Supplemental Table 1. Correlation between tumor grade and subcellular localization of PLAC8 on CRC TMA.

<table>
<thead>
<tr>
<th>Tumor Grade</th>
<th>Total Cases</th>
<th>Membrane</th>
<th>Cytosol</th>
</tr>
</thead>
<tbody>
<tr>
<td>I&II</td>
<td>62</td>
<td>45%</td>
<td>4%</td>
</tr>
<tr>
<td>III</td>
<td>22</td>
<td>50%</td>
<td>32%</td>
</tr>
<tr>
<td>Total</td>
<td>84</td>
<td>46%</td>
<td>11%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Df</th>
<th>Chi-square</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>2</td>
<td>14.0223</td>
<td>0.0009</td>
</tr>
</tbody>
</table>

Df, Degrees of freedom
Supplemental Table 2. shRNA information (Sigma-Aldrich).

<table>
<thead>
<tr>
<th>Gene</th>
<th>Catalogue #</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLAC8 sh1</td>
<td>TRCN0000133820</td>
</tr>
<tr>
<td>PLAC8 sh2</td>
<td>TRCN0000133929</td>
</tr>
<tr>
<td>ERK2 sh1</td>
<td>TRCN0000342295</td>
</tr>
<tr>
<td>ERK2 sh2</td>
<td>TRCN0000342296</td>
</tr>
<tr>
<td>ERK2 sh3</td>
<td>TRCN0000342297</td>
</tr>
<tr>
<td>ERK2 sh4</td>
<td>TRCN0000196392</td>
</tr>
<tr>
<td>ERK1 sh1</td>
<td>TRCN0000195323</td>
</tr>
<tr>
<td>ERK1 sh2</td>
<td>TRCN0000219700</td>
</tr>
<tr>
<td>Scrambled control</td>
<td>SHC005</td>
</tr>
</tbody>
</table>
Supplemental Table 3. Yeast two-hybrid analysis of interaction between PLAC8 and DUSP6.

<table>
<thead>
<tr>
<th>Transformant</th>
<th>GAL4AD-fusion protein</th>
<th>GAL4BD-fusion protein</th>
<th>Growth on agar plates lacking</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAL4AD</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GAL4AD-PLAC8</td>
<td>-</td>
<td>GAL4BD</td>
<td>-</td>
</tr>
<tr>
<td>GAL4AD-PLAC8</td>
<td>GAL4AD-PLAC8</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>GAL4AD-PLAC8</td>
<td>GAL4AD-PLAC8</td>
<td>GAL4BD-DUSP6</td>
<td>+</td>
</tr>
</tbody>
</table>

AHLW: alanine, histidine, leucine, tryptophan; HLW: histidine, leucine, tryptophan; LW: leucine, tryptophan.
Supplemental Table 4. Antibodies used for immunoblotting, immunofluorescence and immunohistochemistry.

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Company</th>
<th>Catalogue #</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLAC8</td>
<td>Sigma-Aldrich</td>
<td>HPA040465</td>
</tr>
<tr>
<td>CDH1 (C-terminus)</td>
<td>BD Transduction Labs</td>
<td>610181</td>
</tr>
<tr>
<td>CDH1 (C-terminus)</td>
<td>Abcam</td>
<td>Ab40772</td>
</tr>
<tr>
<td>CDH1 (N-terminus)</td>
<td>LSBio</td>
<td>LS-B7125</td>
</tr>
<tr>
<td>Cdh1 (zebrafish)</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>CDH2</td>
<td>Cell Signaling Tech</td>
<td>4061</td>
</tr>
<tr>
<td>CDH3</td>
<td>BD Transduction</td>
<td>610227</td>
</tr>
<tr>
<td>ZEB1</td>
<td>Sigma</td>
<td>HPA027524</td>
</tr>
<tr>
<td>CTNND1</td>
<td>Dr. Albert Reynolds</td>
<td></td>
</tr>
<tr>
<td>VIM</td>
<td>DAKO</td>
<td>M0725</td>
</tr>
<tr>
<td>OCLN (OCCLUDIN)</td>
<td>Invitrogen</td>
<td>33-1500</td>
</tr>
<tr>
<td>CLDN4 (CLAUDIN 4)</td>
<td>Invitrogen</td>
<td>90-0900</td>
</tr>
<tr>
<td>TRIC (TRICELLULIN)</td>
<td>Invitrogen</td>
<td>700191</td>
</tr>
<tr>
<td>ZO-1</td>
<td>Invitrogen</td>
<td>61-7300</td>
</tr>
<tr>
<td>ERK1/2</td>
<td>Cell Signaling Tech</td>
<td>9102S</td>
</tr>
<tr>
<td>p-ERK1/2</td>
<td>Cell Signaling Tech</td>
<td>9101S</td>
</tr>
<tr>
<td>AKT</td>
<td>Cell Signaling Tech</td>
<td>9272S</td>
</tr>
<tr>
<td>p-AKT(S473)</td>
<td>Cell Signaling Tech</td>
<td>9271S</td>
</tr>
<tr>
<td>SRC</td>
<td>Millipore</td>
<td>05-184</td>
</tr>
<tr>
<td>p-SRC(Y416)</td>
<td>Cell Signaling Tech</td>
<td>2101</td>
</tr>
<tr>
<td>ATCB (β-actin)</td>
<td>Sigma</td>
<td>A5316</td>
</tr>
<tr>
<td>TUBA (α-tubulin)</td>
<td>EMD Millipore</td>
<td>CP06</td>
</tr>
<tr>
<td>MDM2</td>
<td>R&D Systems</td>
<td>MAB1244</td>
</tr>
<tr>
<td>CBLL1(HAKAI)</td>
<td>Abcam</td>
<td>Ab91185</td>
</tr>
<tr>
<td>GFP</td>
<td>Invitrogen</td>
<td>A11122</td>
</tr>
<tr>
<td>FLAG (M2)</td>
<td>Sigma</td>
<td>F1804</td>
</tr>
<tr>
<td>HA (12CA5)</td>
<td>Roche Applied Science</td>
<td>11583816001</td>
</tr>
</tbody>
</table>

Supplemental Table 5a. Primers used in qRT-PCR.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Forward primer sequence (5' to 3')</th>
<th>Reverse primer sequence (5' to 3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDH1</td>
<td>TGCTCTTGCTGTTTTCTCGG</td>
<td>TGCCCCATTGTGTTCAAGTAG</td>
</tr>
<tr>
<td>CDH2</td>
<td>GCAGTAAAATGACGGCCTGA</td>
<td>GGAGCTTCTGGAAGTTGA</td>
</tr>
<tr>
<td>CDH3</td>
<td>AAGATCTCCCATCCCAAGC</td>
<td>CTACAGGCAGACACCCCTCA</td>
</tr>
<tr>
<td>CDH11</td>
<td>CGGAATTCATTGTCAGAGTC</td>
<td>CGGAAAATAGGGTTGTCCT</td>
</tr>
<tr>
<td>CDH17</td>
<td>ATGCAAGTTGTTTGGTCCAAG</td>
<td>TGTGTCTCCCTCAGTGAAT</td>
</tr>
<tr>
<td>VIM</td>
<td>TCAAGTTTGCTGACCTCTC</td>
<td>TCAACGGCAAGTTCTCTTC</td>
</tr>
<tr>
<td>ZEB1</td>
<td>GCACAAACAGTGACGAAGAGA</td>
<td>CATTGAGATTGAGTCTCATT</td>
</tr>
<tr>
<td>OCLN</td>
<td>ATGACAGGCGATTTATCCA</td>
<td>CTCCAGCTCATCACAGGACT</td>
</tr>
<tr>
<td>AKT1</td>
<td>ACCTTTTGGACGAATGACCTA</td>
<td>TGGAGGGAAAGTTTCTATT</td>
</tr>
<tr>
<td>PLAC8</td>
<td>GTTTCAACATCTTGAGTCAG</td>
<td>CTGAATTCAGACACCTTGG</td>
</tr>
<tr>
<td>SNAI1</td>
<td>ATCCCACATCTCTCTCTCAGT</td>
<td>TACAAAAACCCAGCAGACAA</td>
</tr>
<tr>
<td>SNAI2</td>
<td>CTTTTCTTGGGCTCTAGTCG</td>
<td>GCTTGGAGATGGAAATGC</td>
</tr>
<tr>
<td>TWIST1</td>
<td>GTCCGCACTTCTGGAAGGAGGGTTCTGAACTC</td>
<td>CCAGCTTTGGAGGTTGTAATC</td>
</tr>
<tr>
<td>TWIST2</td>
<td>GGAGATGAGAACATATTAGCAGAA</td>
<td>GGCGAGTGATACCCCTTGAAGA</td>
</tr>
<tr>
<td>ACTB</td>
<td>GGACTTCGAGCGAGAGAA</td>
<td>AGCAGTCTGGGTCGTTGACAG</td>
</tr>
</tbody>
</table>

*All primers were purchased from RealtimePCR.com and first validated using standard curve method followed by melting curve before applying to experimental samples.

Supplemental Table 5b. Other primers used in the study.

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Forward primer sequence (5' to 3')</th>
<th>Reverse primer sequence (5' to 3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLAC8 cloning primer</td>
<td>GGAATGCAAGCTCAGGCGCGGTTG</td>
<td>TGGATCCGAGATCTTGAAAGTACGACTGGCT</td>
</tr>
<tr>
<td>VU44 genotyping primer</td>
<td>GCCTCAAATATAACAGGGCTCTGGCAGATTC</td>
<td>CACTGGGGCTGATCCAGGATGCAC</td>
</tr>
<tr>
<td>plac8.1 cloning primer</td>
<td>TAATACGACTCTATAGGGTCGAGTCATAATTTGACGGCAGGTTACTCTTTC</td>
<td>ATTTAGGGCGTACATACCTCGAGTCATAATTCCAGGCGGTTACTCTTTC</td>
</tr>
<tr>
<td>plac8.1-EGFP cloning primer</td>
<td>TAATACGACTCTATAGGGTCGAGTCATAATTTGACGGCAGGTTACTCTTTC</td>
<td>GGCACTAGTTATTTTCCAGGCGGCTCTACCTTTC</td>
</tr>
<tr>
<td>plac8.1-EGFP mt2 primer</td>
<td>GCCAGTGCAATGAGGCGGCCTGCTGTCGGT</td>
<td>GCCCTAAACACACAGGCCCGCCCTCGTTCATGCGT</td>
</tr>
<tr>
<td>plac8.1-EGFP mt3 primer</td>
<td>ATCGCCAGTGCGATGGCGGCGGTTGCTGCTGTTGG</td>
<td>CCACACAGCAGCAGCCCGCCATGGCCATGCGT</td>
</tr>
</tbody>
</table>
Supplemental Table 6. Antibodies used for *MultiOmyx*, staining sequence, labeling and secondary antibody labeling

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Company</th>
<th>Catalogue #</th>
<th>Concentration</th>
<th>Labeling/ secondary detection</th>
<th>Staining round</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLAC8</td>
<td>Sigma-Aldrich</td>
<td>HPA040465</td>
<td>1:1000</td>
<td>Cy3-conjugated donkey anti-rabbit IgG secondary antibody</td>
<td>1</td>
</tr>
<tr>
<td>CDH1</td>
<td>Cell Signaling</td>
<td>3195BF</td>
<td>5 µg/ml</td>
<td>Cy5-conjugated</td>
<td>5</td>
</tr>
<tr>
<td>CDH3</td>
<td>BD Bioscience</td>
<td>610228</td>
<td>20 µg/ml</td>
<td>Cy5-conjugated</td>
<td>4</td>
</tr>
<tr>
<td>CK</td>
<td>Sigma</td>
<td>C1801</td>
<td>5 µg/ml</td>
<td>Cy7-conjugated</td>
<td>2</td>
</tr>
<tr>
<td>VIM</td>
<td>Cell Signaling</td>
<td>9856</td>
<td>1 µg/ml</td>
<td>Cy5-conjugated</td>
<td>3</td>
</tr>
</tbody>
</table>
Supplemental Figure 1

PLAC8 immunofluorescence in normal and neoplastic human colon. (A and B) In normal colon, PLAC8 immunofluorescence (red) localizes to apical domain of both differentiated colonocytes and goblet cells. CDH1 immunofluorescence (green) was used to outline epithelia, and DAPI staining (blue) was used to label nuclei. Boxed region in (A) is magnified in (B) to show goblet cells (asterisks). (C and D) In normal colon, PLAC8 does not localize to bottom of crypts. (E) In a typical moderately differentiated colorectal adenocarcinoma, PLAC8 also localizes to apical domain, but immunoreactivity extends deeper into neoplastic crypts. (F) PLAC8 expression was absent in a subset of human colorectal adenocarcinomas. Scale bars: 100 µm.
Supplemental Figure 2

Characterization of anti-PLAC8 antibodies. (A) FLAG-tagged *PLAC8* cDNA or control pcDNA3.1 vector were transfected into HEK293T cells. Both affinity-purified anti-PLAC8 antibody and anti-FLAG antibody recognized PLAC8-FLAG chimera. (B) Anti-PLAC8 antibody recognized endogenous PLAC8 protein (arrow) in SC cells cultured in 3D collagen. Decreased levels of endogenous PLAC8 protein by *PLAC8* shRNAs indicate specificity of anti-PLAC8 antibody. (C) A zebrafish Plac8.1-HA fusion protein was detected by both anti-Plac8.1 and anti-HA antibodies. (D) His-tagged human PLAC8 and His-tagged zebrafish Plac8.1 proteins were affinity purified from *E. coli* overexpressing corresponding proteins by nickel affinity chromatography, followed by immunoblotting with anti-human PLAC8 antibody or anti-zebrafish Plac8.1 antibody, respectively.
Supplemental Figure 3

Knockdown of endogenous PLAC8 in LoVo CRC cells significantly reduced tumor growth in xenografts as measured by tumor volume presented as mean ± SEM (*P < 0.05). This experiment was performed once.
Identification of zebrafish plac8 homologs. (A) Amino acid sequence alignment of zebrafish Plac8.1 (zPlac8.1) and human PLAC8 (hPLAC8). Identical amino acid residues are denoted by **; conserved substitutions and semi-conserved substitutions are denoted by “:” and “.”, respectively. (B) A schematic of gene arrangement of Plac8 loci in humans, mouse, and zebrafish. (C) Comparison of amino acid sequences among zebrafish Plac8.1, Plac8.2 and mammalian PLAC8 proteins. The two numbers in each box denote identity (top) and similarity (bottom). (D) Zebrafish plac8.1 and plac8.2 expression was examined by RT-PCR from RNA extracted from zebrafish embryos at various developmental time points. (E) Phylogenetic analysis of Plac8 domain-containing proteins from human, mouse, and zebrafish shows that the four Plac8 proteins cluster together (marked by vertical red line).
Supplemental Figure 5
Effect of Plac8.1 overexpression on zebrafish embryonic development. (A) Quantitation of percentage of normal embryos (normal, open bars), embryos showing the phenotype in Figure 4A (marbling, filled bars), or embryos showing other defects (others, gray bars). The total numbers of embryos are labeled on top of each column. Results from three independent injection experiments are plotted. The type and amount of synthetic RNA injected are labeled at bottom of plot. (B) Expression of low dose Plac8.1 exacerbates embryonic developmental defects in \(cdh1^{+/vu44} \) embryos. Representative micrograph of ntl ISH in wild-type (top) or \(cdh1^{+/vu44} \) embryos injected with 20 pg \(plac8.1 \) RNA (bottom). DNA samples from embryos were extracted after ISH pictures were taken, followed by genotyping of the \(cdh1 \) gene. The numbers of embryos are labeled in the lower left corner of each picture. Scale bar: 500 µm.
Supplemental Figure 6

Cell migration measurement. Blue line represents the start border after removing stencil. Yellow line outlines migratory edge of cell sheet at an experimental time point. Countable detached cells are illustrated in green hollows. Scale bar: 100 µm.
Supplemental Figure 7

ERK2 inhibition reverts EMT phenotypes in HCA-7P8 cells. (A) HCA-7P8 cells plated on cover slips were treated with ERK2-selective inhibitor, pyrazolylypyrrole, at a concentration of 10 or 100 nM for five days. Cell morphology was reverted to smooth-edged colonies as visualized by DIC microscopy. Scale bar: 500 µm. (B) Restoration of cell surface CDH1 immunofluorescence after exposure of HCA-7P8 cells to 100 nM ERK2 inhibitor for five days. Scale bar: 50 µm.
Supplemental Figure 8

PLAC8 does not inhibit DUSP3 phosphatase activity. Representative result of DUSP3 phosphatase activities measured by using 3-O-methylfluorescein phosphate as substrate (excitation 485 nm, emission 528 nm). Fluorescence intensity increased in control sample (black squares, DUSP3). Phosphatase inhibitor cocktail was added as a control to abolish the fluorescence intensity (red squares). In contrast to phosphatase inhibitor cocktail, addition of MBP (green circles) or MBP-mPLAC8 (blue circles) did not significantly affect fluorescence intensity.
Supplemental Figure 9

Yeast two-hybrid analysis of PLAC8 and DUSP6 interaction. Representative plates of yeast two-hybrid using PLAC8 fusion to Gal4 protein activation domain (prey), and DUSP6 fusion to Gal4 DNA binding domain (bait). Only presence of both PLAC8 and DUSP6 resulted in yeast growth on medium lacking adenine, histidine, leucine and tryptophan (SD-AHLW). Medium lacking leucine and tryptophan (SD-LW) and medium lacking histidine, leucine and tryptophan (SD-HLW) were used as controls.
Supplemental Figure 10

Depletion of endogenous PLAC8 in SC cells restores cell surface CDH1 in xenografts and in 3D culture. (A) CC and SC cells were subcutaneously injected into athymic nude mice. After four weeks, CC cells formed glandular tumors with large cysts (top panel) with CDH1 (red) immunofluorescence observed at basolateral membrane. SC cells formed less differentiated tumors with reduced membranous and enhanced cytoplasmic CDH1 immunofluorescence. Boxed areas are magnified on right with DNA dye TO-PRO3. (B) In 3D collagen culture, CDH1 localized to basolateral plasma membrane of CC cells, whereas CDH1 was detected diffusely in cytoplasm of SC cells. Boxed areas are magnified on right. Scale bar: 100 µm; enlarged images: 20 µm. (C) SC cells were stably infected with PLAC8-specific shRNA (shPLAC8) or non-targeted control (CTL). In 3D collagen culture, both CDH1 and CTNND1 immunofluorescence were restored to the plasma membrane upon PLAC8 depletion from SC cells. Scale bars in enlarged images: 20 µm; other scale bars: 100 µm.
Supplemental Figure 11
Graphic depiction of pairwise coexpression for immunofluorescent staining intensities of different proteins within a cell. Each point on the plot represents a single cell present in Figure 10. Thresholds for cellular expression and localization of multiple markers were set by adjusting threshold bars such that cells in the original image are highlighted if expression was detected by visual inspection (not shown), thus allowing final thresholds to be set to include positive cells of interest. (A) Control graph for PLAC8 expression. PLAC8+ cell threshold was set based on its cytoplasmic expression levels so that the top 10% of cells were included. The data are presented against a blank channel (X-axis), so that PLAC8 expression values can be properly determined alone. (B) CK and VIM thresholds were set to include all cells positive for either marker in the cytoplasm. The dot-plot analysis reveals a trend toward mutually exclusive expression of either CK or VIM, but generally not both, indicated by lack of double-positive cells in dot-plot. (C) CDH1 and CDH3 thresholds were set to include all cells positive for either marker on the membrane. The vast majority of cells express CDH1, while only some express CDH3. Very few cells express both markers.
Supplemental Figure 12

Plac8.1 overexpression results in increased phosphorylation of Erk and Akt in zebrafish embryos. Representative immunoblotting showed increased Erk phosphorylation levels and Akt phosphorylation levels in Plac8.1-overexpressing zebrafish embryo compared to control. Average levels for pErk and pAkt were normalized to levels of tubulin, and are shown as mean ± SEM from at least three independent experiments.
Unedited gels for:

Excess PLAC8 promotes ERK2-dependent unconventional EMT in colon cancer

Cunxi Li†*, Haiting Ma††, Yang Wang‡, Zheng Cao‡, Ramona Graves-Deal†, Anne E. Powell‡, Alina Starchenko§, Gregory D. Ayers¶, Mary Kay Washington§, Vidya Kamath¶, Keyur Desai¶, Michael J. Gerdes¶, Lila Solnica-Krezel‡ and Robert J. Coffey†,§*

†Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
‡Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA.
§Department of Cell and Developmental Biology, ¶Department of Statistics, and
§Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
¶GE Global Research, Diagnostics and Biotechnology, One Research Circle, Niskayuna, New York, USA.
*Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA.
††Authorship note: Cunxi Li and Haiting Ma contributed equally to this work.
§§Conflict of interest: Vidya Kamath, Keyur Desai, and Michael J. Gerdes are affiliated with GE Global Research Center, Niskayuna, New York, USA, and are current employees of General Electric Company.
¶¶Current address: Molecular Cytogenetics Laboratory, Beijing Jiaen Hospital Bldg.11, 29 Zhichun Road, Haidian District, Beijing, China.
*

Address correspondence to:
Robert J. Coffey, MD
Epithelial Biology Center
10415 MRB IV
Vanderbilt University Medical Center
Nashville, TN 37232-0441
Phone: 615-343-6228; Fax: 615-343-1591
E-mail: robert.coffey@vanderbilt.edu.