2009

Proteomic analyses of native brain KV4.2 channel complexes

Celine Marionneau
Washington University School of Medicine in St. Louis

Richard D. LeDuc
Washington University School of Medicine in St. Louis

Henry W. Rohrs
Washington University School of Medicine in St. Louis

Andrew J. Link
Vanderbilt University

R. Reid Townsend
Washington University School of Medicine in St. Louis

See next page for additional authors

Follow this and additional works at: http://digitalcommons.wustl.edu/open_access_pubs

Recommended Citation
http://digitalcommons.wustl.edu/open_access_pubs/3003

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact engeszer@wustl.edu.
Proteomic analyses of native brain $K_V 4.2$ channel complexes

Céline Marionneau, Richard D. LeDuc, Henry W. Rohrs, Andrew J. Link, R. Reid Townsend and Jeanne M. Nerbonne

Departments of *Developmental Biology; †Internal Medicine and ‡Chemistry; Washington University; St. Louis, MO USA; †Department of Microbiology and Immunology; Vanderbilt University Medical Center; Nashville, TN USA

†Current address: l’institut du thorax, UMR 915; UFR de Médecine; Nantes, France

Key words: I_A, accessory subunits, mass spectrometric identification

Abbreviations: 1D-gel, one-dimensional polyacrylamide gel; 1D-LC-MS/MS, one-dimensional liquid chromatography-tandem mass spectrometry; 2D-LC-MS/MS, two-dimensional liquid chromatography-tandem mass spectrometry; DPP, dipeptidyl-peptidase; I_A, A-type voltage-gated K+ current; IP, immunoprecipitation; KChIP, K+ channel interacting protein; K_V, α subunit, voltage-gated K+ pore-forming (α) channel subunit; K_V, β subunit, voltage-gated K+ accessory (β) channel subunit; $K_V4.2$, $K_V4.2$, knock-out; MS/MS, tandem mass spectrometry; MS, mass spectrometry; MudPIT, multidimensional protein identification technology; RblG, rabbit immunoglobulin G; RbetK,4.2, anti-K,4.2 rabbit polyclonal antibody; RIPA buffer, radioimmunoprecipitation assay buffer; WT, wild type

Introduction

Voltage-gated K+ (K_V) channels are key regulators of neuronal excitability, functioning to control action potential waveforms, repetitive firing and the responses to synaptic inputs. Rapidly activating and inactivating somatodendritic I_A channels are encoded by $K_V4.2$ α subunits and accumulating evidence suggests that these channels function as components of macromolecular protein complexes. Mass spectrometry (MS)-based proteomic approaches were developed and exploited here to identify potential components and regulators of native brain $K_V4.2$-encoded I_A channel complexes. Using anti-$K_V4.2$ specific antibodies, $K_V4.2$ channel complexes were immunoprecipitated from adult wild type mouse brain. Parallel control experiments were performed on brain samples isolated from (KV4.2-/-) mice harboring a targeted disruption of the KND2 ($K_V4.2$) locus. Three proteomic strategies were employed: an in-gel approach, coupled to one-dimensional liquid chromatography-tandem MS (1D-LC-MS/MS), and two in-solution approaches, followed by 1D- or 2D-LC-MS/MS. The targeted in-gel 1D-LC-MS/MS analyses demonstrated the presence of the $K_V4.2$ α subunits ($K_V4.2$, $K_V4.3$ and $K_V4.1$) and the $K_V4.2$ accessory, KChIP (KChIP1-4) and DPP (DPP6 and 10), proteins in native brain $K_V4.2$ channel complexes. The more comprehensive, in-solution approach, coupled to 2D-LC-MS/MS, also called Multidimensional Protein Identification Technology (MudPIT), revealed that additional regulatory proteins, including the K_V channel accessory subunit K_Vβ1, are also components of native brain $K_V4.2$ channel complexes. Additional biochemical and functional approaches will be required to elucidate the physiological roles of these newly identified K_V interacting proteins.

*Correspondence to: Jeanne M. Nerbonne; Email: jnerbonne@wustl.edu
Submitted: 05/19/09; Revised: 07/15/09; Accepted: 07/16/09
Previously published online: www.landesbioscience.com/journals/channels/article/9553
the relevance of these observations to the functioning of neuronal IA is difficult to evaluate. Indeed, recent studies exploiting short interfering RNAs (siRNA) targeting DPP6 suggest that the functional role of DPP6 in the regulation of hippocampal IA channels is really quite different from what has been suggested based on the results of studies of channels reconstituted in heterologous cells. It seems likely, therefore, that neuronal IA channel expression and functioning are affected by additional regulatory proteins. In addition, K,4,2 channels are highly localized at synapses, and considerable evidence suggests roles for K,4,2-encoded IA channels in the regulation of synaptic functioning and synaptic plasticity.

In the experiments here, native K,4,2 channel complexes were isolated from adult mouse brain, and the components of these complexes were identified by mass spectrometry (MS)-based proteomic approaches. Different experimental strategies were exploited, and the results obtained using these different approaches are presented and compared.

Results

Proteomic strategies. Three distinct proteomic approaches were developed in parallel in efforts to identify components of native brain K,4,2 channel complexes (Fig. 1). In each case, a polyclonal anti-K,4,2 specific antibody was cross-linked to magnetic beads, and antibody-crosslinked beads were used for immunoprecipitation (IP) of K,4,2 (and associated proteins) from total protein lysates prepared from adult mouse brains. Following isolation and elution of the K,4,2 channel protein complexes from the antibody-crosslinked beads, two different strategies were used. In the first case, the in-gel approach, the immunoprecipitated proteins were separated on one-dimensional polyacrylamide gels (1D-gels), and selected protein bands were analyzed by one-dimensional liquid chromatography-tandem mass spectrometry (1D-LC-MS/MS). In the alternate (the in-solution) approach, the entire immunoprecipitate was digested with trypsin, and the resulting tryptic peptides were analyzed directly by mass spectrometry using either 1D- or 2D-LC-MS/MS.

Immunoprecipitation of brain K,4,2 channel complexes. Initial experiments were focused on optimizing the experimental conditions for the IP of K,4,2 channel protein complexes from adult wild type (WT) mouse brains. Brains from animals (K,4,2−/−) harboring a targeted disruption in the gene (KCND2) encoding K,4,2 were used as a control. An anti-K,4,2 rabbit polyclonal antibody (RbtK,4,2) was used for the IPs from WT and K,4,2−/− brains, and a non-specific rabbit immunoglobulin G (RbIgG) was used in control IPs from the WT brain samples. As illustrated in Figure 2A, western blot analyses of the immunoprecipitated proteins probed with the monoclonal anti-K,4,2 specific antibody (mK,4,2) reliably revealed robust K,4,2 immunoprecipitation from WT mouse brain with RbtK,4,2. The immunoprecipitation of K,4,2 (from WT brain) was specific as evidenced by the absence of signal in the RbIgG-IP from WT brain. No K,4,2 protein was detected either in the RbtK,4,2-IP from the K,4,2−/− brain (Fig. 2A) or in the total protein lysates from the K,4,2−/− brain samples (data not shown), validating the specificity of the anti-K,4,2 mouse monoclonal antibody used in the western blots. Importantly, about 90% depletion of the K,4,2 protein was achieved in the RbtK,4,2-IP experiments as evident in the western blot analyses of K,4,2 remaining in the supernatant following the IP compared with the initial sample (lower of Fig. 2A). These observations suggest that the isolated and analyzed proteins are representative of mouse brain K,4,2 channel complexes. The immunoprecipitated proteins were then fractionated on 1D-gels and visualized using SYPRO Ruby (Fig. 2B). Each immunoprecipitation step was optimized to isolate K,4,2 proteins in quantities sufficient for in-gel visualization and mass spectrometric identification (data not shown). Although many proteins were detected in each sample, there were a number of protein bands that were specific to the RbtK,4,2-IP from WT mouse brain, i.e., they were absent in the two control IPs (Fig. 2B). These distinct protein bands ran at molecular weights corresponding to K,4,2 (and other K,4 α subunits) and to the previously identified K,4 channel accessory KChIPx and DPPx subunits. These observations suggested that the RbtK,4,2-IP from WT mouse brain was enriched in the protein components of K,4,2 channel complexes.

In-gel identification of K,4,2 channel complex components. The SYPRO Ruby-stained protein bands, corresponding to the molecular weights of K,4 proteins, as well as of the previously characterized K,4 channel accessory subunits KChIPx and DPPx (Fig. 2B), were excised from the gels, digested in-gel with trypsin, and the resulting tryptic peptides were analyzed using 1D-LC-MS/MS. These experiments led to the reliable identification of multiple peptides derived from the K,4,2 protein. A representative fragmentation spectrum of a K,4,2 tryptic peptide, as well as the amino acid sequence derived from this spectrum, is illustrated in Figure 3A. This in-gel analysis yielded a total of seven unique K,4,2 peptides, and an amino acid sequence coverage for the K,4,2 protein of 14% (Fig. 3B and Table 1). In addition to the K,4,2 protein, the other K,4 α subunits (K,4,1...
Figure 2. Immunoprecipitation of brain $K_{v4.2}$ channel complexes. (A) Top: representative western blot of immunoprecipitated (IP) proteins from adult WT or $K_{v4.2}^{-/-}$ mouse brains with the anti-$K_{v4.2}$ rabbit polyclonal antibody (Rbα $K_{v4.2}$) or with non-specific rabbit immunoglobulin G (RbIgG), and probed (IB) with an anti-$K_{v4.2}$ mouse monoclonal antibody (mα $K_{v4.2}$). The $K_{v4.2}$ protein (arrow) is clearly evident in the Rbα $K_{v4.2}$-Ip from WT mouse brain, but is absent in the two control IPs; the upper band (also indicated by an arrow) corresponds to aggregated $K_{v4.2}$ proteins. Lower: representative western blot of the corresponding IP supernatants (IP sup) also probed with mα $K_{v4.2}$. Analyses of these blots revealed that approximately 90% depletion of the $K_{v4.2}$ protein was achieved in the Rbα $K_{v4.2}$-Ip from WT brain (see text). (B) SYPRO Ruby stained-gel of immunoprecipitated samples. Proteins running at molecular weights corresponding to the $K_{v4.x}$ K_{v} channel accessory subunits, KChIPx and DPPx,11-15 (indicated by a red arrow) are clearly evident and have been identified using in-gel 1D-LC-MS/MS in the Rbα $K_{v4.2}$-Ip from WT mouse brain, but not in either of the control IPs.

Figure 3. Mass spectrometric identification of $K_{v4.2}$ using in-gel digestion and 1D-LC-MS/MS. (A) Representative fragmentation spectrum of one of the identified $K_{v4.2}$ tryptic peptides. The signals (m/z values) that are consistent with doubly-charged y ions from the NH$_2$-NGLSSQ.S.EDEPAFISK-COOH peptide are highlighted in red. (B) Amino acid sequence coverage obtained for the (mouse) $K_{v4.2}$ protein. Detected peptides are highlighted in yellow; the peptide for which the fragmentation spectrum is shown (in A) is underlined in red. Transmembrane domains are in bold and are underlined in black.
and Kv4.3), as well as several previously identified Kv4 accessory subunits, KChIPs (KChIP1, KChIP2, KChIP3 and KChIP4), and DPPs (DPP6 and DPP10), were also identified. Importantly, none of these proteins were detected in the two control IPs. The numbers of unique and total peptides identified for each protein, as well as the amino acid sequence coverage obtained for each, are provided in Table 1. A listing of identified peptides along with the relevant scoring metrics is available in Supplemental Table 1.

In-solution identification of Kv4.2 channel complex components. To identify additional proteins immunoprecipitating with the brain Kv4.2 protein, the entire immunoprecipitated (i.e., without gel fractionation) protein sample was digested with trypsin, and the resulting tryptic peptides were analyzed using 1D- or 2D-LC-MS/MS. As shown in Table 2, the numbers of unique and total peptides detected using in-solution, as compared with in-gel, 1D-LC-MS/MS were substantially higher for Kv4.2 and for most of the other identified Kv4 channel accessory subunits. As a result, the amino acid sequence coverage obtained for each protein was greater. As an example, fourteen unique (and twenty-two total) Kv4.3 peptides were detected using in-solution 1D-LC-MS/MS (Table 2), as compared with four peptides using in-gel 1D-LC-MS/MS (Table 1). The in-solution 1D-LC-MS/MS, therefore, yielded 29% sequence coverage for the Kv4.3 protein compared with 12% from the in-gel 1D-LC-MS/MS method (Table 1). Some of the fourteen unique Kv4.3 peptides identified were detected several times in a single 1D-LC-MS/MS run, leading to a total of twenty-two Kv4.3 peptides (Table 2). Again, none of these peptides (and none of the peptides corresponding to the other Kv4 channel complex components) were detected in the two control IPs.
Subsequent experiments were focused on exploring directly the effects of different detergents and different solubilization and immunoprecipitation conditions on the efficiency of isolation of K\(_{\alpha}4.2\) channel complexes. As illustrated in Figure 4, the amount of immunoprecipitated K\(_{\alpha}4.x\) proteins was proportional to the stringency of the detergent used. Specifically, when the more stringent buffer, the RIPA buffer, was used, the amount of K\(_{\alpha}4.x\) proteins solubilized and isolated was high (Fig. 4A). However, the relative amount of the DPPx and KChIPx proteins (i.e., relative to the K\(_{\alpha}4.x\) proteins) was substantially greater when the less stringent 1% Triton (Fig. 4B) or 0.5% CHAPS (Fig. 4C) detergents were used. These results suggested that using less stringent detergent conditions for solubilization and immunoprecipitation was more likely to preserve channel complex protein-protein interactions, and allow the identification of novel K\(_{\alpha}4\) channel interacting and/or regulatory proteins. Interestingly, these experiments also revealed that the interactions of the DPP and the KChIP proteins with K\(_{\alpha}4.2\) are affected differently by the various detergents used in the solubilizations of isolated K\(_{\alpha}4.2\) complexes: relatively more DPP proteins were isolated in the 1% Triton (Fig. 4B) and 0.5% CHAPS (Fig. 4C) detergents, whereas relatively more KChIP proteins were obtained in the complexes isolated in the RIPA buffer (Fig. 4A) and in the 1% Triton (Fig. 4B) detergent conditions.

Using the in-solution approach does not allow direct visual comparison of the immunoprecipitated proteins. The quality of the control IPs, therefore, becomes an important point to consider before undertaking any in-solution digestion. Importantly, the preliminary experiments here revealed that the pattern of background (i.e., contaminating) proteins obtained in the two control IPs (RbIgG-IP from WT brain and Rb\(_{\alpha}4.2\)-IP from K\(_{\alpha}4.2^{-}\) brain) were really quite similar on SYPRO Ruby-stained gels (Fig. 2B). In addition, the relative abundances of the proteins in the three IPs (Rb\(_{\alpha}4.2\)-IP from WT brain, Rb\(_{\alpha}4.2\)-IP from WT brain and Rb\(_{\alpha}4.2\)-IP from K\(_{\alpha}4.2^{-}\) brain) were compared using high-resolution label-free peptide quantification. Endopeptidase digestions of each immunoprecipitate were analyzed by nano-LC-LTQ-FTICR and the peptide ion currents were aligned and quantified as described in Materials and Methods. The annotation and quantification of one of the K\(_{\alpha}4.2\) peptides (SGSANAYMQSK), that was detected as a doubly charged ion at \(m/z = 572.2587\) (theoretical \(m/z = 572.2586\)), are presented in Figure 5A and B, respectively. This isotope cluster was absent in the Rb\(_{\alpha}4.2\)-IP from WT brain and in the Rb\(_{\alpha}4.2\)-IP from K\(_{\alpha}4.2^{-}\) brain as shown in the display of summed intensities in Figure 5B. The fourteen additional K\(_{\alpha}4.2\) peptides (as well as the peptides from the other K\(_{\alpha}4.2\) channel complex components) identified are indicated by the black vertical bar in the hierarchical cluster of the aligned peptide ion currents of the three IPs in Figure 5C. These analyses revealed that (except for the region indicated by the black vertical bar) the Rb\(_{\alpha}4.2\)-IP from WT brain was more similar to the Rb\(_{\alpha}4.2\)-IP from K\(_{\alpha}4.2^{-}\) brain (compare lanes 1 and 2 in Fig. 5C) than to the Rb\(_{\alpha}4.2\)-IP from WT brain (Fig. 5C, lane 3). These results suggest that the majority of contaminating proteins reflect the presence of the (rabbit) polyclonal anti-K\(_{\alpha}4.2\) antibody used for the immunoprecipitations, and that the optimal control, therefore, would be the K\(_{\alpha}4.2^{-}\) brain samples.

Once the detergent and control conditions were optimized, another, more comprehensive, in-solution approach, called Multidimensional Protein Identification Technology (MudPIT),\(^{29,30}\) was employed. In this strategy, tryptic peptides obtained from the in-solution digestion were separated on a two-dimensional liquid chromatography column directly in line with a mass spectrometer (2D-LC-MS/MS). Similar to the in-solution 1D-LC-MS/MS approach, the MudPIT analyses yielded greater numbers of peptides and greater amino acid sequence coverage for most of the proteins identified (Table 3). More importantly, however, the MudPIT analyses resulted in the identification of additional proteins (i.e., in addition to the previously identified K\(_{\alpha}4\) channel KChIPx/DPPx accessory subunits) that were observed only in the Rb\(_{\alpha}4.2\)-IP from WT mouse brain. For example, four unique (and six total) peptides corresponding to the voltage-gated K\(^+\) (K\(_{\alpha}\)) channel regulatory subunit, K\(_{\beta}1\), were identified in the Rb\(_{\alpha}4.2\)-IP from WT brain, but not in the two control IPs (Table 3). In addition, the \(\alpha\)6 subunit (Gabra-6) of the gamma-amino butyric acid (GABA-A) receptor, the G protein-coupled receptor 158 (Gpr158) and the \(\beta\)1 subunit (Prkcb1) of protein kinase C were also identified specifically in the Rb\(_{\alpha}4.2\)-IP from WT mouse brain (Table 3). These observations suggest the interesting possibility that these additional proteins are components of brain macromolecular K\(_{\alpha}4\) channel complexes and that they play roles in regulating the expression and/or the functioning of K\(_{\alpha}4.2\)-encoded I\(_{\alpha}\) channels.

In Figure 6A, the amino acid sequence coverages obtained for the K\(_{\alpha}4.2\) protein using the three different (in-gel and in-solution 1D-LC-MS/MS, and MudPIT) approaches are illustrated. When the peptides detected using the three different approaches are compiled (Fig. 6A), the overall amino acid sequence coverage for the K\(_{\alpha}4.2\) protein is calculated at 28%. Although this sequence coverage is quite good, it is of interest to note that nearly all of these peptides identified are located in the C- and N-termini of the K\(_{\alpha}4.2\) protein (Fig. 6B). One peptide in the intracellular S4-S5 loop was also detected. No peptides in the transmembrane domains of K\(_{\alpha}4.2\), however, were identified, likely reflecting the hydrophobic nature of the transmembrane domains.

Discussion

The results of the analyses presented here demonstrate that the immunoprecipitation approach for purifying K\(_{\alpha}4.2\)-encoded I\(_{\alpha}\) channel complexes from mouse brain works quite well, and, in addition, that it is possible to identify the components of these channel complexes by mass spectrometry. The use of the different in-gel and in-solution approaches in the experiments here allowed direct comparison of our ability to identify the protein components of brain K\(_{\alpha}4.2\) channel complexes. The results of these analyses clearly demonstrate the usefulness of the methodologies developed and explored here and suggest that these approaches could, in theory, be applied to the analyses of other native ion channel complexes.
The in-gel approach. In combination with standard western blots, the in-gel approach used here was critical in allowing optimization of each of the immunoprecipitation steps, maximizing the yield and the purity of isolated Kv4.2 channel complexes, as well as determining the conditions to preserve protein-protein interactions between the complex components. The immediate objectives of the initial optimization steps were to visualize a gel band corresponding to the Kv4.2 protein and to maximize the amount of the Kv4.2 protein obtained. In-gel visualization based on molecular weight (and subsequent mass spectrometric identification) of the previously described Kv4 accessory subunits, the KChIPx and the DPPx proteins, was also possible by direct comparison with the two control IPs. One critical component of the optimization procedures completed here involved comparison of detergent conditions with the goal of maximizing the amounts of the Kv4.x proteins obtained and the relative amounts of co-immunoprecipitated KChIPx and DPPx proteins. Interestingly, these experiments also revealed that the interactions between the Kv4 α subunit and the DPPx and KChIPx proteins have different sensitivities to the detergents used in the solubilizations. These observations are consistent with the results of previous studies, suggesting that distinct biochemical and/or structural constraints underlie Kv4.2 protein interactions with the accessory DPPx and KChIPx proteins.
ous studies, that some proteins, and particularly transmembrane protein). Finally, it is also important to note, as described in previous analyses, like the MudPIT analyses, it was important to identify the best antibody for immunoprecipitations (data not shown). The use of brains from the KV4.2-/- animals has also proven to be a very useful control in these studies as the same antibody-beads could be used in both experimental and control IPs. If targeted deletion animals are not available, the choice of the non-specific control antibody would clearly become an important point to consider.

Although useful for the reasons just discussed, the in-gel approach has substantial limitations. As is evident in the data presented, for example, there are many contaminating proteins in the immunoprecipitated samples, making direct comparison of experimental and control IPs difficult except for the most abundant proteins. In other words, specific accessory/regulatory proteins in the channel complexes could be masked by more abundant contaminating proteins and, therefore, be missed. Another limitation is sensitivity: lower abundant proteins are simply not visible on the gels, and as a consequence, would not be analyzed further. This complication could reflect the fact that these are low abundance proteins or, alternatively, that they are proteins with lower affinity interactions (with the targeted KV4.2 protein). Finally, it is also important to note, as described in previous studies, that some proteins, and particularly transmembrane proteins, do not stain well in gel, which will ultimately result in excluding these proteins from mass spectrometric analyses.

The in-solution approaches. In the in-solution approaches, the entire immunoprecipitated proteins were digested and sequenced by 1D- or 2D-LC-MS/MS in efforts to identify proteins that are: low abundance, do not stain well in gels, or are masked by the more abundant proteins in the gels. Similar to the in-gel approach, the in-solution (1D- and 2D-LC-MS/MS) approaches allowed the identification of the KV4.x, the KChIPx and the DPPx proteins. Importantly, the numbers of (unique and total) peptides detected, as well as the amino acid sequence coverages obtained for each of these proteins, were, in most cases, greater than those obtained with the targeted in-gel approach. This technical advantage of the in-solution digestion (over the in-gel digestion) approach is related to an inefficient extraction of tryptic peptides out of the gel matrix. In future studies, the use of novel surfactant molecules, developed to optimize protein solubilization, in-gel trypsin digestion and peptide recovery from the gel might help to minimize this technical limitation.

The MudPIT approach enabled the identification of additional and novel brain KV4.2 channel complex components. In this technology, the chromatographic separation is longer and takes place in two dimensions, allowing the separation and the sequencing of greater numbers of peptides and the identification of more proteins. The specific identification of several more proteins in the RbαK4.2-IP from WT brain (but not in the two control IPs) suggests the interesting possibility that these proteins correspond to specific accessory subunits and/or regulators of native brain KV4.2 channels. One of these novel proteins was the KV4.2 channel accessory subunit, Kβ1. Although the Kβ subunits were initially suggested to be specific accessory subunits of KV1.1 α subunit-encoded channels, the results here suggest that Kβ1 might also function as a component/regulator of brain KV4.2 channels. This finding is particularly interesting in light of previous studies suggesting possible physical and functional interactions between KV4 and Kβ subunits. The identifications of the c6 subunit (Gabra-6) of the gamma-aminobutyric acid (GABA-A) receptor as well as the G protein-coupled receptor 158 (Gpr158), which has been suggested to be a member of the glutamate G-protein coupled receptor subfamily, in KV4.2 channel complexes are particularly interesting observations in light of previous suggestions that KV4.2-encoded I\(\alpha\) channels are localized at or near synapses and that these channels play a role in the regulation of synaptic responses and synaptic plasticity. In addition, the identification of the β1 subunit (Prkcb1) of protein kinase C is potentially relevant to the phosphorylation of KV4.2 channel subunits. Additional biochemical and functional analyses aimed at investigating the regulation of KV4.2 channels by these newly identified interacting proteins are warranted.

Advantages and limitations of proteomic approaches. The proteomic approaches presented here offer several advantages over more classical methods for identifying interacting proteins, such as two-hybrid screening in bacteria or yeast, or GST-pull-downs. In these more classical methods, the protein-protein interactions studied are not those observed in intact cells or in the native conformational states of the proteins. Furthermore,
Figure 6. Amino acid sequence coverage of the K_4.2 protein using the three proteomic approaches described. (A) K_4.2 tryptic peptides detected using in-gel 1D-LC-MS/MS, in-solution 1D-LC-MS/MS, and MudPIT approaches are underlined in blue, orange and green, respectively. Transmembrane domains are in bold and underlined in black. (B) Schematic representation of mouse K_4.2 channel protein along with MS/MS-detected peptides (highlighted in yellow).
in many of the classical studies, interactions between proteins were identified using peptide fragments, rather than full-length proteins. The use of native tissues is one of the main advantages of the proteomic strategies developed here over these more classical methods. Nevertheless, the possibility that non-physiological protein interactions take place during the lysis and immobilization steps, either during the in-gel approach, or in 2% Rapigest 26 (Waters), 100 mM Tris (pH 8.5) (for the in-solution approaches), at 60°C for 5 min.

Endoprotease digestions in polyacrylamide gels and in solution. For the in-gel experiments, proteins were separated on one-dimensional polyacrylamide gels (1D-gels) after treatment with 100 mM dithiothreitol (DTT). The gels were fixed, stained with SYPRO Ruby (Invitrogen) and scanned. Using previously described methods, 27 individual bands were excised, and proteins were reduced, alkylated and digested with 0.2 μg/μl sequencing grade modified trypsin (Sigma). The resulting tryptic peptides were extracted from the gel band, desalted using C 18 ZipTip (Waters), and reconstituted in aqueous 1% acetonitrile/0.1% formic acid for one-dimensional liquid chromatography-tandem mass spectrometric experiments (1D-LC-MS/MS).

Peptides were also prepared by endoprotease digestion of proteins 28 that were eluted from antibody-beads with Rapigest 26 (2%). The proteins were precipitated using the 2D protein clean up kit (GE Healthcare). The resulting pellets were dissolved in 8 M urea, 100 mM Tris (pH 8.5), reduced with 5 mM TCEP overnight at 37°C, and subsequently with 4 μg of trypsin (Sigma) overnight at 37°C. Peptides were acidified with formic acid, extracted with NuTip porous graphite carbon wedge tips (Glygen), and eluted with aqueous acetonitrile/0.1% formic acid containing formic acid (0.1%). The extracted peptides were dried, dissolved in aqueous acetonitrile/formic acid (1%/1%), stored at -80°C and subsequently analyzed using 1D-LC-MS/MS.

Materials and Methods

Animals were handled in accordance with the Guide for the Care and Use of Laboratory Animals (NIH).

Immunoprecipitation of brain Kv4.2 channel complexes. Flash-frozen brains from adult wild type (WT) mice or from mice (Kv4.2−/−) 29 harboring a targeted disruption in the gene (KCNQ2) encoding Kv4.2 were homogenized in ice-cold lysis buffer containing (in mM) HEPES 20 (pH 7.4), potassium acetate 110 (pH 7.4), MgCl₂ 1, NaCl 150, with 0.1 μM CaCl₂, complete mini EDTA-free protease inhibitor cocktail tablet (Roche), 1 mM Pefabloc (Sigma), 1 μg/ml pepstatin A (Calbiochem), 1X Halt phosphatase inhibitor cocktail (Pierce) and one the following detergents/detergent conditions: 1% Triton X-100, 0.5% CHAPS or RIPA buffer (containing 0.5% sodium deoxycholate, 1% Triton X-100 and 0.1% Tween 20). After 15-min rotation at 4°C, 40 mg of the soluble protein fractions from the WT and Kv4.2−/− brains were used for immunoprecipitations (IP) with 100 μg of an anti-Kv4.2 rabbit polyclonal antibody (RbntKv4.2, Chemicon). Parallel control experiments were completed using the same amount (100 μg) of non-specific rabbit immunoglobulin G (RbIgG, Santa Cruz Biotechnology, Inc.). Prior to immunoprecipitations, antibodies were cross-linked to 200 μl of protein A-magnetic beads (Invitrogen) using 20 mM dimethyl pimelimidate (Pierce). 20 Protein samples and antibody-coupled beads were mixed for two hours at 4°C. Magnetic beads were then collected, washed rapidly four times with ice-cold lysis buffer, and isolated protein complexes were eluted from the beads in 1X Sodium Dodecyl Sulfate (SDS) sample buffer (for the in-gel approach), or in 2% Rapigest 26 (Waters), 100 mM Tris (pH 8.5) (for the in-solution approaches), at 60°C for 5 min.

For the in-gel experiments, proteins were separated on one-dimensional polyacrylamide gels (1D-gels) after treatment with 100 mM dithiothreitol (DTT). The gels were fixed, stained with SYPRO Ruby (Invitrogen) and scanned. Using previously described methods, 27 individual bands were excised, and proteins were reduced, alkylated and digested with 0.2 μg/μl sequencing grade modified trypsin (Sigma). The resulting tryptic peptides were extracted from the gel band, desalted using C 18 ZipTip (Waters), and reconstituted in aqueous 1% acetonitrile/0.1% formic acid for one-dimensional liquid chromatography-tandem mass spectrometric experiments (1D-LC-MS/MS).

Peptides were also prepared by endoprotease digestion of proteins 28 that were eluted from antibody-beads with Rapigest 26 (2%). The proteins were precipitated using the 2D protein clean up kit (GE Healthcare). The resulting pellets were dissolved in 8 M urea, 100 mM Tris (pH 8.5), reduced with 5 mM TCEP (pH 8.0) for 30 min at room temperature, and alkylated with 10 mM iodoacetamide (BioRad) for 30 min at room temperature. Samples were then digested with 1 μg endoprotease Lys-C (Roche) overnight at 37°C, and subsequently with 4 μg of trypsin (Sigma) overnight at 37°C. Peptides were acidified with formic acid, extracted with NuTip porous graphite carbon wedge tips (Glygen), and eluted with aqueous acetonitrile (60%) containing formic acid (0.1%). The extracted peptides were dried, dissolved in aqueous acetonitrile/formic acid (1%/1%), stored at -80°C and subsequently analyzed using 1D-LC-MS/MS.

1D-LC-MS/MS. The high resolution 1D-LC-MS/MS analysis of peptides from in situ gel, or in-solution, endoprotease digestion was performed using a hybrid linear quadrupole ion trap-Fourier transform-ion cyclotron resonance mass spectrometer (LTQ-FTICR-MS, Thermo-Fisher). 28 The nanoflow high performance liquid chromatography (Nano LC-1D, Eksigent) was interfaced to the LTQ-FTICR with a nanospray source (PicoView PV550, New Objective). Sample injection was performed with an autosampler (AS1, Eksigent). Reverse phase C18 columns (MagicC18, Michrom Bioresources) were self-packed (PicoFrit, 75 μm x 10 cm, New Objective) and used for gradient separation of peptides. Both the aqueous phase (LC-MS water, Riedel-de Haen) and organic phase (LC-MS acetonitrile, Riedel-de Haen) were modified with 0.1% formic acid (Sigma). Five or ten μL samples were loaded at 1 μL/min from a 10 μL loop. After an initial aqueous wash at 260 nL/min, the organic phase for the analytical gradient was increased at 0.6–1.2% per
minute up to 70% organic also at 260 nL/min. The nanospray source was operated between 1.8 and 2.3 kV with sheath gas and the spray was visually optimized -20% organic flow at 260 nL/min. The capillary temperature was 240°C. Tandem spectra were acquired in data-dependent mode. Full MS scans were acquired at 100,000 resolving power (m/z 421.75) with a target value of 1,000,000. The ion trap MS target was 20,000. For data-dependent scans, the six most intense ions were selected for wideband collisional activation and detection in the ion trap (parent threshold = 1000; isolation width = 2.0 Da; normalized collision energy = 35; activation Q = 0.250; activation time = 30 ms). Dynamic exclusion was employed to expand selection.

MudPIT. For the Multidimensional Protein Identification Technology experiments, immunoprecipitated protein samples were eluted from the beads, reduced, alkylated, trypsinized and analyzed as described previously. In brief, a fritless, micro-capillary (100 μm-inner diameter) column was packed sequentially with the following: 9 cm of 5 μm C$_{18}$ reverse-phase (Synergi 4 μ Hydro RP80a, Phenomenex), 3 cm of 5 μm strong cation exchange (Partisphere SCX, Whatman) and 2 cm of C$_{18}$ reverse-phase packing material. The trypsin-digested samples were loaded directly onto the triphasic column equilibrated in 0.1% formic acid, 2% acetonitrile, which was then placed in line with a LTQ direct onto the triphasic column equilibrated in 0.1% formic acid, 2% acetonitrile, which was then placed in line with a LTQ linear ion trap mass spectrometer (Thermo, Inc.). An automated acid, 2% acetonitrile, which was then placed in line with a LTQ linear ion trap mass spectrometer (Thermo, Inc.). An automated 6×LC experiment using a 20-μm inner diameter capillary was performed after a 10% outlier trim to correct for variations in the total ion current between individual LC-MS analyses.

For analysis of the MS2 data from the LTQ-FTICR and the LTQ mass spectrometers, “raw” files were processed using MASCOT Distiller (Matrix Science, version 2.1) with the following settings: (1) MS processing: 200 data points per Da; no aggregation method; maximum charge state = +5; minimum number of peaks = 1; (2) MS/MS processing: 200 data points per Da; time domain aggregation method enabled; minimum number of peaks = 10; precursor charge and m/z, “try to re-determine from the survey scan (tolerance = 2.5 Da)”; charge defaults = +2/+3; maximum charge state = +2; (3) Time domain parameters: minimum precursor mass = 700; maximum precursor mass = 16,000; precursor m/z tolerance for grouping = 0.1; maximum number of intermediate scans = 5; minimum number of scans in a group = 1. Peak Picking: maximum iterations = 500; correlation threshold = 0.90; minimum signal-to-noise = 3; minimum peak m/z = 50; maximum peak m/z = 100,000; minimum peak width = 0.001; maximum peak width = 2; and expected peak width = 0.01. The files from the MASCOT DISTILLER output (mgf) for each individual LC-MS analysis were concatenated and searched against the Uniprot-mouse database (downloaded May, 2008). Peptide identifications obtained using the LTQ-FTICR were done using MASCOT, version 2.2.04 with the following parameters: Enzyme, trypsin; MS tolerance = 10 ppm, MS/MS tolerance = 0.8 Da with a fixed carbamidomethylation modification of the Cys residues and the following variable modifications: Met, oxidation; Pyro-glu (N-term) and Deamidation (Gln and Asn residues); Maximum Missed Cleavages = 1; and 1+, 2+ and 3+ charge states. Data from each MudPIT fraction were analyzed individually using a mass tolerance of ± 0.4 Da for both parent and fragment ions, and MASCOT protein scores for each protein were calculated by adding the MASCOT ion scores (greater than 30) of individual peptides. MASCOT-analyzed data were then analyzed using the Scaffold software (Proteome Software, Portland OR). Only protein identifications for which MASCOT protein and peptide ion scores were greater than 30, and Scaffold protein scores were 100%, were considered as true positives. Mass spectrometric data sets have been deposited into the Tranche data repository, and are available in the publicly accessible format mzXML using the following link: https://proteomecommons.org/tranche/.

Antibodies and western blot analyses. The brain K$_v$4.2 protein was detected using an anti-K$_v$4.2 mouse monoclonal antibody (mAbK 4.2, K57/1), developed by and obtained from UC Davis/NIH NeuroMab Facility (supported by NIH grant U24NS050606 and maintained by the University of California, Davis, CA 95616). Bound primary antibodies were detected using horseradish peroxidase-conjugated goat anti-mouse secondary antibodies (Pierce). Protein signals were visualized using the SuperSignal West Dura Extended Duration substrate (Pierce).

Acknowledgements

The financial support provided by the Washington University—Pfizer Biomedical Research Program (to Jeanne M. Nerbonne), the National Institutes of Health (R01-HL034161 to Jeanne M. Nerbonne, Pfizer Biomedical Research Program (to Jeanne M. Nerbonne), the National Institutes of Health (R01-HL034161 to Jeanne M.
References

Supplementary materials can be found at: www.landesbioscience.com/supplement/MarionneauCHAN3-4-Sup-pdf