2013

Functional intersection of ATM and DNA-dependent protein kinase catalytic subunit in coding end joining during V(D)J recombination

Baeck-Seung Lee
Washington University School of Medicine in St. Louis

Eric J. Gapud
Washington University School of Medicine in St. Louis

Yair Dorsett
Washington University School of Medicine in St. Louis

Andrea Bredemeyer
Washington University School of Medicine in St. Louis

Rosmy George
Washington University School of Medicine in St. Louis

See next page for additional authors

Follow this and additional works at: http://digitalcommons.wustl.edu/open_access_pubs

Recommended Citation
Lee, Baeck-Seung; Gapud, Eric J.; Dorsett, Yair; Bredemeyer, Andrea; George, Rosmy; Osipovich, Oleg; Oltz, Eugene M.; Sleckman, Barry P.; and et al., "Functional intersection of ATM and DNA-dependent protein kinase catalytic subunit in coding end joining during V(D)J recombination." Molecular and Cellular Biology, 33,18, 3568–3579. (2013).
http://digitalcommons.wustl.edu/open_access_pubs/3443

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact engeszer@wustl.edu.
Functional Intersection of ATM and DNA-Dependent Protein Kinase Catalytic Subunit in Coding End Joining during V(D)J Recombination

Baeck-Seung Lee, Eric J. Gapud, Shichuan Zhang, Yair Dorsett, Andrea Bredemeyer, Rosmy George, Elsa Callen, Jeremy A. Daniel, Oleg Osipovich, Eugene M. Oltz, Craig H. Bassing, Andre Nussenzweig, Susan Lees-Miller, Michal Bassing, and Barry P. Sleckman

Published Ahead of Print 8 July 2013.

Updated information and services can be found at:
http://mcb.asm.org/content/33/18/3568

These include:
- Supplemental material

REFERENCES
This article cites 64 articles, 33 of which can be accessed free at:
http://mcb.asm.org/content/33/18/3568#ref-list-1

CONTENT ALERTS
Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more»

Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml
To subscribe to another ASM Journal go to: http://journals.asm.org/site/subscriptions/
Functional Intersection of ATM and DNA-Dependent Protein Kinase Catalytic Subunit in Coding End Joining during V(D)J Recombination

Baek-Seung Lee, Eric J. Gapud, Shichuan Zhang, Yair Dorsett, Andrea Bredemeyer, Rosmy George, Elsa Callen, Jeremy A. Daniel, Oleg Ospovitch, Eugene M. Oltz, Craig H. Bassing, Andre Nussenzweig, Susan Lees-Miller, Michal Hammel, Benjamin P. C. Chen, Barry P. Sleckman

Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA; Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Immunology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Biochemistry and Molecular Biology and the Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA

V(D)J recombination is initiated by the RAG endonuclease, which introduces DNA double-strand breaks (DSBs) at the border between two recombining gene segments, generating two hairpin-sealed coding ends and two blunt signal ends. ATM and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) are serine-threonine kinases that orchestrate the cellular responses to DNA DSBs. During V(D)J recombination, ATM and DNA-PKcs have unique functions in the repair of coding DNA ends. ATM deficiency leads to instability of postcleavage complexes and the loss of coding ends from these complexes. DNA-PKcs deficiency leads to a nearly complete block in coding join formation, as DNA-PKcs is required to activate Artemis, the endonuclease that opens hairpin-sealed coding ends. In contrast to loss of DNA-PKcs protein, here we show that inhibition of DNA-PKcs kinase activity has no effect on coding join formation when ATM is present and its kinase activity is intact. The ability of ATM to compensate for DNA-PKcs kinase activity depends on the integrity of three threonines in DNA-PKcs that are phosphorylation targets of ATM, suggesting that ATM can modulate DNA-PKcs activity through direct phosphorylation of DNA-PKcs. Mutation of these threonine residues to alanine (DNA-PKcs3A) renders DNA-PKcs dependent on its intrinsic kinase activity during coding end joining, at a step downstream of opening hairpin-sealed coding ends. Thus, DNA-PKcs has critical functions in coding end joining beyond promoting Artemis endonuclease activity, and these functions can be regulated redundantly by the kinase activity of either ATM or DNA-PKcs.

Antigen receptor genes are assembled in developing lymphocytes through the process of V(D)J recombination (1). The V(D)J recombination reaction forms the second exon of these genes from component variable (V), joining (J), and, at some loci, diversity (D) gene segments. V(D)J recombination is initiated when the RAG-1 and RAG-2 proteins, which together form the RAG endonuclease, introduce DNA double-strand breaks (DSBs) at the border of two recombining gene segments and their associated RAG recognition sequences, termed recombination signals (RSs) (2). DNA cleavage by RAG results in two broken DNA ends with distinct structures: a blunt signal end and a coding end that is hairpin sealed by a phosphodiester bond connecting the top and bottom strands (2). RAG cleavage occurs only after a synaptic complex forms between two appropriate RSs, resulting in pairs of signal and coding ends that are held in close proximity in a postcleavage complex (2).

RAG DSBs are repaired by nonhomologous end joining (NHEJ), the major DNA DSB repair pathway in all G1-phase cells (3–5). NHEJ normally joins two signal ends, forming a signal join, and two coding ends, forming a coding join, which is essential for completing antigen receptor gene assembly. Nonstandard joins can also form through the rejoining of a signal end to a coding end at one RAG DSB, creating an open-and-shut join, or through the joining of signal and coding ends from distinct RAG DSBs, creating a hybrid join (3, 6, 7). The RAG proteins can catalyze the formation of these joins through a transposition reaction in vitro; in vivo, however, the formation of these nonstandard joins depends on NHEJ (8–12). In normal cells, the formation of these nonstandard joins occurs rarely, presumably due to the architecture of the postcleavage complex determined by the RAG proteins and components of the NHEJ machinery.

The NHEJ factors required for RAG DSB repair include XRCC4, DNA ligase IV, the Artemis endonuclease, Ku70, Ku80 (also referred to as Ku86), and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) (3, 5, 13). In addition, XRCC4-like factor (XLF), also called Cernunnos, functions during V(D)J recombination, but in lymphocytes this function is not critical when other DSB repair proteins are present (3, 14–17). DNA ligase IV, XRCC4, Ku70, and Ku80 are required for cod-
ing and signal join formation. DNA-PKcs is a member of the phosphatidylinositol 3-kinase-related protein kinases (PIKK) and is activated by DNA DSBs to phosphorylate serines or threonines followed by glutamine (SQ/TQ), thus regulating the activity of many proteins involved in DNA damage responses (18–20). Together, Ku70, Ku80, and DNA-PKcs form the DNA-PK complex. Ku70 and Ku80 form a ring-like heterodimer that binds to DSBs soon after they are generated and directly recruits DNA-PKcs, which takes up residence at the apex of the broken DNA end (21–24). During V(D)J recombination, DNA-PKcs promotes Artemis endonuclease activity, which is required to open hairpin-sealed coding ends prior to coding join formation (25, 26). As a result, DNA-PKcs-deficient mice exhibit a severe block in lymphocyte development (3). Activation of Artemis by DNA-PKcs in vitro depends both on the association of these two proteins and on DNA-PKcs kinase activity (25, 26).

The ataxia telangiectasia mutated (ATM) kinase is another member of the PIKK family that is activated by RAG DSBs (3). ATM functions to maintain coding ends in postcleavage complexes until they can be joined. Although neither ATM nor DNA-PKcs is absolutely required for signal join formation, one of these kinases must be present and active, suggesting that ATM and DNA-PKcs have common downstream phosphorylation targets required for signal end joining (27–29). Indeed, ATM and DNA-PKcs phosphorylate several common targets in response to DSBs (30, 31). Moreover, while mice deficient in ATM or DNA-PKcs are viable, those with a combined deficiency of ATM and DNA-PKcs exhibit early embryonic lethality, further emphasizing the importance of the shared activities of ATM and DNA-PKcs (32, 33).

ATM and DNA-PKcs functions are regulated by autophosphorylation. ATM autophosphorylation converts inactive ATM dimers into active monomers (34). DNA-PKcs autophosphorylation is not required for its kinase activity but is required to regulate DNA-PKcs functions during DSB repair (18, 35). In addition, DNA-PKcs is phosphorylated by ATM, which may also regulate its function (18, 35). DNA-PKcs has many SQ/TQ motifs, with the best-studied motifs being those that lie in close proximity in the ABCDE (4 TQ and 2 SQ motifs, also referred to as the T2609 cluster) and PQR (5 SQ motifs) clusters (18, 35). The differential phosphorylation of these clusters can have overlapping functions during coding join formation. These functions depend on the phosphorylation of DNA-PKcs and are critical for joining coding ends after the hairpins have been opened by Artemis. These studies have important implications for the function of ATM and DNA-PKcs in general NHEJ-mediated DSB repair.

MATERIALS AND METHODS

Mice. All mice were housed in the specific-pathogen-free facility at Washington University. All animal protocols were approved by the Washington University Institutional Animal Care and Use Committee.

Cell culture. v-abl-transformed pre-B cells were generated from 3- to 5-week-old mice by culturing bone marrow cells after transduction with the pMSCV v-abl retrovirus as described previously (37). v-abl-transformed pre-B cells were infected with the pMX-DELIv, pMX-DELS, or pMX-INV retroviral recombination substrate, and clones with single integrants were selected as previously described (37). DNA-PKcs3A/3A; Atm+/− and DNA-PKcs3A/3A;LigIV−/− v-abl-transformed pre-B cells were generated by transient expression of the Cre recombinaise in DNA-PKcs3A/3A;Atm+/− and DNA-PKcs3A/3A;LigIV−/− v-abl-transformed pre-B cells, respectively (38, 39). Cells were electroporated with 1 μg of MSCV-ires-Thyl1.1-Cre plasmid DNA per 106 cells at 1,400 V for 20 ms in 4 pulses, using a Neon transfection system (Invitrogen). Thy1.1-expressing cells were isolated using anti-Thy1.1 microbeads and magnetically activated cell sorting (MACS) separation columns according to the manufacturer’s instructions (Miltenyi Biotec). After limiting-dilution culture, individual clones were assayed for Cre deletion by Southern blotting as described below.

For RAG induction, v-abl-transformed pre-B cells were treated with 3 μM imatinib for the indicated times at 106 cells/ml. The abl pre-B cells analyzed exhibited similar increases in RAG-1 and RAG-2 gene expression upon treatment with imatinib (data not shown). The ATM kinase inhibitor KU55933 (50% inhibitory concentration [IC50] = 1.2 nM; Tocris) and the DNA-PKcs kinase inhibitors NU7441 (IC50 = 230 nM; Sigma) and NU7441 (IC50 = 14 nM; Tocris) were used at 15 μM, 20 μM, and 5 μM, respectively (27). For analysis of responses to irradiation, v-abl-transformed pre-B cells were treated with imatinib as described above for 1 day prior to exposure to 6 Gy of gamma irradiation using a Gamma-cell 40 instrument (Kirloskar Technologies).

Southern blotting. Native and denaturing (1.2% agarose and 1 M urea) Southern blot analyses of V(D)J recombination of the retroviral recombination substrates and the endogenous Igk locus were carried out as previously described (27, 37, 40). Cre-mediated deletion of the Atm allele was assayed by Southern blotting of KpnI-digested DNA and the ATM 3′ probe as previously described (39). Cre-mediated deletion of the DNA ligase IVloxP allele was confirmed by Southern blotting of genomic DNA digested with BamHI and BglII. The DNA ligase IV probe was generated by a PCR using the oligonucleotides 5′-GAGCTCTGCTGACGCGTAGC-3′ and 5′-CACAGCAGCTCCATTTAAGC-3′. The DNA ligase IVloxP and DNA ligase IV alleles yield 1.0-kb and 1.5-kb hybridizing bands, respectively. Southern blot analyses of Eh/ZFN cleavage were carried out on HindIII-digested genomic DNA hybridized to an Eb probe and a 3′-CCATGTTGCACTACGGAAGGGC-3′ (27). **PCR analyses.** TdT-assisted PCR of pMX-DELIv and Jk coding ends was performed as previously described, except that for the JkI coding end detection, the Jk double-stranded oligonucleotide 5′-GAAAATCATTCCACACCTCTTGTGGGA-3′ was used as a reverse primer and the Jk probe oligonucleotide 5′-GGAGATGTCGACAGACACATTCCACACTCTTGTTGGGA-3′ was used as a probe (27, 40). PCR analyses of pMX-DEL3, pMX-INV, and VJk coding and hybrid joins were carried out as previously described, except that 42 cycles of amplification were used for pMX-DEL3 hybrid joins (37).

Western blot analysis. Whole-cell lysates were obtained using RIPA buffer (150 mM NaCl, 10 mM Tris, pH 7.2, 0.1% SDS, 1% Triton X-100, 1% deoxycholate, 5 mM EDTA) supplemented with protease inhibitors (Sigma). Lysates were resolved in 6% to 10% acrylamide gels and transferred onto Immobilon polyvinylidene difluoride (PVDF) membranes (Millipore). The primary antibodies anti-Kap-1 (GeneTex), anti-phospho-Kap-1 (Bethyl), anti-phospho-H2AX (Millipore), anti-DNA-PKcs (NeoMarkers), anti-poly(ADP-ribose) polymerase 1 (Calbiochem), and antiactin (Bethyl) were used. Goat anti-mouse (Invitrogen) and donkey anti-rabbit (Fisher) antibodies were used as secondary antibodies. Detection was carried out using a horseradish peroxidase (HRP) ECL detection kit according to the manufacturer’s instructions (Thermo Scientific).

Flow cytometry. Flow cytometric analysis of green fluorescent protein (GFP) expression was carried out using a BD FACsCalibur flow cytometer (BD Biosciences) and FlowJo 4.6.2 for Macintosh (Tree Star).
RESULTS

Inhibition of DNA-PKcs kinase activity does not prevent coding join formation. Chromosomal V(D)J recombination can be studied in vivo by using v-abl kinase-transformed murine pre-B cells, referred to here as abl pre-B cells (3, 37). Inhibition of the v-abl kinase by imatinib leads to G1-phase cell cycle arrest, RAG induction, and V(D)J recombination at the endogenous immunoglobulin light chain kappa (Igk) locus and chromosomally integrated retroviral V(D)J recombination substrates such as pMX-DELCJ (37, 41). pMX-DELCJ has an antisense GFP cDNA flanked by a pair of RSs that undergo V(D)J recombination by deletion, forming a chromosomal coding join (Fig. 1A) (37).

After RAG induction with imatinib, wild-type abl pre-B cells containing pMX-DELCJ (WT:DELCl) underwent robust pMX-DELCJ cleavage and coding join formation (Fig. 1B, 4-kb fragment CJ) (37). As expected, RAG induction in DNA-PKcs-deficient abl pre-B cells (scid:DELcl) generated from scid mice led to low levels of coding join formation and a significant accumulation of unrepaired coding ends (Fig. 1B, 2-kb fragment CE). In striking contrast, treatment of WT:DELCl abl pre-B cells with the DNA-PKcs kinase inhibitor NU7026 or NU7441 did not cause an accumulation of unrepaired coding ends or an appreciable block in coding join formation (Fig. 1B). Phosphorylation of KAP-1 and H2AX (forming γ-H2AX) in response to ionizing radiation in Atm−/− abl pre-B cells, which depends on DNA-PKcs, was inhibited by NU7026, demonstrating that NU7026 inhibits DNA-PKcs kinase activity in abl pre-B cells (Fig. 1C) (30, 31). We conclude that a loss of...
DNA-PKcs protein, but not inhibition of DNA-PKcs kinase activity, leads to a significant block in coding join formation. ATM can compensate for loss of DNA-PKcs kinase activity during coding end joining. Although the DNA-PKcs protein is required for coding join formation, we reasoned that ATM kinase activity may compensate for the inhibition of DNA-PKcs kinase activity. Atm^{−/−}:DELC^J abl pre-B cells exhibit a partial block in coding end joining, as evidenced by the accumulation of unrepaired coding ends after RAG induction (Fig. 2A, 2-kb CE band) (37). In contrast to the case with WT:DELC^J abl pre-B cells, treatment of Atm^{−/−}:DELC^J abl pre-B cells with DNA-PKcs kinase inhibitors led to a nearly complete block of pMX-DELC^J coding join formation and a marked accumulation of unrepaired coding ends (Fig. 2A). This was not due to differences in DNA-PKcs levels, as we previously demonstrated that DNA-PKcs is expressed at similar levels in wild-type and Atm^{−/−}:DELC^J abl pre-B cells (27). To determine whether this reflects a requirement for ATM kinase activity, we analyzed rearrangement of the pMX-INV retroviral recombination substrate in Atm^{−/−}:DNA-PKcs^{−/−}/Abl abl pre-B cells expressing Atm^{TgD2899A} (Atm^{−/−}:Atm^{TgD2899A}:INV abl pre-B cells) (Fig. 2B and C). pMX-INV is identical to pMX-DEL^J, except that one of the RSs has been inverted so that rearrangement results in inversion of the GFP cDNA and the formation of chromosomal signal and coding joins (Fig. 2B). Atm^{TgD2899A} has a single amino acid mutation that abrogates Atm kinase activity (42). Like Atm deficiency, expression of Atm^{TgD2899A} led to the accumulation of unrepaired pMX-INV coding ends and the formation of pMX-INV hybrid joins (Fig. 2C). However, treatment of Atm^{−/−}:Atm^{TgD2899A}:INV abl pre-B cells with NU7026 led to a dramatic increase in the accumulation of unrepaired coding ends (Fig. 2C). We conclude that the DNA-PKcs protein is required for coding join formation, while DNA-PKcs kinase activity is dispensable when ATM is present and active.

DNA-PKcs^{3A} kinase activity is required for coding joins. Many SQ/TQ motifs in DNA-PKcs are autophosphorylated in response to DNA DSBs. However, there are three SQ motifs in the ABCDE cluster that can be phosphorylated by ATM or DNA-PKcs in response to DNA DSBs (43, 44). Abl pre-B cell lines were generated from mice homozygous for the DNA-PKcs^{3A} allele, in which the threonines of these three SQ motifs have been mutated to alanines (45). DNA-PKcs^{3A} is expressed in DNA-PKcs^{3A}/3A abl pre-B cells at levels comparable to those of DNA-PKcs in wild-type abl pre-B cells (see Fig. S1 in the supplemental material). DNA-PKcs^{3A} kinase activity is intact, as irradiated Atm^{−/−}:DNA-PKcs^{3A}/3A abl pre-B cells exhibited phosphorylation of H2AX and KAP-1 that was inhibited by NU7026 (Fig. 3A) (45). This is also in agreement with previous studies demonstrating that DNA-PKcs...
proteins with different ABCDE cluster SQ/TQ mutations have robust kinase activity (46).

After RAG induction, DNA-PKcs3A/3A:DELCJ abl pre-B cells readily formed pMX-DELCJ coding joins similarly to WT:DELCJ abl pre-B cells (Fig. 3B). In striking contrast to WT:DELCJ abl pre-B cells, however, treatment of DNA-PKcs3A/3A:DELCJ abl pre-B cells with NU7026 led to a significant block in coding join formation and accumulation of unrepaired pMX-DELCJ coding ends (Fig. 3B). Analysis of the endogenous Igk locus yielded similar findings (Fig. 3C). Induction of RAG in WT abl pre-B cells led to robust Vk-to-Jk rearrangement at the endogenous Igk locus, as evidenced by Southern blotting revealing hybridizing bands of diverse sizes from rearrangements between approximately 250 Vk gene segments and the 4 functional Jk gene segments, and the Ck exon (not to scale). The relative positions of the SacI and EcoRI sites and the JkIII probe are also shown, as are schematics for the SacI and EcoRI digest JkIII probe-hybridizing fragments for the germ line (GL) Igk locus and the Jk1, Jk2, Jk3, and Jk4 coding ends (CE). SacI and EcoRI digest JkIII probe-hybridizing fragments from VJk rearrangements vary in size (generating a hybridizing smear in the lane) depending on the Vk and Jk gene segments that are used, as shown in Fig. 2C. (D) Western blot analysis of phosphorylated H2AX and KAP-1 in WT and DNA-PKcs3A/3A abl pre-B cells as described in the legend to Fig. 1C.

FIG 3 Coding join formation is dependent on DNA-PKcs3A kinase activity. (A) Western blot analysis of phosphorylated H2AX and KAP-1 in Atm−/− and Atm−/−:DNA-PKcs3A/3A abl pre-B cells as described in the legend to Fig. 1C. (B) Southern blot analysis of pMX-DELCJ rearrangement in WT:DELCJ and DNA-PKcs3A/3A:DELCJ abl pre-B cells as described in the legend to Fig. 1B. (C) Southern blot analysis of Igk locus rearrangement in WT, Artemis-deficient (Art−/−), and DNA-PKcs3A/3A abl pre-B cells. A schematic of the Igk locus is shown with 3 of the approximately 250 Vk gene segments, the 4 functional Jk gene segments, and the Ck exon (not to scale). The relative positions of the SacI and EcoRI sites and the JkIII probe are also shown, as are schematics for the SacI and EcoRI digest JkIII probe-hybridizing fragments for the germ line (GL) Igk locus and the Jk1, Jk2, Jk3, and Jk4 coding ends (CE). SacI and EcoRI digest JkIII probe-hybridizing fragments from VJk rearrangements vary in size (generating a hybridizing smear in the lane) depending on the Vk and Jk gene segments that are used, as shown in Fig. 2C. (D) Western blot analysis of phosphorylated H2AX and KAP-1 in WT and DNA-PKcs3A/3A abl pre-B cells as described in the legend to Fig. 1C.

DNA-PKcs functions downstream of opening hairpin-sealed coding ends. We wanted to determine whether DNA-PKcs3A kinase activity is required to promote opening of hairpin-sealed coding ends, which is a critical function of DNA-PKcs during coding end joining, suggesting that ATM regulates DNA-PKcs activity in RAG DSB repair by phosphorylating one or more of the TQ motifs that are mutated in DNA-PKcs3A.

After RAG induction, DNA-PKcs3A/3A:DELCJ abl pre-B cells readily formed pMX-DELCJ coding joins similarly to WT:DELCJ abl pre-B cells (Fig. 3B). In striking contrast to WT:DELCJ abl pre-B cells, however, treatment of DNA-PKcs3A/3A:DELCJ abl pre-B cells with NU7026 led to a significant block in coding join formation and accumulation of unrepaired pMX-DELCJ coding ends (Fig. 3B). Analysis of the endogenous Igk locus yielded similar findings (Fig. 3C). Induction of RAG in WT abl pre-B cells led to robust Vk-to-Jk rearrangement at the endogenous Igk locus, as evidenced by Southern blotting revealing hybridizing bands of diverse sizes from rearrangements between approximately 250 Vk gene segments and the 4 functional Jk gene segments, and the Ck exon (not to scale). The relative positions of the SacI and EcoRI sites and the JkIII probe are also shown, as are schematics for the SacI and EcoRI digest JkIII probe-hybridizing fragments for the germ line (GL) Igk locus and the Jk1, Jk2, Jk3, and Jk4 coding ends (CE). SacI and EcoRI digest JkIII probe-hybridizing fragments from VJk rearrangements vary in size (generating a hybridizing smear in the lane) depending on the Vk and Jk gene segments that are used, as shown in Fig. 2C. (D) Western blot analysis of phosphorylated H2AX and KAP-1 in WT and DNA-PKcs3A/3A abl pre-B cells as described in the legend to Fig. 1C.
low levels of products were observed in Artemis-deficient abl pre-B cells (Art−/−:DELCJ), in which coding ends are predominantly hairpin sealed (Fig. 4B and C). Analysis of pMX-DELCl and Jk coding ends in DNA-PKcs3A/3A:DELCJ abl pre-B cells treated with NU7026 revealed robust TdT-assisted PCR products indicative of open hairpins (Fig. 4B and C).

Coding end structure was also analyzed by denaturing Southern blot analyses (Fig. 4D; see Fig. S3 in the supplemental material) (40). After restriction enzyme digestion and denaturation, open coding ends form single-stranded DNA fragments that migrate at a lower molecular weight than the native duplex (see Fig. S3). However, hairpin-sealed coding ends cannot be denatured into single-stranded components due to the phosphodiester bond connecting the top and bottom strands (see Fig. S3). Thus, denatured hairpin-sealed coding ends migrate at the same molecular weight as that of the native duplex (see Fig. S2 in the supplemental material). As expected, denaturing Southern blot analysis revealed that most of the unrepaird pMX-DELCl coding ends in Art−/−:DELCJ abl pre-B cells were hairpin sealed, whereas those in LigIV−/−:DELCJ abl pre-B cells were primarily open (Fig. 4D; see Fig. S3). Analyses of coding ends in DNA-PKcs3A/3A:DELCJ abl pre-B cells treated with NU7026 revealed that most had open hairpins (Fig. 4D). These findings demonstrate that inhibition of the kinase activity of DNA-PKcs3A does not prevent the opening of hairpin-sealed coding ends. Thus, we conclude that DNA-PKcs has functions in joining open coding ends that are compromised by the TQ motif mutations in DNA-PKcs3A.

DNA-PKcs3A exhibits defects in general NHEJ-mediated DSB repair. As DNA-PKcs3A kinase activity is required to join open coding ends, we reasoned that this mutation may affect a general function of DNA-PKcs in the repair of DNA ends that are not hairpin sealed. We first determined whether DNA-PKcs3A/3A abl pre-B cells exhibit defects in the joining of blunt signal ends. pMX-DELs1 is identical to pMX-DELCJ, except that the RSs have been inverted, such that rearrangement leads to a chromosomal signal join (Fig. 5A). Robust signal join formation was observed after RAG induction in DNA-PKcs3A/3A:DELS1 abl pre-B cells, whereas inhibition of DNA-PKcs kinase activity in these cells led to a severe block in signal join formation (Fig. 5B). Inhibition of DNA-PKcs kinase activity had no effect on signal joining in WT.

FIG 4 Coding ends have open hairpins after inhibition of DNA-PKcs3A kinase activity. (A) Schematic of TdT-assisted PCR. Shown are open and hairpin-sealed coding ends. TdT adds poly(A) to open but not hairpin-sealed coding ends. The T17 forward primer is shown with the reverse primer specific for either the pMX-DELCJ or Jk1 coding end. These primers amplify products from open coding ends where poly(A) has been added. (B and C) TdT-assisted PCRs of pMX-DELCJ (B) and Jk1 (C) coding ends in Art−/−:DELCJ, LigIV−/−:DELCl, and DNA-PKcs3A/3A:DELCJ abl pre-B cells treated with NU7026 (+ i-DNA-PKcs). Genomic DNA from cells treated with imatinib for 4 days was incubated with dATP, with (+) or without (−) TdT, followed by PCR amplification as shown in panel A. PCR amplification was performed on 5-fold dilutions of genomic DNA treated with TdT and the single highest level of genomic DNA not treated with TdT. Interleukin-2 (IL-2) gene PCR on 5-fold genomic DNA dilutions is shown as a DNA loading control. (D) Denaturing Southern blot analysis of pMX-DELs1 coding ends was carried out on genomic DNA that was digested with EcoRI and probed with C4b (Fig. 1A). Art−/−:DELCJ, LigIV−/−:DELCl, and DNA-PKcs3A/3A:DELCJ abl pre-B cells not treated (−) or treated with imatinib for 2 days (+), in the presence (+) or absence (−) of the DNA-PKcs inhibitor NU7026 (i-DNA-PKcs), were assayed. The hybridizing bands representing unrearranged pMX-DELs1 and a pMX-DELs1 coding join are shown, as are bands from hairpin-sealed and open coding ends.
DELCJ hybrid joins formed in 4-bp single-stranded overhangs. These DNA ends were read-cleavage at \(\text{Eb} \) (Fig. 6A). Transient expression of \(\text{Eb}:\text{ZFN} \) results in Fok-1 \(\text{Eb}:\text{ZFN} \) in ily observed by Southern blotting after transient expression of \(\text{Eb}:\text{ZFN} \) targets a sequence immediately 3' to \(\text{Eb}:\text{ZFN} \) proteins (see Fig. S4 in the supplemental material). \(\text{Eb}:\text{ZFN} \)-induced chromosomal DNA DSBs (Fig. 6B). However, treatment of \(\text{abl} \) pre-B cells with NU7026 had no effect on the repair of \(\text{Eb}:\text{ZFN} \)-induced DSBs (Fig. 7B). Indeed, PCR analysis revealed that pMX-DELCJ joined to the signal end at the opposite RAG DSB, forming two hybrid joins. The bands reflecting unrearranged pMX-DELCJ (UR) and a pMX-DELCJ signal join (SJ) and signal end (SE) are indicated.

DISCUSSION

Prior studies have established that ATM and DNA-PKcs have unique functions during coding end joining (3, 28). ATM promotes the stability of coding ends in postcleavage complexes, and DNA-PKcs activates Artemis to open hairpin-sealed coding ends. Here we show that ATM and DNA-PKcs have additional functions during coding join formation that are regulated by the kinase activity of either of these proteins, suggesting that ATM and DNA-PKcs phosphorylate common targets required for coding end joining. Inhibition of DNA-PKcs kinase activity has no demonstrable effect on coding end joining in cells where ATM is present and active. In contrast, inhibition of DNA-PKcs kinase activity leads to a severe block in coding end joining when ATM is present and active. Thus, the TQ motifs that are mutated in DNA-PKcs, must be intact for ATM kinase activity to compensate for the loss of DNA-PKcs kinase activity during coding end joining.

What are the common targets of ATM and DNA-PKcs that are important for coding join formation? It is possible that...
ATM is prevented from phosphorylating proteins other than DNA-PKcs in DNA-PKcs^{3A/3A} abl pre-B cells. However, the three TQ motifs mutated in DNA-PKcs^{3A} are ATM targets, suggesting that ATM can regulate coding end joining through the direct phosphorylation of DNA-PKcs (43, 44). The ATM-mediated phosphorylation of these three TQ motifs may have regulatory effects similar to those of the autophosphorylation of other DNA-PKcs SQ/TQ motifs. In this regard, there are three other SQ/TQ motifs in the ABCDE cluster of DNA-PKcs. Thus, ATM-mediated phosphorylation of the three TQ motifs mutated in DNA-PKcs^{3A} and autophosphorylation of other SQ/TQ motifs in the ABCDE cluster may provide similar thresholds of ABCDE cluster phosphorylation needed to regulate specific DNA-PKcs functions in DSB repair (18, 35). It is also possible that autophosphorylation of other SQ/TQ motifs in DNA-PKcs has effects on DNA-PKcs function similar to those of phosphorylation of the TQ motifs mutated in DNA-PKcs^{3A}.

The loss of DNA-PKcs in vivo leads to a block in coding end joining even when ATM is present. Indeed, DNA-PKcs, but not ATM, activates Artemis endonuclease activity in vitro (25, 26). However, whether ATM can activate Artemis in vitro when DNA-PKcs is present but its kinase function is inactivated was not determined. In this regard, we found that inhibition of DNA-PKcs kinase activity in abl pre-B cells has no effect on coding join formation when ATM is present and active. Thus, opening of hairpin-sealed coding ends by Artemis in vivo relies on the presence of the DNA-PKcs protein and either ATM or DNA-PKcs kinase activity, likely due to the ability of ATM to phosphorylate DNA-PKcs and/or Artemis. Notably, this would have to be at sites other than the three TQ motifs mutated in DNA-PKcs^{3A}, as unrepaired coding ends in DNA-PKcs^{3A/3A} abl pre-B cells treated with a DNA-PKcs kinase inhibitor are open.

In addition to the DNA-PKcs mutation in SCID mice, naturally occurring equine and canine DNA-PKcs mutations have been described, as have DNA-PKcs mutations in cell lines selected for DSB repair defects (47–56). These different DNA-PKcs mutations have various effects on V(D)J recombination, with most affecting coding join formation and some affecting both signal and coding join formation. Some of the DNA-PKcs mutations lead to diminished kinase activity, but this is usually coupled with reduced DNA-PKcs protein expression; thus, the defects in V(D)J recombination in cells expressing these mutants could be due to alterations in DNA-PKcs kinase activity, protein level, or both. DNA-PKcs point mutants that have disrupted kinase activity but are expressed at normal levels have been generated (57, 58). Cells expressing these mutants are defective in the ability to repair RAG DSBs generated on extrachromosomal plasmid V(D)J recombination substrates (57,58). This is in contrast to our findings, which suggest that if ATM is present and active, it will compensate...
for mutations that inactivate DNA-PKcs kinase activity. It is possible that DNA-PKcs inhibitors permit a low level of kinase activity that, along with ATM activity, can promote normal coding end joining. It has been suggested that V(D)J recombination on extrachromosomal plasmid substrates requires minimal DNA-PKcs kinase activity (57). However, it is also possible that the mutations that inactivate DNA-PKcs kinase activity have additional effects on DNA-PKcs functions required for RAG DSB repair (57, 58). In this regard, some of these mutants exhibit defects in coding and signal join formation, whereas others are defective only in coding join formation (57, 58). Finally, it is possible that RAG DSBs generated on extrachromosomal plasmid substrates cannot activate ATM and thus rely on DNA-PKcs kinase activity for joining. Indeed, no differences were observed in comparing V(D)J recombination of extrachromosomal plasmid substrates in wild-type and ATM-deficient fibroblasts, whereas ATM deficiency clearly leads to defects in the repair of chromosomal RAG DSBs in lymphoid cells (3, 37, 59).

The coding ends that accumulate in DNA-PKcs3A/3A abl pre-B cells treated with DNA-PKcs kinase inhibitors have open hairpins, indicating that DNA-PKcs has functions during coding end joining in addition to promoting Artemis activity. Indeed, the kinase activity of DNA-PKcs3A is also important for joining blunt signal ends and chromosomal DSBs with 4-bp overhangs generated by a zinc finger nuclease fusion protein. Thus, the defect in RAG DSB repair in DNA-PKcs3A/3A abl pre-B cells reflects a function of DNA-PKcs in general DSB repair. After recruitment by Ku70/80, DNA-PKcs binds at the apex of the broken DNA ends and must dissociate from these DNA ends before they can be joined (18, 35). Mutations in DNA-PKcs that promote its retention at broken DNA ends, such as mutations of several of the SQ/TQ motifs of the ABCDE cluster, inhibit DSB repair (60). Thus, it is possible that ATM-mediated phosphorylation of the TQ motifs mutated in DNA-PKcs3A or the autophosphorylation of other ABCDE cluster SQ/TQ motifs functions similarly to promote the dissociation of DNA-PKcs from broken DNA ends.

In addition to their role in promoting the overlapping activities of ATM and DNA-PKcs during coding end joining, our findings suggest that phosphorylation of the TQ motifs mutated in DNA-PKcs3A regulates unique DNA-PKcs activities during DSB repair. Although RAG DSBs are efficiently repaired in DNA-PKcs3A/3A abl pre-B cells, they are frequently misrepaired, with coding ends ligated to signal ends, forming hybrid joins. These hybrid joins are formed by NHEJ, as evidenced by their dependence on DNA ligase IV. Hybrid join formation is also observed in cells that express truncated RAG proteins or are deficient in ATM or components of the Mre11-Rad50-Nbs1 (MRN) complex, which is required to recruit ATM to DSBs (12, 37, 61, 62). Increased hybrid join formation in these settings is observed only during inversional rearrangements, possibly due to instability of the postcleavage complex. In contrast, hybrid join formation in DNA-PKcs3A/3A abl pre-B cells is also observed during deletional rearrangements. In this case, two chromosomal hybrid joins must be generated in order for these cells to express GFP, making it unlikely that the mechanistic basis of hybrid join formation is instability of the postcleavage complex.

DNA-PKcs could function to appropriately pair DNA ends in the RAG postcleavage complex, with DNA-PKcs3A being defective in this function. DNA-PKcs could promote the activity of RAG or other NHEJ proteins to appropriately pair and join RAG DSBs in the postcleavage complex. However, DNA-PKcs could also have direct functions in the pairing of DNA ends generated by RAG cleavage. In this regard, DNA-PKcs can form dimers upon bind-

FIG 7 Hybrid join formation during deletional rearrangements in DNA-PKcs3A/3A abl pre-B cells. (A) Flow cytometric analysis of WT:DEL.CJ and DNA-PKcs3A/3A:DEL.CJ abl pre-B cells either untreated or treated with imatinib for 4 days. GFP expression (y axis) and forward scatter (FSC; x axis) are shown. (B) Schematic of pMX-DEL.CJ as described in the legend to Fig. 1A. Shown is the resolution of pMX-DEL.CJ RAG DSBs as a coding join or two hybrid joins that lead to expression of GFP. Also shown is how pMX-DEL.CJ with two hybrid joins can be recleaved by RAG and repaired to form a coding join. (C) PCR analysis of pMX-DEL.CJ hybrid join (HJ) and coding join (CJ) formation, using oligonucleotide primers pA plus pB and pC plus pB, shown in panel B. PCR was carried out on 5-fold dilutions of genomic DNA from cells treated with imatinib for 4 days. IL-2 gene PCR is shown as a control.
ing to DNA in vitro (63, 64). Notably, DNA-PKcs dimer structure is influenced by the structure of the bound DNA end (64). Thus, if DNA-PKcs forms dimers when bound to DNA in vivo, these dimers may serve to appropriately pair hairpin-sealed coding ends and blunt signal ends for joining in the RAG postcleavage complex.

ACKNOWLEDGMENTS

We thank Tom Ellenberger and Gaya Amarasinghe for helpful discussions and reviews of the manuscript.

This work was supported by National Institutes of Health grants CA136470 (B.P.S.), AI074953 (B.P.S.), CA92584 (S.L.-M. and M.H.), and GM105404 (M.H.). M.H. was also supported by CA136470 (B.P.S.), AI074953 (B.P.S.), AI47829 (B.P.S.), and reviews of the manuscript.

We thank Tom Ellenberger and Gaya Amarasinghe for helpful discussions and reviews of the manuscript.

We acknowledge the use of the Lawrence Berkeley National Lab IMAT program, and S.L.-M. was supported by CIHR grant 691369.

REFERENCES

