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Optogenetic approaches for dissecting
neuromodulation and GPCR signaling in neural circuits
Skylar M Spangler1,2,3,4 and Michael R Bruchas1,2,3,4

Optogenetics has revolutionized neuroscience by providing

means to control cell signaling with spatiotemporal control in

discrete cell types. In this review, we summarize four major

classes of optical tools to manipulate neuromodulatory GPCR

signaling: opsins (including engineered chimeric receptors);

photoactivatable proteins; photopharmacology through

caging — photoswitchable molecules; fluorescent protein based

reporters and biosensors. Additionally, we highlight technologies

to utilize these tools in vitro and in vivo, including Cre dependent

viral vector expression and two-photon microscopy. These

emerging techniques targeting specific members of the GPCR

signaling pathway offer an expansive base for investigating

GPCR signaling in behavior and disease states, in addition to

paving a path to potential therapeutic developments.
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Introduction
G-protein coupled receptors (GPCRs) are critical for

neuromodulation. GPCRs modulate neuronal excitability

by signaling through the heterotrimeric G-protein fami-

lies (Gs, Gi/o, Gq G12/13, among others), which can couple

to channels or enzymes via direct beta-gamma subunit

interactions or amplify intracellular signaling pathways

(Figure 1). Gq couples to phospholipase C, cleaving

phosphatidylinositol into IP3 and diacylglycerol (DAG),

mobilizing the release of calcium from intracellular stores.

This is known to facilitate depolarization, in addition to

synaptic release in terminals, also dependent on calcium.

Gi/o signaling via beta-gamma interactions positively reg-

ulates G-protein coupled inward rectifying potassium

channels (GIRKs) to hyperpolarize the cell, as well as

negatively couples to calcium channels to inhibit synaptic

release. Gs signaling utilizes coupling to adenylyl cyclase

to amplify the levels of cAMP in a neuron, which can

influence excitability through cyclic-gated nucleotide

channels (CNGA2) or via enzymatic kinase mediated

pathways. GPCRs signal through other intracellular path-

ways through G-proteins and arrestin to modulate neuron

and glial activity independent of ionic changes in the cell.

Many neurotransmitters activate GPCRs that initiate in-

tracellular pathways with complex temporal and spatial

effects within a neuron. In the brain, cellular, receptor, and

signaling heterogeneity can cloud discrete conclusions.

Therefore, GPCR-based discoveries have slowly matured,

due to the intrinsic limitations of pharmacological manip-

ulations. These approaches lack both receptor subtype

specificity and cellular resolution. Though development

of optogenetics provided neuroscientists with the ability to

probe neural circuits with discrete spatiotemporal control,

most optogenetic applications have focused on using light-

sensitive ion channels. To achieve more naturalistic con-

trol of neuromodulator signaling, GPCR-based optoge-

netic and chemogenetic tools were created. These

techniques allow for the selective interrogation of specific

signaling and cell types in neural circuits with high spatial

and temporal resolution in vivo. These tools (used inde-

pendently or in a multiplexed fashion) offer powerful

means for neuromodulation in the brain.

Here we provide a description of recent advances in the

development of genetically targeted tools to interrogate

neuromodulation, more specifically GPCR signaling in the

brain (outlined in Table 1). This review is not meant to be

exhaustive; here we focus on recently developed

approaches used to characterize GPCR bias, or define

either specific endogenous GPCR intracellular pathways,

each with potential to be used in the brain to aid in the

development of novel therapeutic treatments. For more

comprehensive reviews, see Refs. [1–6]. We also compare

both optical and chemical techniques. Additionally, we

will discuss technological advancements for utilizing these

tools in vivo. Finally, we discuss future development and

application of optogenetic and chemogenetic tools.

Optogenetics: control or measurement of cell signaling

with light

Optogenetics describes the technology in which cells are

modified genetically to express light sensitive proteins
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allowing for either measuring or controlling cellular sig-

naling with light. Optogenetics debuted in neuroscience

as the direct activation of ion channels to regulate neuro-

nal excitability with discrete spatiotemporal control [7].

Current advances in optogenetics target specific members

of canonical GPCR signaling pathways with both natural

and engineered optically sensitive proteins. Additionally,

endogenous receptors are targeted by photoactivatable

ligands, a method called photopharmacology [4,8]. Fur-

thermore, other optogenetic approaches utilize genetical-

ly encoded reporters of protein-protein interactions or the

production of second messengers [9].

Opsins
Naturally occurring opsins

Opsins are photosensitive GPCRs bound to chromo-

phores. The first GPCR specific optogenetic tools were

naturally occurring opsins [10]. Animal opsins are advan-

tageous because they do not require exogenous chromo-

phores (called retinals) to be added to the brain. Naturally

occurring opsins are diverse in their spectral and signaling

properties, often requiring little mutation or special tun-

ing.

Vertebrate visual opsins: Visual opsins are conopsin and

rhodopsin, the latter is classified as a weak candidate for

optogenetics due to slow kinetics and bleaching. Con-

opsins have spectrally diverse excitation spectra. Devel-

oping tools from conopsin could in theory allow for the

combinatorial activation of two neuronal cell populations.

In the eye, conopsins couple to Ga transducin, part of the

Gi/o family of G-proteins, and thus optogenetic tools

based on conopsin will signal to Gi/o. Thus far, all human
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Schematic representations of GPCR signaling in neurons. (a) GPCRs

signal through both heterotrimeric G-proteins and arrestins. Gi

activates G protein-coupled inwardly-rectifying potassium channels

(GIRK) to hyperpolarize the cell and inhibits voltage gated calcium

channels (CaV2) to inhibit synaptic release. Gi and Gs respectively

inhibit or amplify cyclic AMP (cAMP) production. Gq couples to

phospholipase C to generate IP3 and DAG which in turn regulate

intracellular calcium stores. Arrestin signaling is predominantly

mediated through phosphorylation of MAP kinases. (b) Schematic

representation of Opto-b2AR depicting mutations for G-protein (Opto-

2AR-SS) or arrestin (Opto-b2AR-LYY) bias. (c) Schematic

representation of Designer Receptors Exclusively Activated by

Designer Drugs depicting mutations for G-protein (hM3D-Gq) or

arrestin (hM3D-Arr) bias. (IP3, Inositol triphiosphate; MAPK, mitogen

activated protein kinase).

Table 1

Recently developed optogenetic tools

Tool Mechanism Targeted pathway Activation Deactivation/

dissociation

Opsins [14�,143] Conformational change G-protein and arrestin NIRW-UV Dark or bistable

Opto-Chimeras [1,20] Conformational change G-protein and arrestin Red-blue Dark or bistable

BLUF photoreceptors [35,37] Conformational change Cyclic nucleotides Blue Dark

LOV domains [42,44,48] Proximity P13K Blue Dark

Conformational change GTPase, MAPK Blue Dark

Cryptochromes [3,51] Proximity Kinase, GTPase, PI3K,

MAPK, transcription in vivo

Blue Dark

Phytochromes [56�,59,144] Conformational change cAMP NIRW NIRW

Proximity ERK, PI3K, GTPase Red NIRW

Caged Ligands [145,146] Uncaging GPCR UV Irreversible

Photoswitchable molecules [4,67] Uncaging GPCR, DAG UV (red) Green (blue)

Photoswitchable tethered ligands [73,74] Uncaging GPCR UV Green

Resonance Energy Transfer (RET) [75] Proximity, sensor Kinase activity, 2nd

messengers, inter-and

intramolecular interactions

Red-blue Target protein

dependent

Genetically encoded calcium indicators

(i.e. GCaMP) [5,82]

Sensor Calcium Red and

green

Calcium

dependent

Fluorescent Protein Exchange (FPX) [80�] Sensor Calcium, PIP2, PKA

activation, ERK activation

Red or

green

Target domain

dependent

www.sciencedirect.com Current Opinion in Pharmacology 2017, 32:56–70



conopsins have been characterized in neuronal cultures,

with some work in brain tissue [11]. The use of human

blue conopsin (vLWO; vertebrate long wavelength opsin)

and mouse red conopsin (vSWO; vertebrate short wave-

length opsin) for modulating neural circuits has been

validated brain slices [12]. Photostimulation of conopsin

modulates GIRK currents, a typical GPCR coupling

event in neural circuits. Additionally, unlike rhodopsin,

conopsins can be repeatedly activated without a notice-

able desensitization of the response [12]. Recently, con-

opsin hyperpolarized DRN neurons in brain slice, and a

chimera (see below) expressed in the DRN was able to

modulate anxiety behavior [12].

Melanopsin, a non-visual opsin, has also successfully

engaged neural circuits [13]. Melanopsins are activated

by blue light, but unlike the visual opsins, are bistable and

thus can be deactivated by yellow light. Though mela-

nopsin has the potential to couple Gi/o to regulate GIRK

channels in heterologous systems, when examined in

neurons it is almost exclusively Gq-coupled. Recently

two variants of melanopsin have been characterized for

transient and sustained Gq activation [14�]. Stimulation of

ectopic melanopsin in pyramidal neurons mimics Gq

modulation of channels [15].

Gs signaling can be activated by photo-stimulating certain

non-mammal opsins. Jellyfish opsin signals through Gs to

induce translocation of adenylyl cyclase, increase the

production of cAMP, and increase phosphorylation of

ERK [16]. A natural guanylyl cyclase fused to an opsin,

was recently discovered in fungus [17]. This cyclase,

termed Guanylyl Cyclase Rhodopsin (BeCyclOp), does

not produce cAMP, unlike previously engineered guany-

lyl cyclase optogenetic tools. BeCyclOp has a functional

spectrum broader than vertebrate opsins, with maximum

cGMP production in green (530 nm) light and low activity

in red and violet light. This cyclase was also functionally

expressed in Caenorhabditis elegans muscle cells, demon-

strating activity comparable to photo-stimulation from

channel-based optogenetics [18�].

Opto-XRs

GPCR signaling in neural circuits may also be modulated

though intracellular signaling that may not be dependent

solely on generic Ga subunit coupling dynamics. There-

fore, to more closely mimic endogenous signaling, chi-

meric optogenetic tools have been engineered using

opsins with intracellular loops and C-terminal tail of

GPCRs endogenously expressed in the central nervous

system. The first of this family of ‘Opto-XRs’ were

adrenergic receptors Opto-a1AR and Opto-b2AR

(Figure 1b). [19,20]. The full profile of Opto-b2AR sig-

naling was recently validated as mimicry of most of the

endogenous receptor’s properties. This study was also the

first to express Opto-b2AR in vivo to demonstrate real

time behavioral responses in endogenous neural circuits

(anxiogenesis) [21��,22��]. Additionally, the first proto-

types of G-protein and arrestin biased chimeras have been

developed and characterized in vitro [21��]. This study

reported diverse signaling dynamics were possible with

Opto-XRs mutated either in the canonical GPCR DRY

motif (Optob2-LYY, Addgene), known to be involved in

G-protein coupling [23], or in the c-terminal serines

(Optob2-SS, available in Addgene) known to be phos-

phorylation sites of G-protein coupled receptor kinase

(GRK; Figure 1b) [24]. These prototypes differed in

canonical ERK signaling, densensitization and internali-

zation patterns. However, future studies and additional

prototypes are warranted in this regard, as crystal struc-

tures, critical residues for G-protein and arrestin bias, and

interactions continue to be identified [25].

Another chimera, Opto-A2AR, from bovine rhodopsin

chimera and the Adenosine 2A receptor, was also charac-

terized in vitro and in vivo [26�]. Opto-A2AR mimicked

endogenous A2AR by increasing cAMP production and

differentially recruiting phosphorylation of only CREB in

the hippocampus and only MAPK in the nucleus accum-

bens (NAc). In the same behavioral paradigm, stimulation

of Opto-A2AR in the hippocampus impaired memory

consolidation, while stimulation in the NAc did not affect

memory but increased locomotor activity. This demon-

strates that Opto-A2AR mimics differential A2A signaling

in endogenous brain regions which leads to also different

behaviors [26�].

OMOR, comprised of rat rhodopsin with intracellular

components of the mu opioid receptor (MOR), mimics

endogenous opioid signaling in vitro through Gi/o protein

and arrestin mediated signaling, by inhibiting production

of cAMP, coupling to GIRK and stimulating ERK phos-

phorylation. In neuronal slices, saturating concentrations

of mu agonist, DAMGO, prevented a subsequent re-

sponse to photo-stimulation of OMOR-induced GIRK

currents suggesting this chimeric receptor accessed the

same intracellular pools of downstream effectors. Lastly,

OMOR also mimicked MOR’s ability to induce either a

preference or aversion depending on the endogenous

neural circuit where it was expressed [27��]. This study

comprehensively validated the use of OMOR as a proxy

for MOR a variety of preparations.

Additional, chimeric GPCRs have been engineered with

melanopsin and conopsins and have been utilized in vivo
[12,15,28��,29]. Opto-mGluR6, which is human melanop-

sin with the intracellular components of metabotropic

glutamate receptor mGluR6, was used to restore vision

through ON bipolar cells in blind mice [28��]. Other non-

rhodopsin chimeras are partial chimeras that contain only

some of the intracellular domains serotonin receptors.

Herlitze and colleagues used the C-terminal tail of sero-

tonin receptors to target opsins to the appropriate signal-

ing domains. This method was also used to create tools

58 Neurosciences
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from vertebrate conopsins (Gi/o coupled) and human

melanopsin (Gq coupled) with the c-tail of 5HT1A and

5-HT2C, respectively. Both tools modulated dorsal raphe

circuits involved in anxiety behavior. Recently, another

partial melanopsin–serotonin chimera, created only with

the intracellular loops of 5-HT2A, was reported to tran-

siently hyperpolarize cells, but unreliable expression

prevented quantification of the effects [15].

One exciting possibility with these chimeric Opto-XR

approaches is the ability to mimic spatial and temporal

properties of neuromodulator signaling at synapses or in
vivo. For example, tuning the amount of response via a

photo-stimulation event to mirror the release and acti-

vation kinetics of a monoamines or neuropeptides will

allow us to better understand how these signals are

transmitted in time, over small distances, in genetically

defined cell types, and neural circuits. In addition, future

approaches to define the 2-photon emission spectra of

these opsin tools will allow for more advanced imaging

studies in vitro in brain sections alongside sensing of

signal transduction (i.e. GCaMP, or FLIM-based meth-

ods; see below). This would allow the investigator to

perturb signaling in a native system while capturing

neuronal ensemble dynamics, or GPCR signaling in real

time. Advances along these avenues are likely to occur as

additional Opto-XRs and native GPCR opsins become

characterized and validated side-by-side against their

native receptor counterparts. Additional work will be

needed to validate the expression and localization  pro-

files of these non-native receptor tools, and they may not

recapitulate endogenous GPCR trafficking, and may

need chaperone sequences added in some cases. These

photo-sensitive GPCR constructs could also be used for

subcellular optogenetics to investigate bias based on

GPCR localization. Localization of signaling is now at

the forefront of GPCR research. Gautam et al. demon-

strated that Gbg subunits not only translocate to intra-

cellular membranes upon GPCR activation, but regulate

cytoplasmic calcium concentrations [30,31]. Additional-

ly, there is recent and increasing evidence for the sustain

propagation of G-protein-mediated signaling within

endosomes [32,33]. Photoactivatable proteins are anoth-

er powerful tool to investigate subcellular GPCR signal-

ing cascades.

Photoactivatable proteins
In addition to activation of GPCRs, there are other

optogenetic tools for the activation/inhibition of 2nd

messengers. This subset of tools includes unmodified

proteins and engineered/chimeric tools containing natu-

rally derived domains from non-mammalian species.

These tools regulate downstream signaling through two

mechanisms: allostery and proximity (Figure 2). For a

more comprehensive review of these tools, see Ref.

[3,34].

Flavoproteins

Flavoproteins are a diverse set of proteins that contain

blue light sensing domains that use either flavin adenine

dinucleotide (FAD) and flavin mononucleotide (FMN)

chromophores, both produced in mammalian cells. These

include blue light using FAD (BLUF), light-oxygen-volt-

age (LOV) domains, and cryptochromes (Figure 2a). Fla-

voprotein domains used for optogenetic tools either

initiate enzymatic activity, dimerize, or change in confor-

mation, all in response to light.

Photoreceptors containing BLUF domains modulate cy-

clic nucleotide production (for a complete review on tools

to modulate cAMP signaling see Ref. [35]); Pioneering

studies used naturally derived flagellate Photoactivated

Adenylyl Cyclase (PACa) to modulate behavior in non-

mammalian model organisms [36–39]. Recently, investi-

gators used PAC in rodent neuronal cultures to define the

cAMP-PKA pathway that modulates axonal branching, a

study capitalizing on the subcellular spatiotemporal con-

trol of optogenetics [40]. BLUF domains are the primary

way to optogenetically manipulate cAMP aside from

GPCRs, though the precise mechanism of activation is

unknown. Excitingly, the crystal structure of a smaller

version of PAC was characterized from cyanobacteria

Oscillatoria acuminate (OaPAC), providing insights on its

mechanism of light activation [41��].

LOV domains uniquely offer two mechanisms for tool

development, conformational change and dimerization

(for review see Ref. [42]). Light induced conformational

change in the AsLOV2 domain, includes the unfolding of

the Ja helix, which reveals the c-terminus [43]. In the

‘unmasking’ approach, enzymatic or binding domains are

fused to the c-terminus [42] (Figure 2a, upper left).

Unmasking was used to design a photoactivatable GTPase

(PA-Rac1), which was used in brain with some success

(NAc cocaine) [44,45]. Recently, AsLOV2 was also used as

the foundation for light-induced protein dissociation, an

approach called LOV2 trap and release of protein (LOV-

TRAP). The creators of LOVTRAP generated a small

protein (ZDark) with high affinity to the coiled Ja helix,

thus protein association only occurs in the dark. In the

proof of concept study, LOVTRAP was used to sequester

proteins from their signaling domain, but this approach

can be extended to diffusible partners [46��]. Dimer

association can be achieved with the Vivid (VVD) LOV

domains that do not contain the Ja helix [47,48]. Recently,

VVD domains were tuned to create Magnets, a family of

photoswitches with dissociation constants ranging on the

time scale of seconds to minutes. The authors demon-

strated the utility of magnets by creating a photoactiva-

table phosphatidylinositol 3-kinase with the ability to

change the morphology of COS-7 cells [49��].

Cryptochromes are another class of proteins able to create

dimers. CRY2-CIB1 heterodimers are widely used in

Optogenetic tools for GPCR signaling in brain Spangler and Bruchas 59
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Schematics of Non-GPCR optogenetic tools (a) Blue light sensitive flavoproteins induce conformational changes (LOV and BLUF domains, left

panel) or protein interactions (LOV domains and cryptochromes, right panel) (b) Red sensitive phytochromes induce both conformational changes

(bacteriophytochromes, left panel) or photoswitchable protein interactions (plant phytochromes, right panel). (c) Photopharmacology techniques:

peptides may be caged by the addition of a photolabile carboxynitrobenzyl moiety (CNB) to tyrosine (top), or photoswitchable ligands provide

reversible caging through photoisomerization of azobenzene (bottom). (d) Ratiometric optogenetic reporters: FRET sensors report protein

interactions (top). GCaMP, is a genetically encoded calcium sensor (middle). Fluorescent Protein Exchange sensors rely on the change of affinity

of a fluorescence enhancing monomer (bottom). (AsLOV2, avena sativa phototropin 1 LOV domain; Bphy, Rhodobacter sphaeroides

bacteriophytochrome domain; CIB1, CRY-interacting bHLH1 (helix-loop-helix 1); CRY2, cryptochrome 2; CFP, cyan fluorescent protein; NIRW,

near infrared window; PIF, phytochrome interaction factor; PHY, phytochrome domain; YFP, yellow fluorescent protein).
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optogenetic tools to modulate protein-protein interaction

and regulate protein localization [50,51]. CRY2-CIB1

technology was specifically used to inhibit G-protein

signaling by recruiting regulator of G-protein signaling

4 (RGS4) to the plasma membrane, providing both the

groundwork for tools to optically control G-protein acti-

vation with subcellular precision, and new insights into

GPCR localized signaling [52��]. Interestingly, CRY2

domains also have the ability to form homodimers. This

has been used recently to develop CRY2olig: Light

Induced Co-clustering (LINC), which can be used as a

mode of activation or inhibition through sequestration.

Limitations to LINC are similar to those of co-immuno-

precipitation, for the binding partners of the target pro-

tein may be sequestered as well. Another consideration is

that oligomerization through LINC currently does not

have the capability to localize clustering to a specific

subcellular domain.

Phytochromes

Tools engineered with phytochromes enhance temporal

control of signaling because they are bistable; they are

sensitive to both red and neared infrared wavelengths of

light (650–750 nm). Near red wavelengths are ideal for in
vivo models due to the deceased amount of photo toxicity

and increase penetrance in tissue [53]. However, red-

shifted proteins do have the risk of thermal activation

[54]. Phytochromes are derived from plant, fungi and

bacteria; and like LOV domains they can regulate signal-

ing through conformational changes and dimerization

(Figure 2b).

Bacteriophytochromes are an extremely attractive plat-

form for in vivo applications since not only are they the

most sensitive to far red wavelengths, but their chromo-

phore (biliverdin) is present in all mammalian cells

[53,55�]. Bacteriophytochromes are enzymatic photore-

ceptors. Though the exact details of conformational

changes that lead to the activation of bacteriophyto-

chromes is unknown, two groups have used crystal struc-

tures to engineer optogenetic tools to regulate cyclic

nucleotides in eukaryotic cells. Light-activatable phos-

phodiesterase (LAPD) was based on structure similarities

of the regulatory domains of human phosphodiesterase,

PDE2, and the light sensing domain of a bacteriophyto-

chrome histidine kinase, PaBPhy. Fusion of the phos-

phodiesterase and light sensitive domains of these

proteins generated a red light-activatable phosphodies-

terase that deactivates in far red light [56�]. LAPD was

functional in whole zebrafish embryos, but has yet to be

used in a behavioral assay. Also guided by structure, Ryu

et al. [55�] generated a near infrared window light activat-

ed adenylyl cyclase (Ilac) by fusing domains of a bacter-

iophytochrome diguanylate cyclase and bacterial adenylyl

cyclase. The authors used this tool to induce locomotion

in wildtype C. elegans through the production of cAMP, an

experiment not possible using PAC, due to confounding

blue light avoidance in wildtype in C. elegans [38,57].

Optogenetic tools derived from plant phytochromes take

advantage of the heterodimerization of the PHY domain

with PIF3 or PIF6 [58,59]. These domains can be used to

associate known interacting partners, or to translocate a

protein of interest to its functional intracellular domain.

Phytochrome heterodimers may be preferred over flavo-

proteins due to their red-shifted sensitivity; however, the

chromophore PCB is not endogenous in mammalian cells,

limiting its application in neuroscience. Additional genet-

ic engineering would be required to enable cells to

synthesize PCB [60]. Phytochromes have been used to

generate optogenetic tools for the regulation of phosphoi-

nositides and ERK [61,62]. It is likely that future itera-

tions of phytochrome domains will begin to be used in

cultured neurons and in brain tissue as they become

refined and more well accepted. Phytochromes offer

several advantages for dissecting subdomains of neuronal

signaling, and for uncovering the complexity of the in-

tracellular compartments involved in neuromodulation.

Photopharmacology
Studies using classic pharmacological approaches are

limited: drugs cannot target a subset of constitutively

expressed proteins with spatiotemporal precision. How-

ever, spatiotemporally precise drug delivery can be

achieved by integrating optical methods, an approach

called photopharmacology (Figure 2c). Photopharmacol-

ogy offers subcellular resolution while potentially pre-

serving properties of the native receptors, including

activation and deactivation kinetics, trafficking, and

levels of expression [63–65].

For several years, neuroscientists have practiced photo-

pharmacology with caged-ligands [66]. Caged ligands

contain a photosensitive moiety that render the ligand

inert. These ligands become biologically active only

milliseconds after UV photolysis. Recently, Banghart

and colleagues from the Sabatini group have used this

technology to target opioid receptors. Endogenous opioid

agonists were modified at the terminal tyrosine with a

photoactivatable chromophore. These ligands offered the

spatiotemporal control needed to study neuropeptide

signaling in brain tissue [64] (Figure 2c). In a later study,

the same group caged opioid antagonist naloxone to study

the deactivation kinetics of opioid signaling in vitro [65].

Though photo-caging is a powerful tool for delivering

ligands, it is largely irreversible in most instances. Re-

versible activation of ligands is achieved through the use

of proteins containing photolabile domains, also known as

photoswitches. The most common photoswitch is azo-

benzene, originally sensitive to UV light; red shifted

versions have developed to allow for use in vivo [67,68]

(Figure 2c). A photoswitchable small molecule mu opioid
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agonist fentanyl has been developed as well using this

approach [69�]. Diffusible photoswitches have also been

developed to allosterically modulate metabotrophic gluta-

mate receptors [70,71��]. Additional, neuropeptide photo-

ligand mimics are in development and offer exciting

extensions of this early work. These modified neuropep-

tides, however, have yet to be applied in vivo. Azobenzene

technology can also be extended to second messengers.

Recently, photoswitchable DAG was developed and used

to control synaptic transmission in hippocampal mouse

slices and C. elegans in vivo, illustrating the potential of

photoswitches to modulate specific signaling pathways

[72�].

Diffusible photosensitive ligands allow for spatial acti-

vation, but, like traditional pharmacological methods,

lack genetic specificity. Genetic targeting can be

achieved with Photoswitchable tethered ligands

(PTL). PTLs are photosensitive ligands that will cova-

lently bind to an engineered protein [4]. This approach

was developed for metabotropic glutamate receptors

(LimGluR), but could be translated to another GPCRs

[73]. Although engineering GPCRs for PTL requires

minimal mutation, the design of PTLs entails modeling

based on crystal structures, possibly limiting their exten-

sion to less studied receptors [74]. Nevertheless, the

PTL approach is an attractive technology as minimal

mutations may preserve properties of the native receptor

and allow for integration of other mutations, including

those that generate bias.

Reporters
Not only can optogenetic approaches use light to induce

changes in the cell, they can also report localization,

intramolecular or intermolecular interactions, or the state

of the cell (voltage, pH, presence of second messengers)

(Figure 2d). These are usually fluorescent proteins (FP)

containing intrinsic chromophores. Optogenetic reporters

are useful for real-time imaging. Optogenetic reporters

are advantageous over chemical probes because through

mutagenesis their spectral properties can be changed.

Most commonly used are Resonance Energy Transfer

(RET) techniques. The RET approach examines inter

and intramolecular interactions by utilizing the overlap of

emission and excitation of light-emitting proteins [75]. In

this technique, light emitted from a donor protein excites

an acceptor FP within 100 Å [75]. The donor proteins of

RET are either bioluminescent (BRET), or fluorescent

[in the case of FRET (Förster Resonance Energy Trans-

fer)]. Interactions in RET are determined by analyzing

intensity. Classically, this is of the relative intensity

expressed as a ratiometric output, but RET can also be

determined by the exponential decay of the intensity of

the donor, fluorescent lifetime imaging (FLIM), which is

independent of relative protein expression [76]. Recent-

ly, a FRET-FLIM PKA sensor expressed in neurons was

able to report endogenous adenosine-A2A receptor activ-

ity, demonstrating the value of this technology to observe

GPCR signaling in the brain [77].

Other optogenetic reporters are comprised of single fluo-

rescent proteins. Previously, interacting domains of in-

terest were fused to independent halves of a single FP,

creating a fully functional protein based on proximity.

However, this approach is irreversible, posing challenges

for some applications. Alford and colleagues have devel-

oped a method using heterodimers: one monomer weakly

fluoresces due to a quenched chromophore; the second

monomer enhances the fluorescence (Figure 2d). Origi-

nally, there were two sets of AB heterodimers for either

red (RA and RB) or green (GA and GB) fluorescence

[78,79]. However, the enhancing partners (monomer B)

bound both RA and GA. Through optimization of the

monomer B, the authors created a sensor that would

fluoresce green or red depending on the preferential

affinity of monomer B, a concept coined Fluorescent

Protein Exchange (FPX) [80�]. By fusing the monomers

to various protein domains, the author created sensors for

MAP kinase activity and a variety of second messengers

(Ca2+, PIP2, PKA activation via CaMP). Furthermore,

FPX sensors can be expressed single polypeptides, re-

ducing confounds of expressing multiple proteins.

Classically, Gq-mediated calcium increases via neuromo-

dulator receptors was detected by variety of dyes includ-

ing Fura-based compounds that cannot be targeted to

genetically defined neuronal populations. Recently, ge-

netically encoded calcium sensors (GECI) have revolu-

tionized neuroscience with the ability to detect calcium

transients as a proxy for action potential firing [5].

GCaMP-type GECIs are the most utilized and optimized

for in vivo applications, although in some cases they have

been used in primary cultures [81]. Reporters in the

GCaMP family are circularly permutated FPs fused to

calmodulin (CaM) and a Ca2+/calmodulin binding do-

main, M13 [82]. In the absence of Ca2+, the intrinsic

chromophore is exposed and therefore quenched by the

cytosol. In the presence of Ca2+, CaM and M13 interact,

protecting the chromophore from quenching, therefore

allowing the FP to fluoresce more effectively (Figure 2d)

[82]. The original GCaMP fluoresces green but now they

are available in other colors [83]. Though GCaMP has

been extensively used to uncover the specific contribu-

tions of neuronal ensembles to behavior or evoked circuit

activity, its value as a tool to investigate endogenous

GPCR signaling through pharmacological approaches is

only beginning to be realized [84]. In the next several

years, we are likely to see the use of this tool broadened

to neuromodulator based questions and in vivo drug

screening approaches. Developments in voltage indica-

tors such will also allow for fine temporal precision

of measuring neuromodulatory effects on membrane

potential [85,86].
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Chemogenetics: control of cell signaling with

biologically inert molecules

Chemogenetic tools allow for selective modulation of

GPCR signaling in specific tissues or cell types. Like

optogenetic tools, chemogenetic tools enhance the spa-

tial resolution of GPCR signaling; Chemogenetic tools

are also more easily adaptable for behavioral applica-

tions (Table 2). For a more extensive review on these

tools see Refs. [87–89]. The most widely used chemo-

genetic tools are modified GPCRs (see below). In addi-

tion to GPCRs, kinases have also been chemically

engineered. By mutating ATP-binding sites allowing

for the acceptance of bulky ATP analogues, Shokat and

colleagues were able to develop methods to selectively

inhibit kinase activity or identify substrates [90–92].

Both of these techniques have been used in neurosci-

ence applications, though not directly related to GPCRs

[93]. Mitogen activated protein kinases, commonly

downstream of both G-protein and arrestin signaling

pathways through GPCRs have also been a subject to

this engineering [94]. However, due to the toxicity of

thiophosphates, identification of kinase substrates has

limited use in vivo.

The pioneering chemogenetic GPCRs were termed

RASSLs, Receptor Activated Solely by Synthetic Li-

gands. RASSLs tended to have limited use in vivo, due

to either low affinity of RASSL ligands, endogenous

receptor activation, or constitutive activity [95]. The

newest generation of chemogenetic GPCRs, DREADDs

(Designer Receptors Exclusively Activated by Designer

Drugs), were designed to only respond to biologically inert
synthetic compounds [96]. Through directed molecular

evolution of the human muscarinic receptor, the Roth

group engineered a family of minimally mutated musca-

rinic receptors that are only activated by clozapine-N-

oxide (CNO), but not endogenous ligands, including

acetylecholine. Because of the diversity of muscarinic

receptors, DREADDs were originally either Gq (hM3Dq)

and Gi/o coupled (hM4Di) (Figure 1c).

Currently, hM3Dq and hM4Di are widely used in vivo to

excite and silence neuronal populations, and to modulate

gliotransmission [97–99]. Furthermore, the development

of DREADDs has been pivotal in selectively modulating

GPCR signaling specifically in the brain, notably signal-

ing through pathways that are not directly coupled to
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Table 2

Comparison of optogenetic and chemogenetic tools

Tool Advantage Disadvantage Mitigations

Photoactivable

proteins

Microsecond temporal resolution [49��] Costly equipment Spectral tuning

Subcellular Spatial resolution [52��] Potential thermal activation

(long wavelengths) [54]

Use of 2-photon to reduce

phototoxicity [114]

Abundant in nature [10] Phototoxicity (short wavelength)

Diversity in wavelength and dynamic

range [144]

Less naturalistic

High specificity of signaling

proteins/pathway

Invasive surgery

Opto-XRs Receptor specific signaling Costly equipment Newer devices to increase mobility

and minimize damage in behavior

[117]

Microsecond temporal resolution Chimeras Use of shorter wavelengths to

decrease phototoxicity and increase

penetrance

Subcellular spatial resolution Invasive surgery

Fine control of dosage Restrictive actuators

Diversity of tools

Greater potential for multiplexing

DREADDs Minimally modified Low temporal resolution [89,97] Spatial resolution:

Potential for chronic activation

over weeks [89]

Lower spatial resolution Use to target larger brain structure

[118]

Minimal equipment required ‘Generic’ GPCR signaling Target two pathways with one drug

[111��]

Non-restrictive Lack of diversity

Non-invasive stimulation Potential for constitutive activity [123] Pharmacology:

Many available transgenic lines [88] Titration of CNO

Pharmacological limitations Alternative agonists for muscarinic

DREADDs available [109�]

SalB: not water soluable and retains

low KOR affinity [112]

CNO: can metabolize into clozapine [108],

not completely biologically inert [122]
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excitability through ionic changes. CNO-induced activa-

tion of hM3Dq has been validated in its mimicry of

acetylecholine-induced M3 receptor activation, aiding

in the development of an arrestin-biased and recent

Gq-biased DREADD, all of which have been character-

ized for use in vivo [100,101,102�] (Figure 1c). Addition-

ally, hM4Di has the ability to inhibit vesicle release at

terminals, similar to endogenous Gi-coupled receptors in

the brain [99]. Thus, targeting hM4Di to axons offers a

tool to silence synapses, independent of the excitability of

the cell [103�]. Unlike, hM3Dq and hM4di, Gs-coupled

DREADDs (rM3Ds) are chimeras, similar to Opto-b2AR,

except the extracellular domain is a Gq DREADD as

opposed to rhodopsin [104]. The value of DREADDs is

demonstrated by the discovery of novel PKA-dependent

GPCR signaling in consummatory behaviors. In an ex-

ploratory study, activation of rM3Ds in AgRP neurons

increased food intake, through activation of PKA [105��].
Additionally, Gi-coupled postsynaptic receptors modulat-

ed binge alcohol behavior, through inhibition of PKA

signaling [106�]. DREADDs have also been used to

elucidate sustained Gq-mediated neuronal inactivation

through JNK MAP kinase [107]. These experiments

highlight the ability of DREADDs to elucidate molecular

mechanisms of neuromodulation through G-protein acti-

vation.

Though DREADDs demonstrate cell behaviors akin to

endogenous GPCRs, their translational potential is limit-

ed by their ligands. Controversy over the metabolization

of CNO to pharmacologically active clozapine in humans

and guinea pigs inspired a structure-activity relationship

(SAR) analysis of DREADDs aimed to identify alterna-

tive agonists [108]. This study yielded ‘Compound 21’,

which is not metabolized in the same pathways as CNO,

eliminating the risk for conversion to clozapine [109�].
This study also identified perlapine, a sleep-inducing

hypnotic drug, as a highly selective novel agonist for

hM3dq [110]. Lack of diversity in DREADDs and their

ligands, also limits the potential of multiplexing. Howev-

er, Alrdin-Kirk and colleagues took advantage of the

shared ligand by pairing hM3Dq and rM3Ds to maximally

activate dopamine neurons [111��]. In addition to the Gq-

coupled excitation by hM3Dq, the inhibitory effects of

Gi-coupled dopamine autoreceptors were counteracted

by Gs signaling through rM3Ds. With these tools the

authors were able to define a cAMP induced mechanism

for Graft Induced Dyskinesia in Parkinsonian patients, a

phenomenon with no known mechanism and great clini-

cal relevance [111��]. Alternatively, chemogenetic multi-

plexing can now be achieved with the use of KORD

(Kappa Opioid Receptor DREADD) [112]. KORD’s

design was driven by the structure of KOR combined

with molecular modeling of Salnorvin B (SalB), a low

affinity inert ligand of KOR. Because it is pharmacologi-

cally distinct, KORD can be used in concert with musca-

rinic DREADDs to gain bidirectional control of the same

neuron [111��,112]. KORD is also kinetically unique from

hMD4i DREADDs, exerting shorter lasting effects.

KORD has played a pivotal role in expanding the che-

mogenetic toolbox for modulation of neural circuits.

Applicability of optogenetic and
chemogenetic tools
Optogenetic and chemogenetic tools have undoubtedly

revolutionized interrogation of specific GPCR signaling,

especially in the brain. Both genetic approaches have

inherent limitations; thus applicability of each toolset

depends on experimental design. It is important to note

that both approaches have been used to simulate the

endogenous signaling of the other techniques model

GPCRs: hMD3q has been used to recapitulate melanop-

sin signaling in the retina and melanopsin for muscarinic

signaling in pyramidal neurons of the cortex [15,113].

Optogenetics provides precise spatial (subcellular) and

temporal (microsecond) control of signaling. Temporal

control is enhanced with bistable tools (ligands, receptors,

effectors) that allow for inactivation by absorption at a

second wavelength. Because of the range of spectral

properties optogenetic tools from ultraviolet to near in-

frared wavelength, there is flexibility in the number of

available tools for a specific target. Additionally, since

photosensitive proteins are abundant in nature, there are

many unexplored avenues for tool development.

Currently, there are optogenetic tools available for each

step of the GPCR signaling pathway, from ligand binding

to downstream signaling events and deactivation. There

are some considerations in using optogenetics, although

recent advances in technology have addressed some of

these concerns. Biophysical considerations include the

risk of dark state activity, whether basal enzymatic activi-

ty, dimerization or incomplete caging, and limitations of

wavelength required for stimulation. Some opotogenetic

tools require blue or UV light, short wavelengths with

potentially toxic effects and shallow tissue penetration.

The use of UV light can be avoided either by delivering

two or more photons of lower energy, as in 2-photon

microscopy, a method especially useful for commonly

UV sensitive photoactivatable ligands. Two-photon mi-

croscopy also enhances the spatial resolution, as focusing

two beams restricts stimulation to a confined three di-

mensional space [114]. Furthermore, near IR wave-

lengths combined with cranial windows allow for the

stimulation and imaging of deep brain structures in vivo
[115]. Previously, in vivo actuators greatly limited behav-

ioral approaches because they were invasive, restrictive,

and lacked spatial precision. However, the latest optoge-

netic devices minimally damage the brain, liberate the

subject’s mobility and precisely deliver light [116,117].

Compared to optogenetics, chemogenetic approaches are

generally less technically challenging to use, for they are
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less invasive, less restrictive and cost-effective. Chemo-

genetic tools require no specialized equipment for actu-

ation; Because of its high blood brain barrier penetrance,

CNO can be administered through local or systemic

injection [99,103�,118]. CNO is also water soluble, allow-

ing for chronic exposure through dilution in animal

drinking water for extended periods of time (i.e. 2 weeks),

without decreases in behavioral effects [89,119–121].

However, some recent studies highlight the need for care

and optimization when using DREADD receptors in vivo,

including the selection of proper control groups. Previous

concerns about the biological activity of CNO were

limited to only humans and guinea pigs, however a recent

study demonstrated that CNO also exerts behavioral

effects on rats that do not express DREADDs [122].

Another group also demonstrated biologically activity

of DREADDs in the absence of CNO [123]. These

studies highlight the importance of experimental design,

including proper controls.

Chemogenetic tools enable the activation of GPCR path-

ways with spatial resolution, though significantly less so

than optogenetic tools. Both tools can be similarly

expressed through stereotaxic injections (see below).

Optogenetics, however, allows for precise subcellular

stimulation of GPCR signaling, not available in chemo-

genetics [34]. Nevertheless, chemogenetic tools allow for

modulation of larger brain areas that cannot be feasibly

illuminated through optogenetic approaches [118]. Che-

mogenetic tools share limitations with classic pharmaco-

logical methods: these tools potentially have off-target

effects and lack precise temporal control. In addition to

the slower kinetics of activation, compared to optogenetic

tools, CNO has a slow wash out rate, potentially lasting for

at least a 2 hours [89,97,104]. Therefore, chemogenetics

are more suited for investigating slow, long-lasting be-

havioral effects. In summary, chemogenetic and optoge-

netic tools differ in their feasibility and spatiotemporal

resolution. Each toolset has a set potential strengths and

limitations, determined by experimental design. Both

tools can be used complimentary to each other to dissect

receptor specific from generic G-protein signaling [22��].

Expression methods
The resolution of optogenetic and chemogenetic tools is

defined not only by stimulation but also expression.

These tools are expressed either virally or through trans-

genic animal approaches. Viral delivery is the most widely

used route for expressing transgenes [124]. Viral delivery

requires less commitment of resources needed to gener-

ate and maintain a genetic line. Additionally, viral ex-

pression is limited to the site of infection, increasing

spatial resolution. Adeno-associated viruses (AAV) and

lentiviruses are most commonly used [21��,27��,124].

Preference of viral vector can depend on desired speci-

ficity of expression. AAVs spread farther from the injec-

tion site, due to their small size, and lentiviruses typically

infect smaller regions, but can carry larger cargo when

needed. Fine spatial resolution can theoretically be

achieved by encoding elements to ensure proper target-

ing to synapses and other neuronal compartments. Recent

efforts have utilized both c-terminal and n-terminal

domains for this purpose and further developments will

enhance specificity to select neuronal compartments

[12,29,103�].

As their name implies, genetically targeted technologies

gain resolution through genetic identity. Lentiviruses

have larger packaging capabilities, permitting the use

of transcriptional promoters to target expression neuronal

types, an approach usually not available with AAVs [125].

Cell-type specific promoters, however, may not a drive

sufficient amount of expression [126]. To overcome this,

viruses dependent on DNA recombination, especially

through Cre recombinase, have been developed [127].

Recombinases usually are driven by cell-type specific

promoters in the genome of a transgenic line or in an

independent virus [128]. More discrete populations of

neurons can be targeted using intersectional approaches,

utilizing other recombinases such as FLP and DRE

[129,130]. Recombinase technology can also target neu-

rons that project to the injection site through the use of

Canine-adenovirus (CAV) [131]. CAV viruses have the

ability to infect neurons through retrograde axonal trans-

port [132]. DREADDs have been successfully expressed

in vivo through this method [133,134]. Another, very

promising retro-AAV (rAAV2) was recently developed,

that will open even more possibilities for retrograde

expression [135]. Finally, recombinases are also subject

to optogenetic stimulation, photoactivatable Cre-recom-

binase is continually being optimized for the spatial

control gene regulation in vivo [136–138]. These

approaches of expression allow for further control of

discrete cell type manipulations within neural circuits

offering even greater specificity and reductionism of

neuromodulator pathways in vitro and in vivo.

Development
There are many unexplored avenues of optogenetic and

chemogenetic tool development. These techniques can

be developed to model other GPCR signaling compo-

nents, such as the G11/12 signaling family. Additionally,

the spatial resolution of DREADDs would significantly

increase with photoactivatable ligands. Tuning and op-

timization through mutation can also allow for the devel-

opment of new tools with different signaling dynamics,

including signaling bias, kinetics, spectral properties and

subcellular localization [21��,139]. Many optogenetic

tools are still in the conceptual stages and have yet to

be optimized for expression in neurons or in vivo. In a

recent proof of concept report, light induced secretion

was developed using UV8R, a plant photoreceptor [140�].
Impressively, the authors used this method to optically

induce secretion of a reporter protein at specific dendritic
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branch points [140�]. Validating this approach with func-

tional signaling proteins will significantly expand the

neuroscience optogenetic toolbox for GPCRs. Full char-

acterization of existing tools and their ability to simulate

endogenous in vivo signaling will be crucial as subcellular

localization and cell-type specific expression can define

GPCR bias in vivo. Overall, in vitro and in vivo validation

of current optogenetic tools will aid the community in

selecting the most applicable tools [141].

Developing advances in many fronts of biological tech-

nology will foster the creation of many genetically tar-

geted approaches. Genome sequencing has dramatically

increased the diversification of the available library of

genomic sequences from biological organisms. Currently,

tens of thousands of sequences for opsins and photoacti-

vatable proteins have been reported [10]. Natural pro-

teins hold potential as resources for opsin based tools with

unique spectral properties with minimal mutagenesis

[10]. Advances in technology, such as 2-photon stimula-

tion and imaging have revitalized the development of

optogenetic tools sensitive to short wavelengths, such as

the recently discovered bistable vertebrate Gi coupled

neuropsin [142]. Structural biology, through high resolu-

tion crystal structures and developing modeling software

will continue to inspire the development of optogenetic

and chemogenetic tools far into the foreseeable future.

Concluding remarks
Optogenetics and chemogenetics have revolutionized the

study of neuronal circuitry and have great potential in

dissecting the role of specific GPCR signaling pathways.

Multiplexing within or between tools enables bidirec-

tional neuromodulatory control of signaling pathways in a

single neuronal population. In addition, multiplexing of

optogenetic actuators and reporters of different spectral

occupancy can further define pre- and post-synaptic sig-

naling involved in behavior and disease states. These

tools also have translational potential, providing reduc-

tionist approaches for understanding drugable neural

circuits that may lead to novel chemical entities for drug

discovery.
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