Targeting of IL-2 to cytotoxic lymphocytes as an improved method of cytokine-driven immunotherapy

Eric Lazear
University of North Carolina at Chapel Hill

Reza Ghasemi
Washington University School of Medicine in St. Louis

Sarah M. Hein
Courier Therapeutics

John Westwick
Courier Therapeutics

Dan Watkins
Courier Therapeutics

See next page for additional authors

Follow this and additional works at: http://digitalcommons.wustl.edu/open_access_pubs

Recommended Citation
Lazear, Eric; Ghasemi, Reza; Hein, Sarah M.; Westwick, John; Watkins, Dan; Fremont, Daved H.; and Krupnick, Alexander Sasha, "Targeting of IL-2 to cytotoxic lymphocytes as an improved method of cytokine-driven immunotherapy." OncoImmunology.6,2. e1265721. (2017).
http://digitalcommons.wustl.edu/open_access_pubs/5723

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact engeszer@wustl.edu.
Targeting of IL-2 to cytotoxic lymphocytes as an improved method of cytokine-driven immunotherapy

Eric Lazear, Reza Ghasemi, Sarah M. Hein, John Westwick, Dan Watkins, Daved H. Fremont & Alexander Sasha Krupnick

To cite this article: Eric Lazear, Reza Ghasemi, Sarah M. Hein, John Westwick, Dan Watkins, Daved H. Fremont & Alexander Sasha Krupnick (2017) Targeting of IL-2 to cytotoxic lymphocytes as an improved method of cytokine-driven immunotherapy, OncoImmunology, 6:2, e1265721, DOI: 10.1080/2162402X.2016.1265721

To link to this article: http://dx.doi.org/10.1080/2162402X.2016.1265721

© 2017 The Author(s). Published with license by Taylor & Francis Group, LLC© Eric Lazear, Reza Ghasemi, Sarah M. Hein, John Westwick, Dan Watkins, Daved H. Fremont, Alexander Sasha Krupnick. Accepted author version posted online: 10 Jan 2017. Published online: 10 Jan 2017.

Submit your article to this journal

Article views: 173

View related articles

View Crossmark data
Targeting of IL-2 to cytotoxic lymphocytes as an improved method of cytokine-driven immunotherapy

Eric Lazear, Reza Ghasemi, Sarah M. Hein, John Westwick, Dan Watkins, Daved H. Fremont, and Alexander Sasha Krupnick

ABSTRACT

The use of high-dose interleukin-2 (IL-2) has fallen out of favor due to severe life-threatening side effects. We have recently described a unique way of directly targeting IL-2 to cytotoxic lymphocytes using a virally encoded immune evasion protein and an IL-2 mutant that avoids off-target side effects such as activation of regulatory T cells and vascular endothelium.

ARTICLE HISTORY

Received 21 November 2016
Accepted 21 November 2016

KEYWORDS

Cytokine; cytokotoxic lymphocytes; immunotargeting; immunotherapy; Interleukin-2 (IL-2); natural killer cell (NK); NKG2D

Systemic high-dose IL-2 as a curative form of immunotherapy

High-dose interleukin-2 (IL-2) cytokine therapy was first approved by the FDA for treatment of advanced renal cell carcinoma (RCC) in 1992 and for advanced melanoma in 1998. High-dose IL-2 activates and induces proliferation of natural killer (NK) cells and CD8+ T cell populations, leading to potent antitumor activity, which results in a durable complete remission in up to 9% of RCC patients with a median durability of 70 mo. Many patients experience treatment-related mortality more than 10 y. This rate is in contrast to the <1% complete remission rate of the anti–PD1 therapy nivolumab, which received Food and Drug Administration (FDA) fast-track approval. Despite highly promising results, high-dose IL-2 therapy is rarely used today because many patients experience severe adverse effects, such as fever, malaise, and systemic capillary leak. As a result, close to 50% of patients discontinue therapy, and a further 2–5% of patients will die as a result of therapy-induced pulmonary edema and cardiovascular instability.

These side effects are the result of off-target signaling via the IL-2 receptor (IL-2R). Cytotoxic lymphocytes (CTLs) express the low-affinity IL-2Rαβγ form of the receptor at baseline but after initial activation display the high-affinity IL-2Rαβγ receptor that is ultimately required for peak effector function. In contrast, vascular endothelium expresses the high-affinity IL-2Rαβγ receptor at baseline and thus high-dose IL-2 results in inflammation, vascular leakage, and the associated adverse events due to direct vascular toxicity. Furthermore, CD4+ FoxP3+ Treg also express the high-affinity IL-2Rαβγ receptor at baseline and are preferentially activated by IL-2. Treg normally function to downregulate immune responses, and in the context of cancer immunotherapy limit the therapeutic potential of the CTLs (Fig. 1A).

Alternative forms of IL-2 and IL-2 delivery

Previous investigators have hypothesized that a form of IL-2 that prevents Treg activation could greatly enhance therapeutic efficacy. There are multiple described mutations that decrease IL-2 affinity for IL-2Rαγ, such as the substitution of alanine for arginine (R38A) and lysine for phenylalanine (F42K). Alternately, antibody-bound forms of IL-2 have been developed to reduce IL-2Rαγ binding. Unfortunately, IL-2Rαγ-inhibited therapies have reduced NK-cell activation and a correspondingly reduced therapeutic index due to the requirement of the high-affinity receptor for peak cytotoxicity. Another strategy has been to create mutants with increased affinity for IL-2Rβγ in an effort to reduce the preference for IL-2Rαγ. The IL-2Rβγ-enhanced IL-2 mutants still bind and activate Treg and vascular endothelium and thus still have “off target” side effects. Several groups have attempted to direct cytokine delivery to the tumor bed or vasculature via a targeted antibody-IL-2 conjugate but these therapies may be limited due to the ability of the tumor to escape by shedding, mutating, or downregulating the targeted antigen. Furthermore, the tumor-associated microenvironment actively excludes lymphocytes, thus preventing CTLs from encountering IL-2. Others have extended the half-life of IL-2 by conjugating it with anti-IL-2 antibodies or stabilizing the cytokine in the blood...
stream through the addition of polyethylene glycol.6 None of these approaches, however, significantly ameliorates T\textsubscript{reg} activation with unproven results in human trials.7

Unique method for IL-2 delivery to cytotoxic lymphocytes as a superior form of immunotherapy

We have recently described a new form of IL-2 immunotherapy through targeted delivery of an IL-2 mutant directly to CTLs. We utilized a high-affinity, virally encoded NKG2D ligand known as orthopoxvirus major histocompatibility complex class I like protein or OMCP8 (Fig. 1B). Since NKG2D is expressed constitutively on murine NK cells as well as activated murine CD8+ T cells, the new OMCP-(R38A/F42K)IL-2 protein resulted in preferential binding to and activation of NK cells over Tregs (Fig. 1B and C), improved immunotherapy against both solid and hematopoietic tumors (Fig. 1D), and no systemic capillary leak or animal mortality (Fig. 1E and F).
Limited animal morbidity, manifest as weight loss, was completely dependent on NK activation (Fig. 1F). OMCP offers the highest known NKG2D binding affinity of any known ligand, and has broad applications in both human and veterinary immuno-oncology due to potential reactivity with multiple species. Nevertheless, the use of anti-NKG2D antibodies to target IL-2 to NK cells is also a possibility (Fig. 1G). Taken together our work demonstrates the utility of targeted cytokine delivery for the treatment of cancer immunotherapy and possibly other forms of immune suppression.

Disclosures of potential conflict of interest

E.L. and A.S.K. have filed a patent on data described in this manuscript with technology licensed to Courier Therapeutics (http://www.couriertherapeutics.com). Targeted Cytokine Delivery to Cytotoxic Lymphocytes—Inventors: Alexander S. Krupnick, Daved H. Fremont, Eric Lazear, U.S. Provisional Application number 62/091,898, filed December 15, 2014. EL, ASK, DW, and JW are major shareholders and SH is an employee of Courier Therapeutics.

Funding

This work is supported by the Biostatistics Shared Resource and Siteman Flow Cytometry Core (P30CA091842), NIH/NIAID R01 AI019687, U19AI109948, NIAID contracts HHSN272200700058C & HHSN272201200026C, as well as the Rheumatic Diseases Core Center (P30 AR48335). ASK is supported by NIH R01HL094601, PO1 AI116501, the Barnes Jewish Hospital Research Foundation, the Doug and Ann Brown Foundation, Daniel, Jordan and Paula Bergstein, and Courier Therapeutics.

ORCID

Eric Lazear http://orcid.org/0000-0001-6173-8904

References

