2014

Meta-analysis of genome-wide association studies in African Americans provides insights into the genetic architecture of type 2 diabetes

Ping An
Washington University School of Medicine in St. Louis

Aldi Kraja
Washington University School of Medicine in St. Louis

Michael A. Province
Washington University School of Medicine in St. Louis

Ingrid B. Borecki
Washington University School of Medicine in St. Louis

et al.

Follow this and additional works at: http://digitalcommons.wustl.edu/open_access_pubs

Recommended Citation

http://digitalcommons.wustl.edu/open_access_pubs/4566

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact engeszer@wustl.edu.
Meta-Analysis of Genome-Wide Association Studies in African Americans Provides Insights into the Genetic Architecture of Type 2 Diabetes

1 Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America, 2 Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America, 3 Center for Research on Genomics and Global Health, National Human Genome Research Institute, Bethesda, Maryland, United States of America, 4 Program on Genomics and Nutrition, School of Public Health, University of California Los Angeles, Los Angeles, California, United States of America, 5 Center for Metabolic Disease Prevention, School of Public Health, University of California Los Angeles, Los Angeles, California, United States of America, 6 Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America, 7 Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, United States of America, 8 Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America, 9 Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, United States of America, 10 Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America, 11 The GeneSTAR Research Program, Division of General Internal Medicine, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America, 12 Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America, 13 Center for Public Health Genomics, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America, 14 Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America, 15 Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America, 16 Cardiovascular Health Research Unit, University of Washington, Seattle, Washington, United States of America, 17 Department of Medicine, University of Washington, Seattle, Washington, United States of America, 18 San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, United States of America, 19 Department of Epidemiology and Biomedical Informatics, Emory University, Atlanta, Georgia, United States of America, 20 Division of Statistical Genomics, Washington University School of Medicine, St. Louis, Missouri, United States of America, 21 Division of Sleep Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America, 22 The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America, 23 The Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America, 24 Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America, 25 Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America, 26 Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America, 27 Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America, 28 Department of Biology, Center for Health Disparities, East Carolina University, Greenville, North Carolina, United States of America, 29 Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America, 30 Medical Genetics Research Institute Cedars-Sinai Medical Center, Los Angeles, California, United States of America, 31 Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, United States of America, 32 Jackson State University, Tougaloo College, Jackson, Mississippi, United States of America, 33 Collaborative Studies Coordinating Center, Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America, 34 Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota, United States of America, 35 Human Genetics Center, University of Texas Health Science Center at Houston, Houston, Texas, United States of America, 36 Division of Allergy and Clinical Immunology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America, 37 Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America, 38 Laboratory of Personality and Cognition, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America, 39 Department of Epidemiology and Biostatistics, Case
Abstract

Type 2 diabetes (T2D) is more prevalent in African Americans than in Europeans. However, little is known about the genetic risk in African Americans despite the recent identification of more than 70 T2D loci primarily by genome-wide association studies (GWAS) in individuals of European ancestry. In order to investigate the genetic architecture of T2D in African Americans, the Meta-analysis of type 2 Diabetes in African Americans (MADA) Consortium examined 17 GWAS on T2D comprising 8,284 cases and 15,543 controls in African Americans in stage 1 analysis. Single nucleotide polymorphisms (SNPs) association analysis was conducted in each study under the additive model after adjustment for age, sex, study site, and principal components. Meta-analysis of approximately 2.6 million genotyped and imputed SNPs in all studies was conducted using an inverse variance-weighted fixed effect model. Replications were performed to follow up 21 loci in up to 6,061 controls in African Americans, and 8,130 cases and 38,987 controls of European ancestry. We identified three known loci (TCF7L2, HMG2A and KCNQ1) and two novel loci (HLA-B and INS-IGF2) at genome-wide significance (4.15 × 10^{-6} < P < 5 × 10^{-8}, odds ratio (OR) = 1.09 to 1.36). Fine-mapping revealed that 88 of 158 previously identified T2D or glucose homeostasis loci demonstrated nominal to highly significant association (2.2 × 10^{-3} < \text{locus-wise } P < 0.05). These novel and previously identified loci yielded a sibling relative risk of 1.19, explaining 17.5% of the phenotypic variance of T2D on the liability scale in African Americans. Overall, this study identified two novel susceptibility loci for T2D in African Americans. A substantial number of previously reported loci are transferable to African Americans after accounting for linkage disequilibrium, enabling fine mapping of causal variants in trans-ethnic meta-analysis studies.

Editor: Eleftheria Zeggini, Wellcome Trust Sanger Institute, United Kingdom

Received January 21, 2014; Accepted June 5, 2014; Published August 7, 2014

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Funding: Atherosclerosis Risk in Communities Study (ARIC) is carried out as a collaborative study supported by National Heart, Lung, and Blood Institute contracts (HHSN26820100005C, HHSN26820100006C, HHSN268201100007C, HHSN268201100008C, HHSN268201100009C, HHSN268201100010C, HHSN268201200011C, and HHSN26820110012C). Cardiovascular Health Study (CHS) was supported by NHLBI contracts HL085351, HHSN268201200036C, HHSN268200800007C, N01HC55222, N01HC55279, N01HC55308, N01HC85081, N01HC85082, N01HC85083, N01HC85086; and NHLBI grants HL080295, HL087652, HL105756, HL103612, and HL120393 with additional contribution from the National Institute of Neurological Disorders and Stroke (NINDS). Additional support was provided through AG023629 from the National Institute on Aging (NIA). A full list of principal CHS investigators and institutions can be found at CHS-NHLBI.org/. The provision of genotyping data was supported in part by the National Center for Advancing Translational Sciences, CTSI grant UL1TR000124, and support was provided through AG023629 from the National Institute on Aging (NIA). Funding to Candidate-gene Association Resource (CARe) (http://public.nhlbi.nih.gov/GeneticsGenomics/home/cares.aspx) include support to University of Alabama at Birmingham (N01-HC-48047), University of Minnesota (N01-HC-48048), Northwestern University (N01-HC-48049), Kaiser Foundation Research Institute (N01-NC-48050), University of Alabama at Birmingham (N01-HC-95995), Tufts-New England Medical Center (N01-NC-45205), Wake Forest School of Medicine (N01-NC-45205), Harbor-UCLA Research and Education Institute (N01-HC-05187), University of California Irvine (N01-HC-45134, N01-HC-95100). Funding to Candidate-gene Association Resource (CARe) (http://public.nhlbi.nih.gov/GeneticsGenomics/home/cares.aspx) include support to University of California, San Francisco (N01-HL-005226). Cleveland Family Study (CFS) was supported by a grant to Case Western Reserve University (N01-HL-46380, N01RR009800). Cardiovascular Health Study (CHS) was supported by NHLBI contracts HL085351, HHSN268201200036C, HHSN268200800007C, N01HC55222, N01HC55279, N01HC55308, N01HC85081, N01HC85082, N01HC85083, N01HC85086; and NHLBI grants HL080295, HL087652, HL105756, HL103612, and HL120393 with additional contribution from the National Institute of Neurological Disorders and Stroke (NINDS). Additional support was provided through AG023629 from the National Institute on Aging (NIA). A full list of principal CHS investigators and institutions can be found at CHS-NHLBI.org/. The provision of genotyping data was supported in part by the National Center for Advancing Translational Sciences, CTSI grant UL1TR000124, and the National Institute of Diabetes and Digestive and Kidney Diseases Diabetes Research Center (DRC) grant DK063491 to the Southern California Diabetes Endocriology Research Center. DNA handling and genotyping was supported in part by National Center of Advancing Translational Technologies CTSI grant UL1TR000124, the National Institute of Diabetes and Digestive and Kidney Diseases grant DK063491 to the Southern California Diabetes Endocriology Research Center. The Electronic Medical Records and Genomics Network (MERGE) Network was initiated and funded by NHGRI, with additional funding from NIGMS through the following grants: U01-HG-004610 (Group Health Cooperative); U01-HG-004608 (Marshfield Clinic); U01-HG-04599 (Mayo Clinic); U01HG004609 (Northwestern University); U01-HG-04603 (Vanderbilt University, also serving as the Coordinating Center), and the State of Washington Life Sciences Discovery Fund award to the Northwest Institute of Medical Genetics. The Northwest University Enterprise Data Warehouse was funded in part by a grant from the National Institutes of Health, Research and Education Institute, U01HG004610. The data analyses described were obtained from Vanderbilt University Medical Center's BioVU which is supported by institutional funding and by the Vanderbilt CTSA grant UL1 TR000445 from NCATS/NIH. Family Heart Study (FamHS) was supported by NHLBI grants R01-HL-087700 and R01-HL-088215 (MAP, Principal Investigator) from NHLBI; and R01-DK-8925601 and R01-DK-075681 (IBB, Principal Investigator) from NIDDK. Family Investigation of Nephropathy in Diabetes (FIND) was supported by FIND grants U01DK57329, U01DK57329, U01DK57300, U01DK57298, U01DK57249, U01DK57295, U01DK70657, U01DK57303, and U01DK70657, U01DK57304. This project has been funded in whole or in part with federal funds.
The prevalence of type 2 diabetes (T2D) among adults in the USA is currently 11.3%, with substantially higher prevalence in African Americans (18.7%) than in European Americans (10.2%) [1]. To date, genome-wide association studies (GWAS) have identified >70 susceptibility loci for T2D [2-8]. While it is known that T2D is heritable in African Americans [9], it is unclear how much heritability is explained by the known genetic associations that T2D is heritable in African Americans (18.7%) than in European Americans (10.2%). The prevalence of type 2 diabetes (T2D) among adults in the USA is currently 11.3%, with substantially higher prevalence in African Americans (18.7%) than in European Americans (10.2%) [1]. To date, genome-wide association studies (GWAS) have identified >70 susceptibility loci for T2D [2-8]. While it is known that T2D is heritable in African Americans [9], it is unclear how much heritability is explained by the known genetic associations that T2D is heritable in African Americans (18.7%) than in European Americans (10.2%).

Results

Study overview

We conducted a meta-analysis of 17 African American GWAS on T2D comprising 8,238 cases and 15,543 controls (Tables S1 and S2). Missing genotypes in individual studies were imputed to one of the HapMap reference panels (Phase II release 21-24 CEU+YRI, Phase II release 22 all populations, Phase II+III release 27 CEU+YRI, Phase II+III release 27 CEU+YRI+ASW or Phase II+III release 27 all populations) using MACH, IMPUTE2 or BEAGLE (Table S3). Genomic control corrections [11] were applied to each study ($\lambda=1.01$–1.09) and after meta-analysis ($\lambda=1.00$) due to modest inflated association results (Table S3) [12]. Association results for ~2.6M SNPs were subsequently examined.

From stage 1 meta-analysis, 49 SNPs moderately associated with T2D ($P<10^{-7}$) and two candidate SNPs near the p value threshold ($rs231356$ at $KCNQ1$, $P=2.84 \times 10^{-3}$ and $rs244020$ at $HLA-B$, $P=1.02 \times 10^{-7}$) totaling 51 SNPs in 21 loci were followed up for replication. $rs231356$ is 14 kb downstream of the reported $T2D$ index SNP, $rs231362$, in Europeans [3]. Moderate associations have also been observed across the HLA region in Europeans [3]. The stage 2 replication included m silico and de novo replication in up to 11,544 African American T2D cases and controls, as well as in $silico$ replication in 47,117 individuals of European ancestry from DIAGRAMv2 [3] (Table S4). Meta-analyses were performed to combine results from African Americans (stage 1+2a, $n=33,371$, Table S4) and both African Americans and Europeans (stage 1+2a+2b, $n=82,468$, Table S4).

T2D loci reaching genome-wide significance

Five independent loci reached genome-wide significance ($P<5 \times 10^{-8}$). Stage 1 meta-analysis identified the established $TCF7L2$ locus. Stage 1+2a meta-analysis identified the established $KCNQ1$ and $HMG2$ loci. Stage 1+2a+2b meta-analysis identified a second signal at $KCNQ1$ and a novel $HLA-B$ locus. Secondary analysis including body mass index (BMI) adjustment in stage 1+2a meta-analysis identified the second novel locus at $INS-IGF2$ (Table 1 and Figure 1). One of the most strongly associated SNPs at these loci demonstrated significant heterogeneity of effect sizes among studies within each stage, between African Americans in...
Author Summary

Despite the higher prevalence of type 2 diabetes (T2D) in African Americans than in Europeans, recent genome-wide association studies (GWAS) were examined primarily in individuals of European ancestry. In this study, we performed meta-analysis of 17 GWAS in 8,284 cases and 15,543 controls to explore the genetic architecture of T2D in African Americans. Following replication in additional 6,061 cases and 5,483 controls in African Americans, and 8,130 cases and 38,987 controls of European ancestry, we identified two novel and three previously reported T2D loci reaching genome-wide significance. We also examined 158 loci previously reported to be associated with T2D or regulating glucose homeostasis. While 56% of these loci were shared between African Americans and the other populations, the strongest associations in African Americans are often found in nearby single nucleotide polymorphisms (SNPs) instead of the original SNPs reported in other populations due to differential genetic architecture across populations. Our results highlight the importance of performing genetic studies in non-European populations to fine map the causal genetic variants.

Type 2 Diabetes GWAS in African Americans

We investigated index SNPs from 158 independent loci associated with T2D and/or glucose homeostasis from prior genome-wide and candidate gene studies in individuals of European, East Asian, South Asian, or African American ancestry (Table S5). Among the 104 T2D-associated index SNPs, 19 were associated with T2D in stage 1 African American samples ($P<0.05$). Most of the 17 T2D-associated SNPs that showed consistent direction of effects had similar effect sizes between this study and prior reports, despite that rs10440833 at CDKAL1 had substantially stronger effect size in Europeans (OR = 1.25) than in African Americans (OR = 1.06, $P_{het} = 5.96 \times 10^{-6}$). Additionally, 3 out of 54 trait-increasing alleles from glucose homeostasis-associated index SNPs were associated with increased T2D risk in African Americans ($P<0.05$).

We also performed a locus-wide analysis to test for associations of all SNPs within the LD region at $r^2 \geq 0.8$ with the previously reported index SNPs and results were corrected for the effective number of SNPs [24]. Since the causal variant(s) at each locus may be different or reside on different haplotypes across populations with different LD structures, this approach allows the identification of the most strongly associated SNPs in African Americans that may or may not be in LD with the index SNPs reported in other populations. A total of 55 T2D- and 29 glucose-associated loci were associated with T2D in African Americans ($P_{het}<0.05$), corrected for LD in ASW for SNPs within a locus; Table S6). We compared the genetic architecture between the previously reported index SNPs and our fine-mapped SNPs for these 84 loci. The respective average risk allele frequencies were 0.51 and 0.46, and the distributions or pairwise differences of risk allele frequencies were not significantly different ($P = 0.255$, Wilcoxon rank sum test; and $P = 0.295$, Wilcoxon signed-rank test, respectively, Figure S2). In contrast, the average odds ratios for the risk alleles were higher for the fine-mapped SNPs as compared to the index SNPs (1.14 vs. 1.05). The distributions and pairwise differences of risk allele odds ratios were significantly different ($P = 1.18 \times 10^{-10}$ and 5.55×10^{-14}, respectively, Figure S2). Thus, the locus-wide analysis identified variants with larger effect sizes and similar allele frequencies.

We leveraged differences in LD between African Americans and Europeans to fine-map and re-annotate several established loci. The association signal spanning ~ 100 kb at INTS8 in African Americans overlapped the ~ 200 kb TP53INP1 T2D locus in Europeans [3]. The most strongly associated SNP in MEDIA tended to have larger effect size in African Americans than in Europeans (OR = 1.13 vs. 1.06, $P = 1.39 \times 10^{-7}$ vs. 3.20×10^{-12}, respectively, $P_{het} = 0.06$) (Table S4). However, rs17359493 at intron 10 of INTS8 was only in weak LD with the reported index SNP rs896854 in Europeans ($r^2 = 0.21$ in CEU, 0.10 in ASW). Neither the reported index SNP rs896854 nor its proxies from the CEU data demonstrated significant association to T2D in African Americans (Table S6 and Figure S3a, b), suggesting that rs17359493 may be an independent novel signal. INTS8 encodes a subunit of the integrator complex which is involved in the cleavage of small nuclear RNAs. At KCNQ1, the most strongly associated SNP rs231356 was in weak LD with the glucose homeostasis. Mutations at INS lead to neonatal diabetes, type 1 diabetes, and hyperinsulinemia [21]. Insulin-like growth factor 2 (IGF2) is involved in growth and development. IGF2 overexpression in transgenic mice leads to islet hyperplasia [22] and IGF2 deficiency in the Goto–Kakizaki rat leads to beta cell mass anomaly [23].

Associations at previously reported T2D and glucose homeostasis loci

The association signal spanning ~ 100 kb at INTS8 in African Americans overlapped the ~ 200 kb TP53INP1 T2D locus in Europeans [3]. The most strongly associated SNP in MEDIA tended to have larger effect size in African Americans than in Europeans (OR = 1.13 vs. 1.06, $P = 1.39 \times 10^{-7}$ vs. 3.20×10^{-12}, respectively, $P_{het} = 0.06$) (Table S4). However, rs17359493 at intron 10 of INTS8 was only in weak LD with the reported index SNP rs896854 in Europeans ($r^2 = 0.21$ in CEU, 0.10 in ASW). Neither the reported index SNP rs896854 nor its proxies from the CEU data demonstrated significant association to T2D in African Americans (Table S6 and Figure S3a, b), suggesting that rs17359493 may be an independent novel signal. INTS8 encodes a subunit of the integrator complex which is involved in the cleavage of small nuclear RNAs. At KCNQ1, the most strongly associated SNP rs231356 was in weak LD with the glucose homeostasis. Mutations at INS lead to neonatal diabetes, type 1 diabetes, and hyperinsulinemia [21]. Insulin-like growth factor 2 (IGF2) is involved in growth and development. IGF2 overexpression in transgenic mice leads to islet hyperplasia [22] and IGF2 deficiency in the Goto–Kakizaki rat leads to beta cell mass anomaly [23].
Table 1. Novel and previously identified loci associated with T2D at $P<5\times10^{-8}$.

<table>
<thead>
<tr>
<th>Loci</th>
<th>Chr</th>
<th>Position (Build 36)</th>
<th>SNP</th>
<th>Alleles*</th>
<th>RAFb</th>
<th>OR (95% CI)</th>
<th>P</th>
<th>P_{het}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previously identified T2D loci</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stage 1 GWAS meta-analysis in African Americans: up to 8,284 cases and 15,543 controls</td>
<td>Stage 2 replication in African Americans: up to 6,061 cases and 5,483 controls</td>
<td>Stage 1+2a meta-analysis in African Americans: up to 14,345 cases and 21,026 controls</td>
<td>Stage 2b replication in Europeans (DIAGRAMv2): up to 8,130 cases and 38,987 controls</td>
<td>Stage 1+2a+2b meta-analysis of all African Americans and Europeans: up to 22,475 cases and 60,013 controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCFL2</td>
<td>10</td>
<td>114748339</td>
<td>rs7903146</td>
<td>T/C</td>
<td>0.30</td>
<td>1.32</td>
<td>(1.25-1.4)</td>
<td>6.62E-24</td>
<td>1.81E-01</td>
<td>1.34</td>
<td>(1.26-1.43)</td>
<td>4.38E-20</td>
<td>7.34E-01</td>
<td>1.4</td>
<td>(1.34-1.46)</td>
<td>2.21E-51</td>
<td>1.36</td>
</tr>
<tr>
<td>KCNQ1</td>
<td>11</td>
<td>2661919</td>
<td>rs231356</td>
<td>T/A</td>
<td>0.27</td>
<td>1.14</td>
<td>(1.07-1.21)</td>
<td>2.84E-05</td>
<td>9.11E-01</td>
<td>1.05</td>
<td>(0.98-1.14)</td>
<td>3.26E-01</td>
<td>1.11</td>
<td>1.94E-05</td>
<td>1.08</td>
<td>(1.04-1.13)</td>
<td>4.37E-04</td>
</tr>
<tr>
<td>KCNQ1</td>
<td>11</td>
<td>2806106</td>
<td>rs2283228</td>
<td>A/C</td>
<td>0.89</td>
<td>1.22</td>
<td>(1.14-1.31)</td>
<td>6.10E-08</td>
<td>9.48E-02</td>
<td>1.17</td>
<td>(1.06-1.28)</td>
<td>7.10E-01</td>
<td>1.2</td>
<td>4.14E-01</td>
<td>9.30E-04</td>
<td>1.19</td>
<td>(1.13-1.24)</td>
</tr>
<tr>
<td>HMGAM2</td>
<td>12</td>
<td>64537207</td>
<td>rs340992</td>
<td>T/G</td>
<td>0.81</td>
<td>1.16</td>
<td>(1.09-1.24)</td>
<td>1.91E-06</td>
<td>9.48E-01</td>
<td>1.15</td>
<td>(1.04-1.26)</td>
<td>3.37E-01</td>
<td>1.16</td>
<td>8.79E-09</td>
<td>7.93E-01</td>
<td>1.12</td>
<td>(1.06-1.19)</td>
</tr>
<tr>
<td>Newly identified T2D loci</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stage 1 GWAS meta-analysis in African Americans: up to 8,284 cases and 15,543 controls</td>
<td>Stage 2 replication in African Americans: up to 6,061 cases and 5,483 controls</td>
<td>Stage 1+2a meta-analysis in African Americans: up to 14,345 cases and 21,026 controls</td>
<td>Stage 2b replication in Europeans (DIAGRAMv2): up to 8,130 cases and 38,987 controls</td>
<td>Stage 1+2a+2b meta-analysis of all African Americans and Europeans: up to 22,475 cases and 60,013 controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HLA-B</td>
<td>6</td>
<td>31455430</td>
<td>rs2244020</td>
<td>G/A</td>
<td>0.69</td>
<td>1.12</td>
<td>(1.06-1.17)</td>
<td>1.02E-05</td>
<td>2.11E-02</td>
<td>1.1</td>
<td>(0.98-1.22)</td>
<td>1.01E-01</td>
<td>1</td>
<td>1.14E-06</td>
<td>7.57E-01</td>
<td>1.07</td>
<td>(1.03-1.12)</td>
</tr>
<tr>
<td>INS-IGF2</td>
<td>11</td>
<td>2135246</td>
<td>rs3842770</td>
<td>A/G</td>
<td>0.23</td>
<td>1.18</td>
<td>(1.11-1.25)</td>
<td>8.18E-08</td>
<td>7.16E-01</td>
<td>1.07</td>
<td>(0.99-1.16)</td>
<td>8.09E-02</td>
<td>7.16E-01</td>
<td>1.14</td>
<td>2.78E-08</td>
<td>7.37E-02</td>
<td>-</td>
</tr>
</tbody>
</table>

Abbreviations: Chr, chromosome; SNP, single nucleotide polymorphism; RAF, risk allele frequency; OR, odds ratio for risk allele; CI, confidence interval; P_{het}, heterogeneity P value.

*Alleles are ordered as risk allele/other allele aligned to the forward strand of NCBI Build 36.

Risk allele frequency in Stage 1 samples.

Associations were performed with adjustment for age, sex, study sites, and study-specific principal components.

*Associations were performed with adjustment for age, sex, study sites, study-specific principal components and body mass index.

$P<5\times10^{-8}$ are in bold.

10.1371/journal.pgen.1004517.t001
index SNP rs231362 reported in Europeans [3] ($r^2 = 0.24$ in CEU and 0.17 in ASW). Given rs231362 was modestly associated with T2D in African American ($P = 0.04$) and was in weak LD ($r^2 = 0.21$ to 0.46 in CEU) with other associated SNPs in this region (Table S6 and Figure S3c,d), the results suggest a refinement of the localization of causal variant(s) to variants in strong LD with rs231356. At HMG1A2, the most strongly associated SNP rs343092 was in moderate LD with the index SNP rs1531343 ($r^2 = 0.60$ in CEU and 0.32 in ASW). Despite rs1531343 and its proxies in high LD were not associated with T2D in African Americans ($P > 0.05$), several SNPs in moderate LD, including rs343092, showed nominal to strong associations (Table S6 and Figure S3c,f). Trans-ethnic fine mapping will be particularly useful to dissect the causal variant(s) at this locus.

Effect of obesity on T2D susceptibility loci

We investigated the influence of obesity by comparing the stage 1 meta-analysis results with or without adjustment for BMI at the 51 most significantly associated SNPs from the GWAS for follow up (Tables S4 and S7) and 158 established T2D or glucose homeostasis index SNPs (Table S5). Association results were highly similar with and without BMI adjustment (correlation coefficients were 0.99 for both effect sizes and $-\log P$ values). Of particular note, FTO is suggested to influence T2D primarily through modulation of adiposity in Europeans [3,25], but evidence is contradictory across multiple ethnic groups [26–28]. The index SNP rs116142841 was not significantly associated with T2D in African Americans without and with BMI adjustment ($P = 0.06$ and 0.23, respectively) (Table S5). The frequency of the risk A allele was 0.13 in this study. It had 100% power to detect association at the reported OR of 1.13 at type 1 error rate of 0.05, suggesting that FTO is unlikely a key T2D susceptibility gene in African Americans.

Gene expression and bioinformatics analyses

Among the six genome-wide significant loci (Table 1), we found no coding variants in the most significantly associated SNPs or their proxies. These SNPs demonstrated only weak associations with expression quantitative trait loci (eQTLs) ($P > 0.001$, Table S8). Examination of the ENCODE data [29] revealed that several SNPs at TCF7L2, KCNQ1, and HMG1A2 were located at protein binding sites or were predicted to alter motif affinity for transcription factors implicated in energy homeostasis (Table S9). The most strongly associated SNP rs7903146 in TCF7L2 is predicted to alter the binding affinity for a POU3F2 regulatory motif [30], POU3F2 is a neural transcription factor that enhances the activation of genes regulated by corticotropin-releasing hormone which stimulates adrenocorticotropic hormone (ACTH). ACTH is synthesized from pre-pro-opiomelanocortin (pre-POMC) which regulates energy homeostasis. For the 3’ signal at KCNQ1, several tag SNPs are predicted to alter the binding affinity for regulatory motifs, including SREBP, CTCF and HNF4A. SREBP is a transcription factor involved in sterol biosynthesis. CTCF regulates the expression of IGF2 [31], HNF4A is a master regulator of hepatocyte and islet transcriotion. The tag SNP rs2257883 at HMG1A2 is predicted to alter the binding affinity of MEF2, which regulates GLUT4 transcription in insulin responsive tissues [32].

Discussion

We have performed the largest genetic association analysis to date for T2D in African Americans. Our data support the hypothesis that risk for T2D is partly attributable to a large number of common variants with small effects [7]. We identified HLA-B and INS-IGF2 as novel T2D loci, the latter specific to African Americans. We found evidence supporting association for 88 previously identified T2D and glucose homeostasis loci. Taken together, these 90 loci yielded a sibling relative risk of 1.19. The phenotypic variance measured on the liability scale is substantially larger in African Americans than in European Americans (17.5% vs. 5.7%) [7] due to larger effect sizes upon fine-mapping as well as higher disease prevalence in African Americans.

The two novel T2D loci, HLA-B and INS-IGF2, have been implicated in type 1 diabetes (T1D) risk in Europeans [33–35]. One limitation of our study is the lack of autoantibody measurement. However, our results are unlikely to be confounded by the presence of misclassified patients. Among diabetic youth
aged <20 years, T2D characterized by insulin resistance without autoimmunity is more prevalent in African Americans (40.1%) than in European Americans (6.2%), while African Americans less often present with autoimmunity and insulin deficiency resembling T1D compared to European Americans (32.5% vs. 62.9%, respectively) [36]. Autoimmunity is also uncommon in African American diabetic adults [37]. Furthermore, associations for T1D are stronger at HLA class II (HLA-DRB1, -DQA1, and -DQB1) than HLA class I regions in Europeans [33–34,38–41] (http://www.t1dbase.org). In African Americans, T1D individuals showed both shared and unique risk and protective HLA class II haplotypes as compared to European T1D individuals [42–43].
More importantly, these individuals also showed substantially stronger associations at \(HLA \) class II \((P<1 \times 10^{-25})\) than class I regions \((P<1 \times 10^{-2})\) [42], which is in contradiction with our finding of stronger associations at \(HLA \) class I than class II regions in T2D individuals (\(HLA-B \), Figure S4). The observed \(HLA-B \) association may be due to LD with nearby causal gene(s) since there is long range LD in this region. Recently, rs3130501 near \(POUS5F1 \) and \(TCF7L9 \) was reported for association with T2D in a trans-ancestry meta-analysis [8]. \(rs3130501 \) was located 211 kb upstream of rs2244020 and mapped to the same LD interval. However, the two SNPs were not correlated in both CEU and \(P \) and \(POU5F1 \) there is long range LD in this region. Recently, \(rs3130501 \) near \(GLIS3 \) and \(INS \) in the susceptibility of latent autoimmune diabetes in adults (LADA) and/or T2D \((9,34,45–46)\), while T2D loci such as \(PPARG \) and \(TCF7L2 \) was associated with T1D \((47)\) and LADA \((46,48)\), respectively. More comprehensive studies are needed to understand the shared and distinct genetic risks in different forms of diabetes which will facilitate diagnosis and personalized treatment.

Our results have several implications regarding the genetic architecture of T2D. First, fine-mapping suggests that currently known loci explain more of the risk than previously estimated. Second, the loci conferring the largest risk for T2D appear to act through regulatory rather than protein-coding changes. Third, known loci explain more of the risk than previously estimated. Our results have several implications regarding the genetic architecture of T2D. First, fine-mapping suggests that currently known loci explain more of the risk than previously estimated. Second, the loci conferring the largest risk for T2D appear to act through regulatory rather than protein-coding changes. Third, known loci explain more of the risk than previously estimated. Our results have several implications regarding the genetic architecture of T2D. First, fine-mapping suggests that currently known loci explain more of the risk than previously estimated. Second, the loci conferring the largest risk for T2D appear to act through regulatory rather than protein-coding changes. Third, known loci explain more of the risk than previously estimated. Our results have several implications regarding the genetic architecture of T2D. First, fine-mapping suggests that currently known loci explain more of the risk than previously estimated. Second, the loci conferring the largest risk for T2D appear to act through regulatory rather than protein-coding changes. Third, known loci explain more of the risk than previously estimated. Our results have several implications regarding the genetic architecture of T2D. First, fine-mapping suggests that currently known loci explain more of the risk than previously estimated. Second, the loci conferring the largest risk for T2D appear to act through regulatory rather than protein-coding changes. Third, known loci explain more of the risk than previously estimated. Our results have several implications regarding the genetic architecture of T2D. First, fine-mapping suggests that currently known loci explain more of the risk than previously estimated. Second, the loci conferring the largest risk for T2D appear to act through regulatory rather than protein-coding changes. Third, known loci explain more of the risk than previously estimated. Our results have several implications regarding the genetic architecture of T2D. First, fine-mapping suggests that currently known loci explain more of the risk than previously estimated. Second, the loci conferring the largest risk for T2D appear to act through regulatory rather than protein-coding changes. Third, known loci explain more of the risk than previously estimated. Our results have several implications regarding the genetic architecture of T2D. First, fine-mapping suggests that currently known loci explain more of the risk than previously estimated. Second, the loci conferring the largest risk for T2D appear to act through regulatory rather than protein-coding changes. Third, known loci explain more of the risk than previously estimated. Our results have several implications regarding the genetic architecture of T2D. First, fine-mapping suggests that currently known loci explain more of the risk than previously estimated. Second, the loci conferring the largest risk for T2D appear to act through regulatory rather than protein-coding changes. Third, known loci explain more of the risk than previously estimated. Our results have several implications regarding the genetic architecture of T2D. First, fine-mapping suggests that currently known loci explain more of the risk than previously estimated. Second, the loci conferring the largest risk for T2D appear to act through regulatory rather than protein-coding changes. Third, known loci explain more of the risk than previously estimated. Our results have several implications regarding the genetic architecture of T2D. First, fine-mapping suggests that currently known loci explain more of the risk than previously estimated. Second, the loci conferring the largest risk for T2D appear to act through regulatory rather than protein-coding changes. Third, known loci explain more of the risk than previously estimated. Our results have several implications regarding the genetic architecture of T2D. First, fine-mapping suggests that currently known loci explain more of the risk than previously estimated. Second, the loci conferring the largest risk for T2D appear to act through regulatory rather than protein-coding changes. Third, known loci explain more of the risk than previously estimated. Our results have several implications regarding the genetic architecture of T2D. First, fine-mapping suggests that currently known loci explain more of the risk than previously estimated. Second, the loci conferring the largest risk for T2D appear to act through regulatory rather than protein-coding changes. Third, known loci explain more of the risk than previously estimated. Our results have several implications regarding the genetic architecture of T2D. First, fine-mapping suggests that currently known loci explain more of the risk than previously estimated. Second, the loci conferring the largest risk for T2D appear to act through regulatory rather than protein-coding changes. Third, known loci explain more of the risk than previously estimated. Our results have several implications regarding the genetic architecture of T2D. First, fine-mapping suggests that currently known loci explain more of the risk than previously estimated. Second, the loci conferring the largest risk for T2D appear to act through regulatory rather than protein-coding changes. Third, known loci explain more of the risk than previously estimated. Our results have several implications regarding the genetic architecture of T2D. First, fine-mapping suggests that currently known loci explain more of the risk than previously estimated. Second, the loci conferring the largest risk for T2D appear to act through regulatory rather than protein-coding changes. Third, known loci explain more of the risk than previously estimated. Our results have several implications regarding the genetic architecture of T2D. First, fine-mapping suggests that currently known loci explain more of the risk than previously estimated. Second, the loci conferring the largest risk for T2D appear to act through regulatory rather than protein-coding changes. Third, known loci explain more of the risk than previous...
Among the 51 SNPs carried forward for replication, heterogeneity of effect sizes across studies within each stage was assessed using Cochran’s Q statistic implemented in METAL. Meta-analysis results from stages 1 and 2a, stage 1+2a and 2b were used to assess heterogeneity of effect sizes between discovery and replication stages in African Americans, and between African Americans and Europeans, respectively. For SNPs with significant heterogeneous effect size after multiple comparison corrections ($P_{het}<0.001$), meta-analysis results including studies of all stages assessed by the random effect model implemented in GWAMA [55] were reported. Heterogeneous associations may partly due to differences in ascertainment scheme across studies. For index SNPs reported in prior studies, assessment of heterogeneity using Cochran’s Q statistic between prior studies and this study were also reported.

Transferability analysis

Index SNPs associated with T2D or glucose homeostasis traits from prior GWAS and candidate gene studies were examined for association with T2D in African Americans (Table S3). For the index SNP association tests, a per-SNP P value <0.05 was defined as significant. In the locus-wide analysis, the boundaries of a locus were defined by the most distant markers (within ±500 kb) using the 1KGP CEU data with $r^2\geq0.3$ with the index SNP. All MEDIA SNPs within these bounds were examined for association analysis. All pairwise LD values within each locus were estimated using the 1KGP CEU and ASW data. To estimate the effective number of SNPs at a locus, we retrieved genotypes from the 1KGP ASW data. To estimate the effective number of SNPs within these bounds of LD, the per-locus significance level was defined as 0.05/effective number of SNPs (Table S6). By accounting for markers in LD with the index SNP as well for all SNPs within the bounds of LD, the per-locus significance level is corrected to account for markers in LD with the index SNP as well.

Liability-scale variance explained

For each independent locus, we estimated the sibling relative risk using the most strongly associated SNP within that locus. Let p_i and ψ_i be the risk allele frequency and the corresponding odds ratio at the i^{th} SNP, respectively. Assuming the additive genetic model and independence between SNPs, the contribution to the sibling relative risk λ_s for a set of N SNPs is given by

$$\lambda_s = \frac{N}{\prod_{i=1}^{N} \left(1 + \frac{p_i(1-p_i)(\psi_i-1)^2}{2(1-p_i) + p_i\psi_i} \right)^2}$$

[36]. Let K be the disease prevalence. The liability-scale variance h_l^2 explained by the set of N SNPs is given by $h_l^2 = \frac{2(T-T_1)(1-(T^2-T_1^2)(1-\omega^2))}{\omega + T_1^2(\omega-T)}$, in which $T = \phi^{-1}(1-K)$, $T_1 = \phi^{-1}(1-\lambda_s K)$, and $\omega = \frac{z}{K}$ with ϕ^{-1} representing the standard normal quantile function and z representing the standard normal density at T [57].

Coverage

The coverage of MEDIA SNPs to the human genome was estimated using HaploView [58] via pairwise tagging at the $r^2 \geq 0.8$ threshold. We used all SNPs with minor allele frequencies $\geq1\%$ in both MEDIA and the 1KGP ASW sequence data. Coverage was estimated using non-overlapping bins of 1,000 SNPs.

Power analysis

Study power was calculated using the genetic power calculator [59]. For SNPs with MAF>0.3, our study had >80% power to detect odds ratios for T2D at OR>1.06 and >1.13 at $P<0.05$ and $P<5 \times 10^{-8}$, respectively, in stage 1 samples under an additive model. The observed odds ratios among our stage 1 most significantly associated SNPs with $P<1 \times 10^{-5}$ ranged from 1.11 to 1.56 (Table S4). Given our African American sample size in stage 1+2a, our study had >80% power to detect OR>1.1 at $P<5 \times 10^{-8}$ at MAF>0.3, thus provided good power to detect genome-wide significance among the most significantly associated SNPs using all African American samples. For T2D SNPs reported from the literature, power was also calculated from the reported effect size using the risk allele frequency from this study for stage 1 samples at $P<0.05$ and $P<5 \times 10^{-8}$, respectively (Table S5).

Gene expression analysis

The MuTHER resource (www.muther.ac.uk) includes lymphoblastoid cell lines (LCLs), skin, and adipose tissue derived simultaneously from a subset of well-phenotyped healthy female twins from the TwinsUK adult registry [60]. Whole-genome expression profiling of the samples, each with either two or three technical replicates, was performed using the Illumina Human HT-12 V3 BeadChips (Illumina Inc.) according to the protocol supplied by the manufacturer. Log2-transformed expression signals were normalized separately per tissue as follows: quantile normalization was performed across technical replicates of each individual followed by quantile normalization across all individuals. Genotyping was performed with a combination of Illumina arrays (HumanHap300, HumanHap610Q, 1M-Duo, and 1.2M-Duo 1M). Untyped HapMap2 SNPs were imputed using the IMPUTE2 software package. In total, 776 adipose and 777 LCL samples had both expression profiles and imputed genotypes. Association between all SNPs (MAF>5%), IMPUTE info >0.8) within a gene or within 1 Mb of the gene transcription start or end site and normalized expression values were performed with the GenABEL/ProbaBEL packages [61–62] using the polygenic linear model incorporating a kinship matrix in GenABEL followed by the ProbaBEL mmscore score test with imputed genotypes. Age and experimental batch were included as cofactors.

Genotype and gene expression in LCL in HapMap samples were also available [63]. Association of genotypes and gene expression of transcripts within 1 Mb of tested SNPs were analyzed separately for CEU and YRI populations. The variance components model implemented in SOLAR was used for association analysis which accounts for correlation among related individuals [53].

In this study, we examined the association of the most significantly associated SNPs from the six genome-wide significant loci and their proxies ($r^2 \geq 0.8$ in ASW) within 1 Mb of the associated SNPs with cis-expression quantitative trait loci (eQTLs) in peripheral blood leukocytes (LCL) and adipose tissue (Table S8).

ENCeDE data analysis

We examined putative functional of non-coding genome-wide significant SNPs and their proxies within 1 Mb ($r^2 \geq 0.8$ in 1KGP ASW) using HaploReg [30] and RegulomeDB [64]. These databases interrogated multiple chromatin features from the
Encyclopedia of DNA Elements (ENCODE) project [29]. High priority was given to variants annotated as protein-binding via ChiP-seq, and motif-changing via position weight matrices, with the respective transcription factors implicated in diabetes pathogenesis and related biological processes.

Supporting Information

Figure S1 Forest plots of the most strongly associated SNPs at five previously and newly identified T2D loci in African Americans. Odds ratio and 95% CIs are presented for individual studies (black circle and line) and meta-analysis results (red diamond and line). At KCNQ1, two independent associated SNPs are shown. (PDF)

Figure S2 (A) Distributions of risk allele frequencies for the previously reported index SNPs (in black) vs. the MEDIA most strongly associated SNPs (in red) in African Americans from stage 1 meta-analysis. (B) Distributions of odds ratios for risk alleles of the index SNPs (in black) vs. the most strongly associated MEDIA SNPs (in red) in African Americans from stage 1 meta-analysis. (PDF)

Figure S3 Regional plots of stage 1 meta-analysis association results in African Americans for the most strongly associated SNPs from this study and the index SNPs from previous studies. (A-B) INTS8-TP53INP1 region; (C-D) KCNQ1 region; (E-F) HMG4A2 region. (A, C, E) The most strongly associated SNP in MEDIA is denoted by a purple circle and a red arrow with LD colored based on the HapMap 2 YRI data. (B, D, F) The index SNP is denoted by a purple circle and a red arrow with LD colored based on the HapMap 2 CEU data. (PDF)

Figure S4 Regional plots of HLA-B and HLA-DQ/DR regions for (A, C) stage 1 meta-analysis association results in African Americans and HapMap 2 YRI LD data, and (B, D) stage 3 DIAGRAMv2 results in Europeans using HapMap 2 CEU LD data. (A, B) The most strongly associated SNP rs2244020 at HLA-B region from this study is denoted by a purple circle and a red arrow. (C, D) The index SNP rs9272346 from Burton PR et al (2007) [65] is denoted by a purple circle and a blue arrow. (PDF)

Table S1 Design of studies in stage 1 GWAS and stage 2a replication in African Americans. (PDF)

Table S2 Clinical characteristics of study samples in stage 1 GWAS and stage 2a replication studies in African Americans. (PDF)

Table S3 Genotyping methods, quality controls, imputation and statistical analysis in stage 1 GWAS and stage 2a replication studies in African Americans. (PDF)

Table S4 SNPs with P value $\leq 1 \times 10^{-5}$ from stage 1 GWAS meta-analysis (BMI unadjusted) selected for stage 2 in silico and de novo replication in African Americans and in silico replication in individuals of European ancestry from DIAGRAMv2. (PDF)

Table S5 Stage 1 GWAS meta-analysis results for index SNPs at established T2D or glucose homeostasis loci in African Americans. (PDF)

Table S6 Locus-wide association at established T2D or glucose homeostasis loci in stage 1 GWAS meta-analysis in African Americans. (PDF)

Table S7 BMI-adjusted association for SNPs from stage 1 GWAS meta-analysis selected for replication. (PDF)

Table S8 Expression Quantitative Trait Loci (eQTL) analysis for the genome-wide significant SNPs for T2D. Results are shown for suggestive evidence of cis-association (P < 0.05) between the genome-wide significant SNPs and their proxies with the genes within 1 Mb of the associated SNPs. (PDF)

Table S9 Putative regulatory SNPs predicted from the ENCODE project for the genome-wide significant SNPs and their proxies at TCF7L2, INS-IGF2, KCNQ1 and HMG4A2. (PDF)

Text S1 Description of GWAS and replication studies. (PDF)

Acknowledgments

We thank all the study participants for their valuable contributions to the parent studies (ARIC, CARDIA, CFS, CHS, eMERGE, FamHS, FIND, Genestar, Genova, HANDLS, Health ABC, Hufs, Ipm Biobank, Iras, Irafsp, JHS, Mesa, Mesa Family, Sccs, Signet-Regards, Wfsm and Whi) of the MEDIA consortium. We thank the contributions of investigators and staff of the parent studies for data collection, genotype, data analysis and sharing of association results to the MEDIA consortium at the discovery and replication stages. We also thank the DIAGRAM Consortium for sharing the European T2D GWAS meta-analysis results for replication. We thank the MuTHER Consortium to share the expression quantitative trait loci data. The Candidate-gene Association Resource (CAre) acknowledge the support of the National Heart, Lung and Blood Institute and the contributions of the involved research institutions, study investigators, field staff, and study participants of ARIC, CARDIA, CFS, JHS, and Mesa in creating the Candidate-gene Association Resource for biomedical research [http://public.nlm.nih.nih.gov/GeneticsGenomics/home/care.aspx]. The parent studies have contributed parent study data, ancillary study data, and DNA samples through the Massachusetts Institute of Technology - Broad Institute to create this genotype/phenotype database for wide dissemination to the biomedical research community. Women’s Health Initiative (WHI) investigators have reviewed and approved this manuscript. WHI investigators are listed at http://www.whiscience.org/publications/WHI_investigators_shortlist_2010-2015.pdf. The datasets used for the analyses described in this manuscript were obtained from dbGaP at http://www.ncbi.nlm.nih.gov/sites/entrez?db = gap through dbGaP accession phs000200.v1.p1.

Members of the FIND Consortium are:

Clinical centers:

Case Western Reserve University, Cleveland, OH: JR Sedor, J Schelling, A Schgel, A Pickens, L Humbert, L Getz-Fradley.

Harbor—University of California Los Angeles Medical Center: S Adler, HE Collins-Schramm, R Epp, H Li, M. Pahl, MF Seldin, J LaPage, B Walker, C Garcia, J Gonzalez, L Ingram-Drake.

University of California, Davis, CA.

University of California, Irvine, CA.

University of California, Los Angeles, CA: MF Saad, X Guo, J Rotter, K Taylor, M Budgey.

University of New Mexico, Albuquerque, NM: P Zager, V Shah, M Scavini, A Bobelu.

University of Texas Health Science Center at San Antonio, San Antonio, TX: H Abroud, N Arar, D Duggirala, BS Kasinath, R Plaetke, M Stem, C Goyes, V Sartorio.
Members of the MuTHER Consortium are:

Kourosh R. Ahmadi1, Chrystianh Amali2, Amy Barrett3, Veronique Bataille4, Jordana T. Bell5,6,7, Alfonso Buil8,9, Panos Deloukas2, Emmanouil T. Dermitzakis5, Antigone S. Dimas2,4,5, Richard Durbin6, Daniel Glass1, Gabriel K. Hage6,7,8, Kerrin S. Small1,6, Nicole Soranzo1,6, Tim D. Spector1, Gabriel Surdulescu1, Mary E. Travers3, Loukia Tsaprouni6, Sophia Tsoka2, Alicja Wilk6, Tsun-Po Yang6, Krina T. Zondervan4

1 Department of Internal Medicine, Catharina Hospital, Eindhoven, The Netherlands.
2 Endocrinology-Diabetology Unit, Corbeil-Essonnes Hospital, Corbeil-Essonnes, France.
3 Collaborative Studies Coordinating Center, Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
4 Diabetes Research Centre, Biomedical Research Institute, University of Dundee, Ninewells Hospital, Dundee, UK.
5 Pharmacogenomics Centre, Biomedical Research Institute, University of Dundee, Ninewells Hospital, Dundee, UK.
6 Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.
7 Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
8 Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK.
9 Hagedorn Research Institute, Gentofte, Denmark.
10 Centre Hospitalier de Poitiers, Endocrinologie Diabétologie, CIC INSERM U8091, INSERM U927, Université de Poitiers, UFR, Médecine Pharmacie, Poitiers Cedex, France.
11 Institute for Clinical Diabetes, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
12 Folkhälso Research Center, Helsinki, Finland.
13 Malmska Municipal Health Center and Hospital, Jakobstad, Finland.
14 Diabetes Research and Wellness Foundation Human Islet Isolation Facility and Oxford Islet Transplant Programme, University of Oxford, Oxford, UK.
15 Research Centre for Prevention and Health, Glostrup University Hospital, Glostrup, Denmark.
16 Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark.
17 Department of Epidemiology, Johns Hopkins University, Baltimore, Maryland, USA.
18 Department of Medicine and Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins University, Baltimore, Maryland, USA.
19 Department of Medicine, University of Kuopio and Kuopio University Hospital, Kuopio, Finland.
20 Department of General Medical Practice, University of Aarhus, Aarhus, Denmark.
21 Department of Internal Medicine, Maxima Medical Center, Eindhoven, The Netherlands.
22 Department of Clinical Sciences, Diabetes and Endocrinology Research Unit, University Hospital Malmö, Lund University, Malmö, Sweden.
23 Department of Endocrinology, Diabetology and Nutrition, Bichat-Claude Bernard University Hospital, Assistance Publique des Hôpitaux de Paris, Paris, France.
24 INSERM U695, Université Paris 7, Paris, France.
25 Institute of Human Genetics, Helmholtz Zentrum Muenchen, Neuherberg, Germany.
26 Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität München, München, Germany.
27 Nord-Trøndelag Health Study (HUNT) Research Center, Department of Community Medicine and General Practice, Norwegian University of Science and Technology, Trondheim, Norway.
28 Genetics of Complex Traits, Institute of Biomedical and Clinical Science, Peninsula Medical School, University of Exeter, Exeter, UK.
29 Diabetes Genetics, Institute of Biomedical and Clinical Science, Peninsula Medical School, University of Exeter, Exeter, UK.
30 Institute of Biometics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
31 Department of Human Genetics, McGill University, Montreal, Canada.
32 Department of Medicine, Faculty of Medicine, McGill University, Montreal, Canada.
33 McGill University and Genome Quebec Innovation Centre, Montreal, Canada.
34 Department of Metabolic Diseases, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
35 Department of Endocrinology and Diabetes, Norfolk and Norwich University Hospital National Health Service Trust, Norwich, UK.
36 General Medicine Division, Massachusetts General Hospital, Boston, Massachusetts, USA.
37 Institut interrégional pour la Santé (IRSA), La Riche, France.
38 Department of Medicine, Helsinki University Hospital, University of Helsinki, Helsinki, Finland.
39 Department of Internal Medicine, University Medical Center Utrecht, Utrecht, The Netherlands.
40 Molecular Genetics, Medical Biology Section, Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands.
41 Department of Genetics, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands.
42 Department of Physiology and Biophysics, University of Southern California School of Medicine, Los Angeles, California, USA.
43 National Institute of Health, Bethesda, Maryland, USA.
44 Institute for Clinical Medical Research, University Hospital ‘Sestre Milosrdnice’, Zagreb, Croatia.
45 Institute of Genetic Medicine, European Academy Bozen/Bolzano (EURAC), Bolzano, Italy.
46 Croatian Centre for Global Health, Faculty of Medicine, University of Split, Split, Croatia.
47 Institute for Clinical Medical Research, University Hospital ‘Sestre Milosrdnice’, Zagreb, Croatia.
48 Department of Public Health, University of Helsinki, Helsinki, Finland.
49 South Ostrobothnia Central Hospital, Seinäjoki, Finland.
50 Red RECAVA Grupo RD06/0014/0015, Hospital Universitario La Paz, Madrid, Spain.
51 Diabetes Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.
52 Department of Preventative Medicine, Keck Medical School, University of Southern California, Los Angeles, California, USA.
53 Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota, USA.
54 Department of Biomedical Science, Panum, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark.
55 Faculty of Health Science, University of Aarhus, Aarhus, Denmark.
56 Klinikum Grosshadern, Munich, Germany.
57 Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.
58 Faculty of Medicine, University of Iceland, Reykjavik, Iceland.
59 Genomic Medicine, Imperial College London, Hammersmith Hospital, London, UK.
60 Oxford National Institute for Health Research Biomedical Research Centre, Churchill Hospital, Oxford, UK.
61 A full list of members is provided in the supplementary Note of the original publication.
62 These authors contributed equally.
References

