Evaluation of laparoscopic performance with alteration in angle of vision

Caroline Ames
Washington University School of Medicine in St. Louis

Alison J. Frisella
Washington University School of Medicine in St. Louis

Yan Yan
Washington University School of Medicine in St. Louis

Peter Shulam
University of California - Los Angeles

Jaime Landman
Washington University School of Medicine in St. Louis

Follow this and additional works at: http://digitalcommons.wustl.edu/open_access_pubs

Recommended Citation

Ames, Caroline; Frisella, Alison J.; Yan, Yan; Shulam, Peter; and Landman, Jaime, "Evaluation of laparoscopic performance with alteration in angle of vision." *Journal of Endourology*. 20,4. 281-283. (2006).
http://digitalcommons.wustl.edu/open_access_pubs/3125
Evaluation of Laparoscopic Performance with Alteration in Angle of Vision

CAROLINE AMES, M.D.,1 ALISON J. FRISELLA, B.S.,1 YAN YAN, Ph.D.,1 PETER SHULAM, M.D.,2 and JAIME LANDMAN, M.D.1

ABSTRACT

Background and Purpose: Optimal placement allows intuitive laparoscope positioning between two working trocars (0° angle). However, this configuration may require the assistant to operate in an awkward position. We evaluated the effect of alteration of laparoscope position on surgeon performance and correlated this with surgical experience.

Subjects and Methods: Participants were stratified by laparoscopic experience. Group 1 (N = 10) was naïve (no surgical experience), group 2 (N = 7) had moderate laparoscopic experience (1–100 cases), and group 3 (N = 6) was laparoscopically experienced (>100 cases). Participants were timed performing a simple laparoscopic task three times in a trainer with camera angles randomized along the horizontal plane: 0°, 45°, 90°, 135°, and 180°.

Results: All participants showed progressive deterioration in performance as the angle deviated from baseline. The mean time required to complete the tasks was significantly higher for group 1 v groups 2 and 3 at 135° (158 v 77 and 73 seconds) and 180° (153 v 89 and 86 seconds). Performance curves for each group revealed more pronounced deterioration of performance with alteration in the angle of vision in group 1 than in groups 2 and 3 (P < 0.01). There was no difference between groups 2 and 3 (P = 0.19).

Conclusions: Even modest alteration in laparoscopic perspective results in deterioration of performance for all levels of surgical experience. Experienced laparoscopists adapt more quickly to complexities presented by alteration in camera angles. Novice surgeons should focus on trocar positioning to maintain intuitive surgical perspective and should refrain from working with alterations in camera angles until significant laparoscopic experience has been gained.

INTRODUCTION

HUMAN ANATOMY demands that traditional open surgical procedures be performed with the surgeon’s visual field (eyes) directly between his/her hands. In contrast, the visual field and angle of vision during laparoscopic and endoscopic surgery can be altered by the position of the endoscope. Optimal trocar placement during laparoscopy typically places the camera trocar between the two working instruments to simulate the standard 0° angle of vision characteristic of open surgery and allows intuitive tissue manipulation. However, the 0° angle of vision can also be challenging, as the laparoscopic assistant is sometimes forced to operate in awkward and uncomfortable positions. As a result, alternative laparoscope positions have been suggested, such as to position the laparoscope outside the working trocars along either the vertical or the horizontal axis. Such alternative perspectives can significantly alter the appearance of the field.

Previously, Hanna and colleagues1 evaluated the effect of axis-to-target alterations in perspective on surgical task performance. Patil and coworkers2 demonstrated that alteration in the optical angle of the endoscope and the instrument plane resulted in deterioration of surgical performance. Similarly, Emam and associates3 demonstrated reduced performance and increased muscle work and fatigue with a 30° alteration in the angle of vision. To date, however, the effects of sequential alteration in the horizontal axis of vision on task performance have not been evaluated.

1Division of Urology, Washington University, Saint Louis, Missouri.
2Department of Urology, University of California–Los Angeles, Los Angeles, California.
We studied the effect of alteration of laparoscope position along the horizontal axis on surgeon performance in an *in-vitro* model. Additionally, we stratified the data by surgical experience to determine how alterations in the angle of vision differentially impacted the performance of surgeons with different levels of laparoscopic experience.

SUBJECTS AND METHODS

Twenty-three participants with different levels of surgical experience were incorporated into the study. Participants were stratified into three groups according to their laparoscopic surgical experience (Table 1). Participant data collected also included handedness and measures of manual dexterity with two- and three-dimensional task performance. Specific questions included video-game experience and experience with tasks requiring significant manual dexterity (playing an instrument, sewing, or model building).

Participants were timed performing a simple *in-vitro* laparoscopic task in a trainer box: placing a ring on a peg. Each participant performed the task three times for each angle, and the time required was recorded with the horizontal camera angle of vision at 0° (baseline), 45°, 90°, 135°, and 180° (mirror image), as depicted in Figure 1. The sequence of event performance with the different angles of vision was randomized for each participant.

The trainer box and other equipment used was manufactured by Karl Storz (Tuttlingen, Germany). A 0° laparoscope was used in each case, and each participant was given Maryland graspers to perform the task. The horizontal angle of vision was established by placing the laparoscope through the appropriate defect in the trainer box and anchoring the instrument and camera with an Adjustable Laparoscopic Holder (Fig. 1). The vertical angle of vision was fixed at 45° in all cases. The working instruments were fixed in position 25 cm apart with the target being located 30 cm from the middle of the trocars.

As the data were normally distributed, we used the repeated-measures ANOVA technique to test the angle effect, case group effect, and interaction effect of angle and case group. We employed the mixed-model technique to quantify the magnitude of angle effect, case group effect, and interaction effect.

RESULTS

All participants showed deterioration in performance as the angle of vision deviated from baseline (0°). Although the mean performance time for group 1 (inexperienced) was higher than that for groups 2 (moderate) and 3 (experienced) at 0°, 45°, and 90°, the difference was not statistically significant (Fig. 2). The mean time required to complete the tasks was significantly higher for group 1 than for groups 2 and 3 at 135° (158 vs 77 and 73 seconds) and 180° (153 vs 89 and 86 seconds). The performance curve for each group (as demonstrated by the slope of each line in Figure 3) reveals that deterioration of performance with alteration in angle of vision was more pronounced in group 1 than in groups 2 and 3 ($P < 0.01$). There was no

<table>
<thead>
<tr>
<th>Group</th>
<th>Laparoscopic experience</th>
<th>Description</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>None</td>
<td>Surgically naïve</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>1–100</td>
<td>Moderately experienced</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>>100</td>
<td>Experienced</td>
<td>6</td>
</tr>
</tbody>
</table>

![FIG. 1. Experimental configuration. Horizontal angle of laparoscope in relation to surgeon was changed randomly from 0° (baseline) through 180°.](image1)

![FIG. 2. Time required to complete task at each angle (raw data).](image2)
difference between groups 2 and 3 ($P = 0.19$). There was no
difference among the groups in terms of left or right handed-
ness or the frequency of hobbies involving manual dexterity.

DISCUSSION

Others have reported that the angle between trocars for work-
ing instruments plays on the ergonomic position of the surgeon,
especially in procedures such as appendectomy, where the gen-
eral surgeon may be required to reach across the patient’s mid-
line in order to operate. The authors reported that of the three
trocar configurations evaluated, the most ergonomically benefi-
cial allowed at least a 60° angle between working trocars. How-
ever, all three of the authors’ configurations involved the lapa-
roscope being outside the working field. In a Letter to the Editor
regarding this study, it was suggested that an improvement in
ergonomics is achieved when the optical axis (laparoscope) is
placed between the two working axes instead of outside the
“working angle.” Patil and colleagues evaluated the effects of
changes in the vertical axis of the endoscope and the instrument
plane and found that significant changes resulted in deterioration
of surgical performance as the laparoscope moved away from
baseline along the vertical plane. In contrast, we evaluated sur-
geical performance with optical changes as the laparoscope moves
along the horizontal plane. However, there is a paucity of peer-
reviewed literature on the objective impact that changes in the
horizontal angle of the camera in relation to the working instru-
ments will have on the surgeon, whether novice or experienced.
In the current study, we demonstrated that even modest alteration
in laparoscopic perspective results in deterioration of perfor-
mance for all levels of surgical experience.

The extent of surgical experience was an important factor
in the extent of deterioration of surgical performance in this
study. Experienced laparoscopists were able to adapt more
quickly to alteration in camera angles than were novice sur-
geons. This is likely the result of practice in the interpreta-
tion of a two-dimensional image (as seen on the video screen)
in relation to the known three-dimensional anatomy of the
abdomen.

Although alteration in the angle of vision will clearly result
in deterioration of performance, it should be noted that all pro-
cedures in the current study were performed with a 0° lens. For
minor changes in camera position, an experienced camera
operator will likely be able to help the surgeon compensate by
using the optimal angle of rotation of the lens. This parameter
was not evaluated in the current study.

CONCLUSION

Even modest alteration in laparoscopic perspective results in
deterioration of performance for all levels of surgical experi-
ence, although experienced laparoscopists adapt more quickly
to alterations. As such, surgeons should strive for an intuitive
positioning of laparoscopic trocars, with the “eyes” (i.e., the
laparoscope) between the two “hands” (i.e., the working in-
struments). Intuitive optical trocar positioning is particularly
important for surgeons early in their laparoscopic experience.

REFERENCES

1. Hanna GB, Cushieri A. Influence of the optical axis-to-target view
375.
2. Patil PV, Hanna GB, Cushieri A. Effect of the angle between the
optical axis of the endoscope and the instruments’ plane on moni-
3. Emam A, Hanna G, Cushieri A. Comparison of orthodox vs off-opti-
M. The suprapubic approach for laparoscopic appendectomy. Surg
5. Ng WT, Sze SY, Hui SK. Port placement for laparoscopic appen-
dectomy with the best cosmesis and ergonomics. Surg Endosc

Address reprint requests to:
Jaime Landman, M.D.
Dept. of Urology
Washington University School of Medicine
4960 Children’s Place
Campus Box 8242
St. Louis, MO 63110

E-mail: landmanj@yahoo.com