Expression of Ifnlr1 on intestinal epithelial cells is critical to the antiviral effects of IFN-lambda against norovirus and reovirus

Megan T. Baldridge
Washington University School of Medicine in St. Louis

Sanghyun Lee
Washington University School of Medicine in St. Louis

Judy J. Brown
Vanderbilt University Medical Center

Nicole McAllister
University of Pittsburgh School of Medicine

Kelly Urbanek
University of Pittsburgh School of Medicine

See next page for additional authors

Follow this and additional works at: http://digitalcommons.wustl.edu/open_access_pubs

Recommended Citation
Baldridge, Megan T.; Lee, Sanghyun; Brown, Judy J.; McAllister, Nicole; Urbanek, Kelly; Dermody, Terence S.; Nice, Timothy J.; and Virgin, Herbert W., "Expression of Ifnlr1 on intestinal epithelial cells is critical to the antiviral effects of IFN-lambda against norovirus and reovirus." *Journal of Virology* 91,7. e02079-16. (2017).
http://digitalcommons.wustl.edu/open_access_pubs/5500
Expression of Ifnlr1 on Intestinal Epithelial Cells Is Critical to the Antiviral Effects of Interferon Lambda against Norovirus and Reovirus

Megan T. Baldridge,a* Sanghyun Lee,a Judy J. Brown,b Nicole McAllister,c Kelly Urbanek,d Terence S. Dermody,c,d Timothy J. Nice,a Herbert W. Virgina

Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA.

ABSTRACT Lambda interferon (IFN-λ) has potent antiviral effects against multiple enteric viral pathogens, including norovirus and rotavirus, in both preventing and curing infection. Because the intestine includes a diverse array of cell types, however, the cell(s) upon which IFN-λ acts to exert its antiviral effects is unclear. Here, we sought to identify IFN-λ-responsive cells by generation of mice with lineage-specific deletion of the receptor for IFN-λ, Ifnlr1. We found that expression of IFNLR1 on intestinal epithelial cells (IECs) in the small intestine and colon is required for enteric IFN-λ antiviral activity. IEC Ifnlr1 expression also determines the efficacy of IFN-λ in resolving persistent murine norovirus (MNoV) infection and regulates fecal shedding and viral titers in tissue. Thus, the expression of Ifnlr1 by IECs is necessary for the response to both endogenous and exogenous IFN-λ. We further demonstrate that IEC Ifnlr1 expression is required for the sterilizing innate immune effects of IFN-λ by extending these findings in Rag1-deficient mice. Finally, we assessed whether our findings pertained to multiple viral pathogens by infecting mice specifically lacking IEC Ifnlr1 expression with reovirus. These mice phenocopied Ifnlr1-null animals, exhibiting increased intestinal tissue viral titers and enhanced reovirus fecal shedding. Thus, IECs are the critical cell type responding to IFN-λ to control multiple enteric viruses. These findings clarify the mechanism of action of this cytokine and emphasize the therapeutic potential of IFN-λ for treating mucosal viral infections.

IMPORTANCE Human noroviruses (HNoVs) are the leading cause of epidemic gastroenteritis worldwide. Type III interferons (IFN-λ) control enteric viral infections in the gut and have been shown to cure mouse norovirus, a small-animal model for HNoVs. Using a genetic approach with conditional knockout mice, we identified IECs as the dominant IFN-λ-responsive cells in control of enteric virus infection in vivo. Upon murine norovirus or reovirus infection, Ifnlr1 depletion in IECs largely recapitulated the phenotype seen in Ifnlr1−/− mice of higher intestinal tissue viral titers and increased viral shedding in the stool. Moreover, IFN-λ-mediated sterilizing immunity against murine norovirus requires the capacity of IECs to respond to IFN-λ. These findings clarify the mechanism of action of this cytokine and emphasize the therapeutic potential of IFN-λ for treating mucosal viral infections.

KEYWORDS innate immunity, interferons, mucosal immunity, norovirus, reovirus

Received 27 October 2016 Accepted 6 January 2017
Accepted manuscript posted online 11 January 2017

Editor Susana López, Instituto de Biotecnología/UNAM
Copyright © 2017 American Society for Microbiology. All Rights Reserved.
Address correspondence to Timothy J. Nice, nice@ohsu.edu, or Herbert W. Virgin, virgin@wustl.edu.
* Present address: Megan T. Baldridge, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.
M.T.B. and S.L. contributed equally to this work.
Norovirus and rotavirus are viral pathogens that infect at mucosal surfaces and induce gastroenteritis, characterized by vomiting, diarrhea, and malaise (1, 2). Viral gastroenteritis causes significant morbidity and mortality in children, the elderly, and immunocompromised persons, thus representing a substantial health care burden (3, 4). Treatments for these illnesses have been limited thus far to symptomatic care, including rehydration, because currently there is no specific antiviral therapy for these viral pathogens. Lambda interferon (IFN-λ; also called type III IFN) is an antiviral cytokine that regulates viral infection at mucosal surfaces and in the liver and brain (5–8). Administration of recombinant IFN-λ can prevent and resolve viral infections in the gastrointestinal tract (8, 9) and at other sites in mice (10). These effects are observed for murine norovirus (MNoV) in mice lacking adaptive immunity, thus representing sterilizing innate immunity in the intestine (8). These studies indicate the potential for IFN-λ as a therapeutic for viral infections, including those causing gastroenteritis, in humans, including immunocompromised hosts (11). Better understanding of the mechanisms by which this antiviral cytokine functions is essential to understanding basic mechanisms of intestinal control of viral infection and for potential therapeutic application in humans.

Binding of IFN-λ to its receptor, a heterodimer of interleukin-10R2 (IL-10R2) and IFNLR1 (12, 13), induces an antiviral gene expression program similar to that induced by type I IFN, with substantial overlap in gene sets in vitro (10, 14, 15). However, type I and III IFNs exhibit unique antiviral properties in vivo. Ifnlr1−/− mice exhibit elevated intestinal tissue replication and enhanced fecal shedding of a persistent strain of MNoV (8, 16), a model virus which allows for more tractable in vitro and in vivo analyses than human norovirus (reviewed in references 17 and 18). Recombinant IFN-λ treatment is sufficient to prevent and cure MNoV infection (8). In contrast, mice deficient for Ifnar1 (the receptor for type I IFNs) show enhanced extraintestinal spread of virus, but levels of MNoV fecal shedding are comparable to those of wild-type mice (8, 16). Similarly, IFNL1 restricts growth in the epithelium and fecal shedding of reovirus, while IFNAR1 instead regulates reovirus growth in the lamina propria (19). IFN-λ exhibits an antiviral role exclusive of type I IFNs against a murine rotavirus strain (9) but cooperates with type I IFNs to limit intestinal replication of a heterologous simian strain in neonatal but not adult mice (20). These findings indicate the likely importance of tissue compartment-, development-, and cell type-specific effects of type I and III IFNs in vivo. These effects may be secondary to unique virulence factors that counter specific IFNs or to differential expression of the IFN receptors (21, 22).

IFNAR1 is thought to be expressed ubiquitously and at especially high levels on cells of hematopoietic origin (reviewed in references 23 and 24), whereas expression of detectable IFNL1 appears to be limited to mucosal epithelial cells (25), human hepatocytes (6), and neutrophils (26). Although IFNL1 expression on peripheral leukocytes has also been reported, it does not appear to be functional (27). Upon IFN-λ treatment, IFN-stimulated genes accumulate in intestinal epithelial cells (IECs), indicating functional IFNL1 expression (9, 19, 20). In contrast, in IECs of adult mice, IFNAR1 may be expressed at lower levels or alternately trafficked, such as only to the apical portion of the cell (9, 20). Differential receptor expression thus could account for complementary roles for different IFNs in protection against systemic infection (type I) and infection of mucosal (type III) sites. Importantly, however, it has been reported that cells that do not express detectably high levels of IFNL1, such as the endothelial cells of the blood-brain barrier, may still respond to endogenous and exogenous IFN-λ with protective antiviral effects (10). Thus, to successfully identify the cell types required for the antiviral response to IFN-λ, analysis of receptor expression levels may be insufficient, and definitive resolution requires a genetic approach to selectively delete receptor expression in specific cell types.

To identify the cell types that respond to IFN-λ in vivo in the intestine, we generated mice with a conditional mutant allele for Ifnlr1 and crossed them to mice expressing Cre recombinase via the action of different cell type-specific promoters (Table 1). Ifnlr1 was targeted in cell types expected to express high receptor levels (intestinal epithelial cells...
and neutrophils (26) and cells that are known to be permissive for MNoV replication in tissue culture (macrophages and dendritic cells (35)). Of all the cell types tested, only intestinal epithelial cells (IECs) required expression of Ifnlr1 for the antiviral effects of IFN-γ against MNoV. To show the generality of our findings, we demonstrated the importance of IEC expression of this receptor for control of reovirus infection. This is the first study to genetically define IFN-γ-responsive cells in vivo in the context of two independent mucosal viral infections. This study also confirms that the cells required for responding to endogenous IFN-γ to attenuate MNoV infection are the same as those that respond to exogenous IFN-γ administration, including in the elicitation of sterilizing innate immunity.

RESULTS

Ifnlr1 is expressed in the epithelial fraction along the length of the gastrointestinal tract. Tissue from adult mice homozygous for a null mutation in Ifnlr1 (28) or wild-type controls was collected from sites along the intestine, lung, mesenteric lymph node (MLN), or spleen (Fig. 1A). The small intestine was also dissociated into epithelial and lamina propria fractions as previously described (36), and RNA was isolated from

![Diagram showing expression of Ifnlr1 along the length of the intestine](image)

TABLE 1 Mouse lines, nomenclature, and cell types targeted by specific Cre lines

<table>
<thead>
<tr>
<th>Ifnlr1 and Cre mouse line(s)</th>
<th>Line namea</th>
<th>Cell type(s) targeted (reference)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ifnlr1<sup>+/+</sup>; no Cre line</td>
<td>Ifnlr1<sup>+/−</sup></td>
<td>All cells (28)</td>
</tr>
<tr>
<td>Ifnlr1<sup>+/+</sup>; Villin-Cre</td>
<td>Ifnlr1<sup>+/−</sup>-Villincre</td>
<td>Intestinal epithelial cells (29)</td>
</tr>
<tr>
<td>Ifnlr1<sup>+/+</sup>; MRP8-Cre</td>
<td>Ifnlr1<sup>+/−</sup>-MRP8cre</td>
<td>Neutrophils (30)</td>
</tr>
<tr>
<td>Ifnlr1<sup>+/+</sup>; CD11c-Cre</td>
<td>Ifnlr1<sup>+/−</sup>-CD11ccre</td>
<td>Dendritic cells and alveolar macrophages (31)</td>
</tr>
<tr>
<td>Ifnlr1<sup>+/+</sup>; LysM-Cre</td>
<td>Ifnlr1<sup>+/−</sup>-LysMcre</td>
<td>Macrophages, neutrophils, some dendritic cells (32, 33)</td>
</tr>
<tr>
<td>Ifnlr1<sup>+/+</sup>; Deleter-Cre</td>
<td>Ifnlr1<sup>+/−</sup></td>
<td>All cells (34)</td>
</tr>
</tbody>
</table>

a A conditional allele of ifnlr1 (Ifnlr1^{+/−}) was crossed to multiple different Cre lines for lineage-specific deletion of Ifnlr1 in the specific cell types.
these fractions and tissues. Expression of Ifnlr1 was detected by quantitative real-time PCR of cDNA generated from these RNA samples. We found that Ifnlr1 was expressed along the length of the intestine and in the lung, as well as in systemic tissues, including MLN and spleen (Fig. 1B). Intestinal Ifnlr1 expression was substantially enriched (at least 30-fold; $P = 0.0381$) in the epithelial fraction compared to the lamina propria fraction (Fig. 1B), consistent with previous reports (9, 25). As expected, no transcript was detected in any tissue in Ifnlr1$^{-/-}$ mice (Fig. 1B).

Expression of Ifnlr1 in intestinal epithelium regulates MNoV shedding and response to recombinant IFN-λ. Ifnlr1$^{-/-}$ mice and wild-type controls were inoculated with CR6, a persistent strain of MNoV that replicates well in the intestine, and is shed into the feces at readily detectable levels, and is sensitive to treatment with IFN-λ (8, 41). As described previously (8), Ifnlr1$^{-/-}$ mice allow higher levels of fecal MNoV shedding than do wild-type mice at early time points (Fig. 3A and G) and are insensitive to IFN-λ treatment, although this treatment terminates MNoV replication in wild-type mice (Fig. 3A). These results were also observed in a novel Ifnlr1-deficient mouse model (Ifnlr1$^{-/-}$) (Table 1 and Fig. 3B). This assay was next applied to the four mouse strains with lineage-specific deletion of Ifnlr1 (Table 1). Ifnlr1$^{-/-}$-Villincre mice phenocopied Ifnlr1$^{-/-}$ and Ifnlr1$^{-/-}$ mice, exhibiting both elevated fecal shedding of MNoV and resistance to IFN-λ treatment (Fig. 3C). In contrast, Ifnlr1$^{+/+}$-MRP8cre, Ifnlr1$^{+/+}$-LysMcre, and Ifnlr1$^{+/+}$-CD11ccre mice showed no alterations in intestinal Ifnlr1 expression at the level of the whole tissues tested (Fig. 2D, E, and F). Ifnlr1$^{+/+}$-MRP8cre, Ifnlr1$^{+/+}$-LysMcre, and Ifnlr1$^{+/+}$-CD11ccre mice did exhibit substantial deletion of Ifnlr1 in their respectively targeted cell types of neutrophils (~85%), macrophages (~91%), and dendritic cells (~85%), consistent with a previous report (39) (Fig. 2D, E, and F). Expression of Ifnlr1 remained unchanged in lung, MLN, spleen, stomach, and duodenum in Ifnlr1$^{+/+}$-Villincre mice, indicating expression of Cre specific to distal small intestine and colon (Fig. 2C), consistent with previous reports (29, 40).

Expression of Ifnlr1 in intestinal epithelium is essential for induction of IFN-λ-mediated sterilizing innate immunity to MNoV infection. We previously reported that recombinant IFN-λ can cure persistently infected mice in the absence of adaptive immunity (8). To determine whether expression of Ifnlr1 in IECs is required for IFN-λ-mediated sterilizing innate immunity to persistent MNoV infection, we established
FIG 2 Ifnlr1 expression is decreased in the small and large intestines of Ifnlr1f/f-Villincre mice. (A) Schematic depicting the Ifnlr1 gene locus in Ifnlr1tm1a(EUCOMM)Wtsi mice. After crossing with mice expressing Flp recombinase (+ Flp recombinase), the region between the two FRT sites was deleted, leaving conditional-ready Ifnlr1f/f mice. In the absence of Cre, all exons are present. With the addition of Cre recombinase, the floxed exon 2 is deleted. (B) In the absence of Cre [Cre(−)], the IFNLR1 protein is expressed. In the presence of Cre [Cre(+)], the protein sequence is altered at amino acid 20 and a premature stop codon is introduced at amino acid 42. (C to F) Ifnlr1 expression was assessed by quantitative real-time PCR of sites along the intestine and the lung, MLN and spleen, and epithelial and LP fractions from Ifnlr1f/f-Villincre (C), Ifnlr1f/f-MRP8cre (D), Ifnlr1f/f-LysMcre (E), and Ifnlr1f/f-CD11ccre (F) mice compared to their Ifnlr1f/f littermates. Ifnlr1 expression was also assessed by quantitative real-time PCR of isolated bone marrow neutrophils from Ifnlr1f/f-MRP8cre (D), splenic macrophages from Ifnlr1f/f-LysMcre (E), and splenic dendritic cells from Ifnlr1f/f-CD11ccre (F) mice compared to their Ifnlr1f/f littermates. n = 4 to 7 samples per group, from two independent experiments, analyzed by Mann-Whitney test. *, P < 0.05; **, P < 0.01; ns, not significant.
FIG 3 Expression of Ifnlr1 on intestinal epithelial cells is required for the antiviral effects of endogenous and exogenous IFN-λ against MNoV.

(A to E) Time course of MNoV genome copies shed into fecal pellets with time points at 7, 14, 21, 24, 28, and 35 days after CR6 infection. PBS or recombinant IFN-λ was injected intraperitoneally on day 21 into wild-type and Ifnlr1−/− (A), wild-type and Ifnlr1f/f− (B), Ifnlr1f/f− Villincre (C), Ifnlr1f/f− MRP8cre (D), Ifnlr1f/f− LysMcre (E), or Ifnlr1f/f− CD11ccre (F) mice and their Ifnlr1f/f littermates. n = 6 to 12 mice per group, from two to three independent experiments, analyzed by two-way ANOVA followed by Tukey’s multiple-comparison test; a P value of <0.001 by ANOVA column factor was found for panels A to F. (G) Individual data points depicting MNoV genome copies shed into fecal pellets on day 7 from panels A to F. n = 9 to 21 mice per group, from two to three independent experiments, analyzed by one-way ANOVA followed by Tukey’s multiple-comparison test; a P value of <0.001 was determined by ANOVA. (H) Fecal shedding data from PBS-treated mice in panels A to C is shown superimposed to facilitate comparison between strains. n = 8 to 11 mice per group, from two to three independent experiments, analyzed by two-way ANOVA followed by Tukey’s multiple-comparison test; a P value of <0.001 was determined by ANOVA column factor. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ns, not significant.
FIG 4 Expression of *Ifnlr1* on intestinal epithelial cells is required for the antiviral effects of IFN-λ against MNoV in the absence of adaptive immunity. (A) Time course of MNoV genome copies shed into fecal pellets with time points at 7, 14, 21, 24, 28, and 35 days after CR6 infection. PBS or recombinant IFN-λ was injected intraperitoneally on day 21 and day 23 into *Rag1-/-Ifnlr1f/f-Villincre* mice. At 4 days postinfection, viral shedding in stools, were significantly higher in *Rag1-/-Ifnlr1f/f-Villincre* mice but did not affect MNoV loads in *Rag1-/-Ifnlr1f/f-Villincre* mice (Fig. 4A). At 7 days postinfection, *Rag1-/-Ifnlr1f/f-Villincre* mice had significantly higher viral shedding than *Rag1-/-Ifnlr1f/f*-mice, and the level of viral shedding in *Rag1-/-Ifnlr1f/f-Villincre* mice was comparable to the level of viral shedding in *Rag1-/-Ifnlr1f/f-Villincre* mice (Fig. 4B). Therefore, IFN-λ responses in IECs limited persistent MNoV infection in the absence of adaptive immunity, and IFN-λ signaling in IECs was essential for clearance of persistently infected MNoV by IFN-λ-mediated sterilizing innate immunity.

Control of reovirus in intestinal tissue by IFN-λ depends upon the expression of *Ifnlr1* in epithelial cells. To assess whether *Ifnlr1* expression on IECs was required for control of other enteric pathogens, *Ifnlr1-/-* and *Ifnlr1f/f-Villincre* mice were orally inoculated with 10⁸ PFU of reovirus strain type 1 Lang (T1L). At 4 days postinfection, viral titers in small intestinal tissues, including duodenum, jejunum, and ileum, as well as viral shedding in stools, were significantly higher in *Ifnlr1-/-* mice (Fig. 5A and B), consistent with a previous report using another strain of reovirus, type 3 Dearing (19). Control of reovirus was predominantly through the expression of IFNLR1 on IECs, as *Ifnlr1f/f-Villincre* mice displayed increased titers of reovirus in small intestinal tissues as well as enhanced fecal shedding (Fig. 5A and B). These results demonstrate that expression of IFNLR1 in epithelial cells is essential for the control of reovirus infection by IFN-λ in the gut and indicate that IFN-λ signaling in IECs is an antiviral mechanism common to multiple enteric viral pathogens.

Interferon-stimulated gene expression in the intestine depends upon the expression of *Ifnlr1* in epithelial cells. Ileum and proximal colon tissues were isolated from wild-type (WT), *Ifnlr1-/-*, *Ifnlr1f/f*, and *Ifnlr1f/f-Villincre* mice 1 day posttreatment with either PBS or IFN-λ. These tissues were then assessed for expression of canonical antiviral interferon-stimulated genes (ISGs) Oas1a (42), Ifit1 (43), and Ifi44 (44) (Fig. 6A).
to C). While intestinal tissues from WT and Ifnlr1f/f mice exhibited robust ISG induction in response to IFN-\(\lambda\)/H9261 treatment, tissues from Ifnlr1f/f-Villincre mice failed to significantly upregulate these ISGs in response to IFN-\(\lambda\). These data correlate with the impaired antiviral response against MNoV in Ifnlr1f/f-Villincre mice after IFN-\(\lambda\) treatment (Fig. 3A and C), consistent with a potentially critical role for IFNLR1 expression on epithelial cells for induction of antiviral ISGs in response to IFN-\(\lambda\) treatment.

DISCUSSION

In this study, we found that IECs are the predominant cell type expressing Ifnlr1 in the small intestine and colon and that this cell type plays a major role in IFN-\(\lambda\)-mediated antiviral immunity in the intestine. Antiviral immunity elicited by IFN-\(\lambda\) to enteric reovirus and norovirus infection depends upon IFNLR1 signaling in Villin-positive IECs. Using four mouse strains with lineage-specific deletion of Ifnlr1 to study persistent infection and IFN-\(\lambda\)-mediated clearance, we found that only Ifnlr1f/f-Villincre mice exhibited a complete phenocopy of Ifnlr1f/f mice after IFN-\(\lambda\) treatment (Fig. 3A and C), consistent with a potentially critical role for IFNLR1 expression on epithelial cells for induction of antiviral ISGs in response to IFN-\(\lambda\) treatment.

Expression of Ifnlr1 mRNA throughout the gut and in other extraintestinal tissues (MLN, lung, and spleen) was quantified by qPCR analysis. In lamina propria cells, there were fewer than 500 copies of Ifnlr1 mRNA per 1 \(\mu\)g total RNA. In contrast, IECs express...
FIG 6 *Ifnlr1* expression on intestinal epithelial cells is necessary for induction of interferon-stimulated genes. *Oas1a* (A), *Ifit1* (B), and *Ifi44* (C) expression was assessed by quantitative real-time PCR of RNA from distal ileum and proximal colon tissue from wild-type (WT), *Ifnlr1*−/−, *Ifnlr1*+/−, and *Ifnlr1*−/−-*Villincre* mice at 1 day posttreatment with PBS or recombinant IFN-α. *n* = 5 to 9 mice per group, combined from two independent experiments, analyzed by one-way ANOVA followed by Tukey’s multiple-comparison test; a *P* value of ≤0.001 was determined by ANOVA column factor for all tissues. ***P < 0.001; ns, not significant.
more than 10,000 copies of *Ifnlr1* mRNA per 1 μg total RNA throughout the small intestine. Thus, IECs are the dominant *Ifnlr1*-expressing cells and function as the major IFN-λ-responsive cells for antiviral immunity in the intestine. In MLN, spleen, and lung, we detected comparable expression of *Ifnlr1* mRNA. Villin-positive cells were not the major cell type responsible for *Ifnlr1* expression in these tissues, and neither were neutrophils, dendritic cells, or macrophages. Therefore, there may exist some other cell types that are important for IFN-λ responses in these tissues. Lung epithelial cells, which do not express Villin, likely reflect a major source of *Ifnlr1* in that tissue (29). B or T cells, which have been reported to express *Ifnlr1* even though they lack a robust response to IFN-λ, may account for *Ifnlr1* expression in the MLN and spleen (27).

Another possible cellular source for this expression is endothelial cells, based on the report that blood-brain barrier endothelial cells respond to IFN-λ (30). This study, bolstering previous findings of alternate cellular expression of *Ifnlr1*, demonstrates that endothelial cells respond to IFN-λ to restrict West Nile virus neuroinvasion (10). Thus, it would be interesting to study the role of IFN-λ in extraintestinal tissues in control of other pathogens and define the IFN-λ-responsive cell types in these contexts.

In some tissues, such as lung and vagina, there is redundancy between type I and III IFN-mediated antiviral responses. IFN-λ controls influenza virus, severe acute respiratory syndrome (SARS) coronavirus, respiratory syncytial virus infection in the lung (45–47), and herpes simplex virus 2 (HSV-2) infection in the genital tract (48), redundantly with type I IFNs. In the intestine, however, IFN-λ-mediated antiviral immunity does not redundantly overlap type I IFNs (8, 9, 19). Adult IECs have polarized apical IFNAR1 expression only at low levels (9), and although IECs in neonates exhibit robust STAT1 activation after type I IFN treatment, in adult mice they are largely unresponsive to type I IFN treatment *in vivo* (9, 19, 20). Moreover, the expression level of *Ifnlr1* mRNA is highly enriched in IECs but minimally detectable in other compartments of intestinal tissue (Fig. 1 and 2). This study, bolstering previous findings of alternate cellular expression patterns for type I and III IFN receptors, helps explain why IFN-λ-mediated immunity in the intestine is nonredundant with IFN-α/β in adult mice, even though they may stimulate transcription of highly overlapping sets of antiviral genes (7, 20). Our data support a role for IECs as sentinels for enteric virus infection via their response to compartment-specific IFN-λ signaling (19, 20).

One of the important features of IFN-λ-mediated immunity is its sterilizing activity against persistent MNoV infection in the absence of adaptive immunity (8). We observed that persistent MNoV infection of *Rag1−/− Ifnlr1fl/fl-Villincre* mice was not resolved by IFN-λ treatment and showed increased viral titers in the stool, similar to our observations with *Rag1−/− Ifnlr1−/−* mice. Thus, IFN-λ-mediated sterilizing innate immunity requires IEC expression of the receptor. Since only macrophages, dendritic cells, and B cells are known to be susceptible to MNoV infection *in vitro* (35, 49), it is not clear how the IFN-λ response in IECs ablates persistent MNoV infection in the absence of adaptive immunity. One possible explanation is that there is a secondary *trans*-acting molecule induced by IFN-λ in IECs that clears MNoV in other cell types. A related study has demonstrated that rotavirus can be terminated by injecting IL-22 and IL-18 into *Rag1−/−* mice, but this IL-22- and IL-18-mediated viral clearance does not induce IFN-λ or Stat1 activation (50). Thus, there may be multiple innate immunological mechanisms to resolve persistent viral infection in the absence of adaptive immunity. Identifying the effectors of IFN-λ-mediated sterilizing immunity is an important area to pursue in IFN-λ immunology.

This study reveals that *Ifnlr1* expression in IECs is required for control of enteric MNoV and reovirus infections. Using a genetic approach with conditional knockout mice, we identified IECs as the dominant cell type that responds to endogenous and exogenous IFN-λ to control enteric viruses. Understanding the identity of IFN-λ-responsive cell types provides further insight into mechanisms that control enteric viruses and will enhance future development of IFN-λ-mediated antiviral therapeutics.
Materials and Methods

Generation of MNoV stocks and determination of titers. Stocks of MNoV strain CR6 were generated from a molecular clone as previously described (51). Briefly, a plasmid encoding the CR6 genome was transfected into 293T cells to generate infectious virus, which was subsequently passaged on B2V cells. After two passages, B2V cultures were frozen and thawed to liberate virions. Cultures then were cleared of cellular debris and virus was concentrated by ultracentrifugation through a 30% sucrose cushion. Titers of virus stocks were determined by plaque assay on B2V cells (51).

Generation of reovirus stocks and determination of titers. Spinner-adapted murine L929 (L) cells were grown in either suspension or monolayer cultures in Joklik’s modified Eagle’s minimal essential medium (SMEM; Lonza) supplemented to contain 5% fetal bovine serum (Gibco), 2 mM l-glutamine, 100 U/ml penicillin, 100 μg/ml streptomycin (Gibco), and 25 ng/ml amphotericin B (Sigma). BHK-T7 cells were grown in Dulbecco’s modified Eagle’s minimal essential medium (DMEM; Gibco) supplemented to contain 5% fetal bovine serum, 2 mM l-glutamine, 1 mg/ml Geneticin (Gibco), and nonessential amino acids (Sigma).

Recombinant reoviruses were generated using plasmid-based reverse genetics (52). Recombinant strain type 1 Lang (T1L) is a stock generated by plasmid-based rescue from cloned T1L cDNAs (53). After 3 to 5 days of incubation, cells were frozen and thawed three times, and virus was isolated by plaque purification using monolayers of L cells (54). Purified reovirus virions were generated from second- or third-passage L-cell lysate stocks (55). Viral particles were extracted from infected cell lysates using Vertrel XF (Dupont), layered onto 1.2- to 1.4-g/cm3 CsCl gradients, and centrifuged at 62,000 × g for 16 h. Bands corresponding to virions (1.36 g/cm3) were collected and dialyzed in virion storage buffer (150 mM NaCl, 15 mM MgCl2, and 10 mM Tris-HCl [pH 7.4]) (56). The concentration of reovirus virions in purified preparations was determined from the following equivalence: one optical density unit (OD unit) at 260 nm equals 2.1 × 1013 virions (56). Viral titer was determined by plaque assay using L cells (54).

For analysis of reoviral titers in organs, mice were euthanized at various intervals postinoculation, and organs were washed in 1 ml of PBS and homogenized by freeze-thaw and bead beating. Analysis of viral titer in stool, samples were harvested at various intervals, weighed, stored in 1 ml of PBS, and homogenized by freeze-thaw and bead beating. Viral titers in organs and stool homogenates were determined by plaque assay using L cells (54). Titers are expressed as PFU per milliliter of tissue homogenate or per gram of stool.

Mice, infections, and IFN-α treatment. Wild-type (WT) C57BL/6J mice (stock number 000664) were purchased from Jackson Laboratories (Bar Harbor, ME) and housed at the Washington University School of Medicine under specific-pathogen-free conditions (57) according to university guidelines. Ifnlr1tm1a/Ifnlr1tm1a (86.Cg-Ifnlr1f/f) mice were obtained from Bristol-Myers Squibb (Seattle, WA) and backcrossed using speed congenics onto a C57BL/6J background (28).

To generate mice conditionally deficient for Ifnlr1, Ifnlr1tm1aIfnlr1f/fES cells on a C57BL/6N background were provided by the Wellcome Trust Sanger Institute. A conditional-ready (floxed) allele in which exon 2 is flanked by loxP sites, designated Ifnlr1fl/fl, was created (Fig. 2A) (38). Ifnlr1fl/fl mice were crossed to Villin-Cre (intestinal epithelial cells [29]), LysM-Cre (macrophages and neutrophils, as well as some dendritic cells [32, 33]), CD11c-Cre (dendritic cells and alveolar macrophages [31]), and MRP8-Cre (neutrophils [30]) lines for selective disruption of Ifnlr1 in different cell types in vivo. Ifnlr1fl/fl mice were also crossed to a Deleter-Cre line (34) to generate an alternate Ifnlr1fl/fl line, here designated Ifnlr1fl/fl. Ifnlr1fl/fl mice were backcrossed using speed congenics onto a C57BL/6J background. Mouse lines and naming conventions are summarized in Table 1.

For MNoV infections, mice were inoculated with a dose of 105 PFU of strain CR6 at 6 to 8 weeks of age by the oral route in a volume of 25 μl. For reovirus infections, mice were orally gavaged with a dose of 108 PFU of strain T1L virus at 6 to 8 weeks in a volume of 100 μl.

Recombinant IFN-λ was provided by Bristol-Myers Squibb (Seattle, WA) as a monomeric conjugate comprised of 20-kDa linear polyethylene glycol (PEG) attached to the amino terminus of murine IFN-λ, as previously reported (8). For treatment of mice, 25 μg of IFN-λ diluted in PBS was injected intraperitoneally.

Stool and tissues were harvested into 2-ml tubes (Sarstedt, Germany) with 1-mm-diameter zirconia/silica beads (Biospec, Bartlesville, OK). Tissues were flash frozen in a bath of ethanol and dry ice and either processed on the same day or stored at −80°C.

Isolation of epithelial and lamina propria fractions of small intestine. Epithelial and lamina propria fractions were prepared as previously described (36). In brief, after mice were euthanized, small intestines were collected. Intestinal tissues were washed with cold PBS twice and then chopped and transferred to new tubes. The tissues were incubated with stripping buffer (10% bovine calf serum, 15 mM HEPES, 5 mM EDTA, 5 mM dithiothreitol [DTT] in 1 X Hank’s balanced salt solution [HBSS]) for 20 min at 37°C. The dissociated cells were collected as the epithelial fraction, consisting predominantly of IECs. The remaining tissue was used as the lamina propria fraction.

Isolation of neutrophils, macrophages, and dendritic cells. Neutrophils were isolated from Ifnlr1fl/fl-MRP8cre mice and Ifnlr1fl/fl littermates by collecting bone marrow from femurs and tibias. Red blood cells were lysed using red blood cell lysis buffer (Sigma, St. Louis, MO), and neutrophils were isolated using the mouse neutrophil isolation kit (Miltenyi Biotec, Germany). Isolated neutrophils were confirmed to be 95 to 98% double positive for CD11b-allophycocyanin (APC) and Ly6G-fluorescein isothiocyanate (FITC) (BioLegend, San Diego, CA) (data not shown). Macrophages were isolated from Ifnlr1fl/fl-LysMcre mice and Ifnlr1fl/fl littermates by collecting and homogenizing spleens, lysing red blood cells (RBCs), and enriching for macrophages using mouse anti-F4/80 UltraPure MicroBeads (Miltenyi Biotec). Isolated macrophages were confirmed to be 70 to 85% positive for F4/80-AF488.
Dendritic cells were isolated from CD11c-cre mice and Ifnlr1f/f littermates by collecting and homogenizing spleens, lysing RBCs, and enriching for dendritic cells using the mouse pan-dendritic cell isolation kit (Miltenyi Biotec). Isolated dendritic cells were confirmed to be 70 to 85% CD11c-CD45.2-phycoerythrin (PE) (BioLegend) single positive or CD11c-4F88 and B220-PE (BD Bioscience) double positive (data not shown).

Quantitative reverse transcription-PCR. RNA from stool was isolated using a ZR-96 viral RNA kit (Zymo Research, Irvine, CA). RNA from tissues or cells was isolated using TRI Reagent (Invitrogen) and a direct-zol-96 RNA kit (Zymo Research, Irvine, CA) according to the manufacturer’s protocol. Five micro-

litzers of RNA from stool or 1 µg of RNA from tissue was used as a template for cDNA synthesis with the ImPrlm reverse transcriptase system (Promega, Madison, WI). DNA contamination was removed using the DNAfree kit (Life Technologies). MNOV TaqMan assays were performed, using a standard curve for determination of absolute viral genome copies, as described previously (58). Quantitative PCR for housekeeping gene Rps29 was performed with forward primer 5′-GCCAATACGGGCTGAACATG-3′, reverse primer 5′-GTCCAATTAAATGAAAGCTATGTC-3′, and probe 5′/3HEX/CCTTCGCGT/ZEN/ACTGCCGGAAGC/3IABkFQ/-3′ (where 3IABkFQ is 3′ Iowa Black fluorescence quencher; Integrated DNA Technologies), each at a concentration of 0.2 µM, using AmpliTaq gold DNA polymerase (Applied Biosystems). Quantitative PCRs for Ifnlr1 (Mm.PT.58.10781457), Oas1a (Mm.PT.58.30459792), Ifi44 (Mm.PT.58.12162024), and Ifi71 (Mm.PT.58.32674307) were similarly performed using PrimeTime qPCR assays (Integrated DNA Technologies). Standard curves for quantitative PCR assays were generated to facilitate absolute quantification of transcript copy numbers. For cDNA cloning, the PCR product using the above-described primers was cloned into the p-ENTR/D-TOPo vector (Thermo Fisher Scientific), and for Ifnlr1 a full-length Ifnlr1 cDNA clone (5036481; Open Biosystems) was used. Plasmids were Sanger sequenced to confirm the identity of the inserts. For Oas1a, Ifi44, and Ifi71, absolute transcripts were quantitated based on target sequence-containing gBlocks (Integrated DNA Technologies). Cycling parameters for Rps29, Ifnlr1, Oas1a, Ifi44, and Ifi71 were identical to those for MNOV TaqMan. Absolute values of Ifnlr1, Oas1a, Ifi44, and Ifi71 per microgram of RNA were normalized to the within-tissue average of housekeeping gene Rps29. No significant changes in absolute copy number of Rps29 were detected between comparison groups (data not shown).

Statistical analysis. Data were analyzed with Prism 7 software (GraphPad Software, San Diego, CA). In all graphs, three asterisks indicate a P value of <0.001, two asterisks indicate a P value of <0.01, one asterisk indicates a P value of <0.05, and ns indicates not significant (P > 0.05) as determined by Mann-Whitney test, one-way analysis of variance (ANOVA), or two-way ANOVA with Tukey’s multiple-comparison test, as specified in the relevant figure legends.

ACKNOWLEDGMENTS

We thank D. Kreamalmeyer for animal care and breeding, S. Peterson for technical assistance, members of the Virgin laboratory for manuscript review and discussion, S. Doyle and Bristol-Myers Squibb for providing Ifnlr1tm1tm1Pash mice, and Bill Skarnes and Wendy Bushell at the Wellcome Trust Sanger Institute for providing Ifnlr1tm1EUCOMM(Wtsi:EUCOMM)ES cells. Experimental support was provided by the Speed Genetics Facility of the Rheumatic Diseases Core Center.

H.W.V. was supported by National Institutes of Health (NIH) grant U19 AI109725 and the Crohn’s and Colitis Foundation grant 326556. M.T.B. was supported by NIH training grant 5T32CA090547 and the W. M. Keck Fellowship from Washington University. T.J.N. was supported by NIH training grant 5T32AI00716334 and postdoctoral fellowships from the Cancer Research Institute and American Cancer Society. S.L. was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (NRF-2016R1A6A3A03012352). J.B. was supported by NIH training grant 5T32HL007751 and predoctoral fellowship F31DK108562. T.S.D. was supported by NIH grant R01 AI038296. Research reported in this publication was supported by NIH award number P30AR048335. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

