “Would I be enthusiastic about enrolling my patients in a trial where they’re asked not to eat for 2.5 days? No.” However, ten oncologists did allow their patients, suffering from malignancies ranging from stage II breast cancer to stage IV esophageal, prostate and lung malignancies to undergo a 48–140 hours pre-chemotherapy and a 5–56 hours post-treatment period of fasting as an attempt to achieve a much more potent therapeutic effect than that achieved by DR. Because starvation-induced protection can increase many fold when combined with modulation of pro-aging pathways and since it is in principle blocked by the expression of any oncogene, it has the potential to provide a method to allow common chemotherapy to selectively kill cancer cells, independently of the type of cancer. The DSR experiments in mammals were also based on our hypothesis that stress resistance and aging regulatory pathways were conserved from yeast to mammals. We found that fasting for 48 or more hours or in vitro starvation conditions that mimic fasting protected mice and/or normal cells but not cancer cells from various chemotherapy drugs and other deleterious agents. This effect was shown to depend in part on the reduction of circulating IGF-I and glucose levels. Although a differential regulation of cell division in normal and cancer cells is likely to contribute to DSR, much of it appears to be dependent on protective systems which are normally maintained in an inactive or low activity state even in non-dividing cells. In fact, in non-dividing yeast and mice, deficiencies in glucose or IGF-I signaling that match those observed after starvation promote resistance to doxorubicin, a chemotherapy drug that specifically targets muscle cells in the heart.

As expected, many clinicians were skeptical of our hypothesis that cancer treatment could be improved not by a “magic bullet” but by a “not so magic DSR shield” as underlined by Leonard Saltz, an oncologist at Memorial Sloan-Kettering Cancer Center: “Would I be enthusiastic about enrolling my patients in a trial where they’re asked not to eat for 2.5 days? No.” However, ten oncologists did allow their patients, suffering from malignancies ranging from stage II breast cancer to stage IV esophageal, prostate and lung malignancies to undergo a 48–140 hours pre-chemotherapy and a 5–56 hours post-treatment period of fasting as an attempt to achieve a much more potent therapeutic effect than that achieved by DR. Because starvation-induced protection can increase many fold when combined with modulation of pro-aging pathways and since it is in principle blocked by the expression of any oncogene, it has the potential to provide a method to allow common chemotherapy to selectively kill cancer cells, independently of the type of cancer. The DSR experiments in mammals were also based on our hypothesis that stress resistance and aging regulatory pathways were conserved from yeast to mammals. We found that fasting for 48 or more hours or in vitro starvation conditions that mimic fasting protected mice and/or normal cells but not cancer cells from various chemotherapy drugs and other deleterious agents. This effect was shown to depend in part on the reduction of circulating IGF-I and glucose levels. Although a differential regulation of cell division in normal and cancer cells is likely to contribute to DSR, much of it appears to be dependent on protective systems which are normally maintained in an inactive or low activity state even in non-dividing cells. In fact, in non-dividing yeast and mice, deficiencies in glucose or IGF-I signaling that match those observed after starvation promote resistance to doxorubicin, a chemotherapy drug that specifically targets muscle cells in the heart.

As expected, many clinicians were skeptical of our hypothesis that cancer treatment could be improved not by a “magic bullet” but by a “not so magic DSR shield” as underlined by Leonard Saltz, an oncologist at Memorial Sloan-Kettering Cancer Center: “Would I be enthusiastic about enrolling my patients in a trial where they’re asked not to eat for 2.5 days? No.” However, ten oncologists did allow their patients, suffering from malignancies ranging from stage II breast cancer to stage IV esophageal, prostate and lung malignancies to undergo a 48–140 hours pre-chemotherapy and a 5–56 hours post-treatment period of fasting as an attempt to achieve a much more potent therapeutic effect than that achieved by DR. Because starvation-induced protection can increase many fold when combined with modulation of pro-aging pathways and since it is in principle blocked by the expression of any oncogene, it has the potential to provide a method to allow common chemotherapy to selectively kill cancer cells, independently of the type of cancer. The DSR experiments in mammals were also based on our hypothesis that stress resistance and aging regulatory pathways were conserved from yeast to mammals. We found that fasting for 48 or more hours or in vitro starvation conditions that mimic fasting protected mice and/or normal cells but not cancer cells from various chemotherapy drugs and other deleterious agents. This effect was shown to depend in part on the reduction of circulating IGF-I and glucose levels. Although a differential regulation of cell division in normal and cancer cells is likely to contribute to DSR, much of it appears to be dependent on protective systems which are normally maintained in an inactive or low activity state even in non-dividing cells. In fact, in non-dividing yeast and mice, deficiencies in glucose or IGF-I signaling that match those observed after starvation promote resistance to doxorubicin, a chemotherapy drug that specifically targets muscle cells in the heart.

As expected, many clinicians were skeptical of our hypothesis that cancer treatment could be improved not by a “magic bullet” but by a “not so magic DSR shield” as underlined by Leonard Saltz, an oncologist at Memorial Sloan-Kettering Cancer Center: “Would I be enthusiastic about enrolling my patients in a trial where they’re asked not to eat for 2.5 days? No.” However, ten oncologists did allow their patients, suffering from malignancies ranging from stage II breast cancer to stage IV esophageal, prostate and lung malignancies to undergo a 48–140 hours pre-chemotherapy and a 5–56 hours post-treatment period of fasting as an attempt to achieve a much more potent therapeutic effect than that achieved by DR. Because starvation-induced protection can increase many fold when combined with modulation of pro-aging pathways and since it is in principle blocked by the expression of any oncogene, it has the potential to provide a method to allow common chemotherapy to selectively kill cancer cells, independently of the type of cancer. The DSR experiments in mammals were also based on our hypothesis that stress resistance and aging regulatory pathways were conserved from yeast to mammals. We found that fasting for 48 or more hours or in vitro starvation conditions that mimic fasting protected mice and/or normal cells but not cancer cells from various chemotherapy drugs and other deleterious agents. This effect was shown to depend in part on the reduction of circulating IGF-I and glucose levels. Although a differential regulation of cell division in normal and cancer cells is likely to contribute to DSR, much of it appears to be dependent on protective systems which are normally maintained in an inactive or low activity state even in non-dividing cells. In fact, in non-dividing yeast and mice, deficiencies in glucose or IGF-I signaling that match those observed after starvation promote resistance to doxorubicin, a chemotherapy drug that specifically targets muscle cells in the heart.
chemotherapy water-only fast. The six patients who received chemotherapy with or without fasting reported a reduction in fatigue, weakness and gastrointestinal side effects while fasting27 (Fig. 1). A trend for a reduction of many additional side effects was also reported by the group of patients who always fasted before chemotherapy.27 In those patients whose cancer progression was assessed, chemotherapy was effective and in some cases it was highly effective.27 A clinical trial sponsored by the V-Foundation for Cancer Research, aimed at testing the safety and efficacy of a 24 hour fast in combination with chemotherapy, is in its safety stage. Because it was originally limited to patients diagnosed with bladder cancer the clinical trial progressed slowly. However, its recent expansion to include patients receiving platinum-based chemotherapy (breast, ovarian, lung cancer), is expected to expedite it. Conclusive results for the effect of a 3–4 day fast on chemotherapy-dependent side effects and possibly therapeutic index are not expected to become available for several years. Even if a more modest effect than the 1,000-fold differential protection against oxidative stress and chemotherapy observed in normal and cancer-like yeast cells was achieved in humans, this method could result in long-term survival for many patients with metastatic cancers, particularly those in which malignant cells have not acquired multidrug resistance.

Acknowledgements

Lizzia Raffaghello is a recipient of a My First AIRC Grant (MFAG) and Giovanna Bianchi is a recipient of a FIRC (Italian Foundation for Cancer Research) fellowship. This study was also funded in part by NIH/NIA grants AG20642 and AG025135, Ted Bakewell (The Bakewell Foundation), the V Foundation for Cancer Research and a USC Norris Cancer Center pilot grant to V.D. Longo.

References