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ABSTRACT

' This volume contains a Foreword to the Final Report, two excerpted

reprints that present the initial conception of macromodules and means for

implementing them as seen in the early days of the project, and a third

- reprinted report that presents a summary and overview as of the autumn of
1972.



FOREWORD TO FINAL REPORT

This set of documents represents an attempt to bring together in one

place sufficient material to enable the reader to obtain a reasonable

overview of the major ideas and conceptions that gave rise to the macromodule

development project at Washington University, and to report and record some

of the details of the ensuing development effort and its results. Since the

project is continuing with other support past the termination of the contract

for which this is the final report, certain aspects of this report deal with

efforts that are still in progress, particularly the design of restructured

macromodules and the use of macromodules as a tool for technological and

scientific research.

Part 1 of this report deals with the development of Phase I macromodules,

of which over 800 modules of 17 types have been constructed and made part of

a working inventory that resides at Washington University. This volume con-

tains two excerpted reprints that present the initial conception of

macromodules and means for implementing them as seen in the early days of the

project, and a third reprinted report that presents a summary and overview as
of the autumn of 1972. Further details of the functional definition and

design of macromodules are presented in the remainder of Part 1.

The second Part of this report contains detailed manufacturing

descriptions of macromodular parts and assemblies; it is based directly upon

documents used to carry out the fabrication. This highly detailed material

is intended to serve as a reference for those wishing to understand mora

' thoroughly the material that is presented in Part 1, and may also contain

useful ideas for other designers.

A status report on restructured macromodules makes up the single volume of

Part 3 of this Report. Some of our judgments based upon our experience with
Phase I macromodules are also reflected in that volume.

It should be pointed out that in addition to this report, there are

numerous other documents dealing with particular aspects of the macromodular

design project. These include a series of formal Technical Reports of the

Computer Systems Laboratory, and an informal series of Technical Memoranda

that were primarily intended for internal use and record purposes but contain

substantial information of possible broader interest. Relevant documents of

these series, as well as a bibliography of relevant publications in the open

literature, are listed in Volume V of Part 1. Copies of relevant Technical

Reports have been supplied to the Defense Documentation Center and should be

available through their channels.

There is no adequate way to acknowledge and summarize the diverse and

often intense interactions of people and ideas that have taken place during

this project, and the precise roles and contributions of the participants in

, this large effort were often unclear at times even to the individuals who were

directly involved. At this time it appears impractical to improve upon the



acknowledgements that may be found in the reprinted articles contained in

this volume, and a comprehensive but undifferentiated list of persons

associated with the project since its inception is included in Volume V of

Part 1. It is my sincere hope that their participation in this large
effort will prove to have been as beneficial to them as it has to the

progress of macromodular design.

Charles E. Molnar

Director

Computer Systems Laboratory

Washington University
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A MACROMODULAR APPROACH TO COMPUTER DESIGN

INTRODUCTION

The amount of logically irrelevant engineering detail inherent in

the design and construction of a computer system is great. As a result, the

task of creating a system based on the use of present techniques is so diffi-

cult and time-consuming that the number of different systems that can be put

into use for evaluation and study by any one group of workers is small. This

is unfortunate as we are thereby denied the opportunity to develop that

insight into logical organization which can grow out of a working familiarity

with many diverse forms. What is needed is a set of relatively simple, easily

inter-connected modules from which working systems can readily be assembled

for evaluation and study. With such a set, both the designer and user would

be able to try out potentially powerful and novel structures on a very large

scale, adjusting and improving the systems as needed. Once a design has been

_, realized and its value established, it could then be reworked into tighter

engineering form for maximum efficiency and for production by automatic wiring

and fabrication techniques, and the experimental units made available for

further studies or returned to "inventory" in the manner proposed by Estrin 1.

The modules as described are primarily vehicles for experimental

use and as such must meet a set of requirements heretofore unnecessary in

digital modules. Logical flexibility and ease of use must be considered of

primary importance while factors such as operating speed, economy, etc., though

not ignored, must be considered of secondary importance. The requirements can

be summarized as follows:

1) The modules must be functionally large enoch to reduce logical

detail by a significant amount and must be relatively easy to under-

stand and assemble. The number of different types should be small

as possible so as to limit inventory, but at the same time, the set

must be logically complete so that whole systems may be assembled.

There must be not only central processor modules such as register
I

and memory units, but also modules for power, signal conditioning,



input-output buffering and control, together with a reasonable

selection of input-output devices themselves.

2) The mode of combining units into larger structures must be

very simple (a problem first considered by Babbage_ who examined

this matter "with unceasing anxiety" one hundred and twenty years

ago2). The modules should be designed for easy mechanical assem-

bly. Communication from one mechanical assemblage to another should

be accomplished by means of easily connected cables.

3) Ail units should be designed so that the assembling of these

units into a working system presents no logically irrelevant prob-

lems such as those relating to circuit loading, waveform deteriora-

tion_ signal propagation delay, power supply interactions, and so

forth, regardless of the size or complexity of the system. The

modules should be powered and perhaps cooled individually_ and all

possible signal paths must be provided with signal-standardizing

amplifiers capable of driving all possible _loads.

We call units which meet these requirements macromodules to dis-

tinguish them from the more conventional computer system modules. In this

report we present a set of macromodules which, although not "complete" in the

above sense, meets all other requirements and is sufficient for the synthesis

of all central processor functions of which we are presently aware. Parti-

cular attention is given to the problem of control structures and a technique

is presented in which the control signals for a given process are routed along

a control network whose topology is isomorphic to the flow diagram represent-

ing the process. The step from conceptualization to realization can therefore

be made directly, a situation that enormously simplifies design.

2



MACROMODULAR SYSTEMS

General Characteristics

The macromodules to be described are relatively small, dimension-

ally modular, structurally self-sufficient boxes which contain all of the

required electronic circuits and memory elements. Electrical connectors on

the faces of each unit provide all power and signal access. The units can

be interconnected mechanically and electrically to form larger assemblages,

and standardized cables are provided for all inter-assemblage communication.

Ail connectors are backed by signal-standardizing amplifiers capable of

driving any attachable module or cable.

Data processing modules are organized in parallel binary form with

a word-length modulus of 12 bits, and are designed functionally for asyn-

chronous operation. Memory modules hold 4096 12-bit words.*

The design of a system based on these modules requires, we believe,

_. only the exercise of logic. The operability of the resulting system cannot

be adversely affected by the physical distribution or arrangement of parts,

. the distances between units, the number or diversity of modules, or the rout-

ing of the interconnecting pathways. Macromodular systems are, as a result,

capable of continuous growth and functional enrichment.

f

* The numbers 12, 4096, and other such parameters have been made specific,
f

for purposes of this report, only to simplify description.

· 3



SystemOrganization

Macromodular systems may be viewed in terms of two logically

distinct, interacting networks (Fig. 1). The Processing Network (the

heavy-lined structure) consists of data processing elements intercon-

nected by data pathways, and provides for the storage, propagation, and

transformation of data within a system. The Sequencing Network (the

light-lined structure) consists of control nodes distributed throughout

the system, interconnected by control pathways. The structure of the

Processing Network defines the basic data processing operations of the

system while the structure of the Sequencing Network defines the order

in which subsets of these basic operations can be carried out.

· jr

Fig. 1

4



/

Interaction between these networks takes place at control termi-

nals on the data processing elements. These terminals have two functions:

they allow the Sequencing Network to initiate operations, and they return

completion signals when the operations are finished. Each basic data pro-

cessing operation has an associated set of these terminals (Fig. 2)j the

number of terminals in the set being determined by the nature of the opera-

tion. Operations that manipulate data, data operations, have two, an

initiation terminal and a completion terminal. Operations that check data

for specific values_ decision operations, have more than two, one to initiate

the operation and the others (completion terminals) to indicate the value of

the data found. Also shown in Fig. 2 is a time-continuous transformation

element. This element, unlike those already described, performs its opera-

tion continuously. The data presented at its output changes only in response

to changes of input data rather than in response to control signals_ and as

a result, the element has no control terminals at all.

t
- TI M E - CON'TI NUOU5

ELEMENT

' t

__t_
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!

t

DF_CISION OPERATION _t

ELEMENT (-..OMI:_L. ETION, TF__MI NAL_

INITIATION "l'_--_Rl'_ll',._g.
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Fig. 2



The order or sequence in which operations are performed is deter-

mined entirely by the structure of the Sequencing Network. This network is

composed of signal nodes, calling elements_ and interconnecting pathways.

A signal node is an element which provides for the merging or branching of

control signals. There are several types, two of which are shown in Fig. 3-

A calling element is one which_ when activated by a control signal on its

initiation terminal_ causes an operation to take place and_ when signaled of

its completion, produces its own completion signal in turn. An operation

node is a calling element for data operations, and a decision node is a call-

ing element for decision operations.

I ' /

CONq'_OL / ', C©IqTROL .!)1GIqAL

C..F'J,,APLETION
E OPE.RAT_Ot,,_

_....L.. NODE

t

r.r_kLLOPE_,A]'tON "'4 .... ,, ,'

COM_:_L_-_RO_ A

)_, COM_LE_'_O_ i5

/ NODE.
CALL OPERATION 4 ..... /

_1 I',IIT1/WT_Otq

Fig. 3



Control within a macromodular system is asynchronous, that is, each

event in a sequence of events is initiated by the completion signal from the

preceding event. The simplest way of arranging for this would be to connect

the completion terminal associated with each operation to the initiation ter-
!

minal associated with the next operation. This scheme, though simple and

effective, does have the limitation, however, that once the control terminals

for an operation have been connected for one sequence, it is no longer possible

to incorporate the operation into any other sequence. We therefore revise the

scheme as follows: rather than connect to the terminals associated with the

operation, we connect instead to the terminals of a calling element associated

with the operation, as shown in figure 4. Since any number of calling elements

may call the same operation, an operation may now occur in as many sequences as

necessary. Figure 4 illustrates this for two different sequences, sequence

z, y, x and sequence z, x. Since both sequences include the operations z and ×,

they initiate the operations via calling elements. Calling elements are not

needed for operation y, however, as it appears in only one sequence and can

therefore be incorporated by connections directly to its control terminals.

7
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· The control structure described above has the additional feature

that an entire sub-sequence of operations can be called by a calling element

(Fig. 5). This allows sequences to share common sub-sequences_ thereby re-

ducing the number of control elements and interconnections required in a

system.

/
_NTROL _T_-, _ /I I

' } 'i JI
I .... d

MAIN %EQCEI_ CE
CO_-_RO L PATH3

Fig. 5

The control elements and interconnections that define a given se-

quence are said to be the control path for that sequence. The Sequencing

Network is therefore the control path for the entire system.



DataValidation

In order to perform an operation on data'or make a decision based

on the value of data, it must first be established that the data is available

at the point at which it is to be used. There are two general requirements

to be met:

1) The data source must present the data in stable form, that is,

it must have completed any operation initiated earlier which

may affect the data. This requirement stems from the fact that,

in the interest of speed, a data element generates a completion

signal as soon as it no longer relies upon its input data, re-

gardless of whether or not its operation is complete and its

outputs stabilized.

2) Enough time must be allowed for the stable data signals to prop-

agate to the point of use regardless of the length of the pathway.

When data is used in the immediate locality of its source_ i.e.,

within the same data processing element_ allowances for stabilization and prop-

agation times are made by the element itself. When the source is remote from

the point of use, a procedure known as Data Validation (Fig. 6) is used to

guarantee that the requirements are met.

DECISION OR: OPERATIO_
ELEI_E_T

O_ REQUE3T

DATA _I.)RC._

Fig. 6
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In this process_ before data from a remote source is used_ a

Validation Request Signal is transmitted to the module containing the data.

In response_ that module generates a Validation Signal as soon as the signals
4

on its data output terminals are stable. This signal travels back to the

point at which the data is to be used along a pathway exactly parallel* to

the data pathway_ thereby providing time for data propagation along that path-

way regardless of its length. The signal is made to travel somewhat slower

than the data so that when it arrives at the point of use_ the data is guaran-

teed to meet both of the above requirements and can be used immediately.

* The data Validation Signal travels on a special channel in the same cable

that carries the data thus insuring that its path is exactly parallel to

that traveled by the data. For simplicity, the Validation Request Signal

also travels on another channel of the data cable.



THE MACROMODULES

We now proceed to give a functional description of the individual

macromodules and illustrate their roles in various systems. Processing

Network elements are introduced first, and this is followed by a discus-

sion of the various Sequencing Network elements. Power connections are

omitted from all figures to avoid obscuring the logical point being illus-

trated.

Cables

Data paths are constructed with Data Cables, control paths with

Control Cables. These cables are made in a limited number of lengths, but

cables of any length can be formed by using signal-standardizing extender

units. A Control Cable contains a single channel for transmission of a con-

trol signal. A Data Cable contains 14 channels, 12 for the transmission of

data and one each for the Validation Request Signal and the Validation Signal.

In the illustrations, Data Cables are drawn with heavy lines and Control Cables

are drawn with thin lines.

//

Registers

The basic Register Moaule (Fig. 7) contains a 12-bit register

together with logic for the operations clear, complement, shift left, shift

right, and count (index) Control terminals for each operation are mounted

on one side of the module, and connectors on the bottom and top provide for

input and output of data.

DATA OUTPUT

CDU klEC..TOR _ COMPLEMENT TEI_blINAL5

/ CLEAR TERMINAL5

DATA INI:_T COI',,INECTO_ /
(oN e OT'rO ')

12 Fig.7



Registers of any length can be formed by plugging these modules

together, lateral pathways being joined by interface connectors (not shown

in the figures). Figure 8 shows a 36-bit register formed from three Regi-4

ster Modules. Plugging the modules together obscures the control terminals

on all but the rightmost module so that the resulting register has but one

set of control terminals, and these provide for the control of the whole

register. This is particularly important as it makes control of an operation

independent of register size. When modules are plugged together, special

circuits within each module are coupled in such a way as to compensate auto-

matically for the increased lateral signal propagation times. Proper opera-

tion is thereby guaranteed regardless of register length.

J o j o J o

· O O

Fig. 8
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Transfer Operations

Data transfers from one Register Module to another require the use

of a Data Gate module. This unit plugs directly into the base of the receiv-

ing Register Module and is connected by means of a Data Cable to the output

of the data source Register Module (Fig. 9). Twelve bits are transferred in

parallel, and the transfer initiation and completion terminals appear on one

side of the module. Transfers are copying operations and as such do not alter

the information at the source.

J

B
J

BATA 6ATE / _'_ _ CONTROL TEt::('N'I'_t4ALS

DArA CABLE

Fig. 9
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A separate Data Gate is required for every transfer path into a Register

Module. If, therefore, a Register Module is to receive input from n other

Register Modules, n Data Gates are required. Figure l0 shows a Register

Module equipped with transfer paths from three other Modules. Note that

only one of the Data Gates plugs into the Register Module itself; each of

the others plugs into the base of another Data Gate. Stacking the units in

this way allows each Data Gate to communicate with the receiving Register

Module. Any number of transfer paths into a Register Module can be provided

by stacking an appropriate number of Data Gates in this manner.

R

o;

I
i

Z

Fig. 10
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To transfer info_tion, data _st be gated onto bus lines passing

thro_h the Data Gates which go up into the Register Module. It is important

to consider tM action of a Data G_e somewhere in the middle of a stack of

Data Gates attached to a Register Module. hen a particular Data Gate re-

ceives a control signal at its initi_ion terminal, it performs a data valid-

ity check as described previously. _is est_lishes the validity of the data

signals at the Data Gate itself. Because of stacking_ h_ever_ the Register

Module _st be consi_red to be an arbitrary dist_ce_ Md therefore tim%

away from the Data G_e. Henc% after the Validation Signal arrives at the

Data Gate_ it is tr_smitted up into the Register Module along a pathway

parallel to but slower than that travelled by the data to the Module. It thus

arrives at the Register Module slightly later than the gated data which c_

therefo_ immediately be tr_sferred into the register. A completion signal_

indicating that the tr_sfer has been accomplished, is then returned down

thro_h the stack to exit at the active Data Gate's completion ter_nal.

Data Gates can be pl_ged together to provide for transfers into

longer registers. The resulting combination has but one set of control term-

inals for the control of the whole gate. Figu_ 11 shes a 24-bit register

with transfer paths from another 2_bit register.

REG_S_R

REg IST[R A

Fig. 11
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There is no requirement that the interconnecting Data Cables for

the register segments be of identical lengths To compensate for differences

in length_ the validity of the data from each source module is individually

checked via its own Data Cable.

In order to permit the transfer of information from a single source

into more than one destination module, a Data Branch unit is used (Fig. 12).

A 8

_ATABP_6_

X

Fig. 12
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Data Branch units may be interconnected (see Fig. 13) to provide any number

of connections t'o the same source.

J

Fig. 13

The Data Branch unit is only a way-station and not a source of data.

Therefore_ when it receives a Validation Request Signal_ it relays it down-

stream to the source. The unit remembers which branch carried the Validation

Request Signal_ and when the Validation Signal returns_ it is relayed up that_

and only that_ branch. The importance of this feature is made clear in Fig. 14.

18
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C B

A
Fig. 14

Suppose that the sequence

1) A-_B

2) COMPLEMENT A

3) A-_C

is to be performed_ and that Validation Signals are transmitted from the Data

Branch unit toward both B and C. It would then be possible for the Validation

Signal from step 1 to arrive at the Aa C Data Gate after the Validation Re-

quest Signal for step 3 had been sent but before the corresponding Validation

Signal for step 3 returns. At that time_ the original uncomplemented data

from A would still be present at the Data Gate and would be transferred into C

by the premature arrival of the Validation Signal from step 1_ and an erroneous

completion signal would be produced. Such incorrect behavior is prevented by

arranging matters so that a Validation Signal is returned only to the element

which issued the Validation Request Signal.

19
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The Data Branch unit embodies all of the features essential to

a Data Cable extender (i.e., data signal amplification_ ability to relay

data validation signals, etc.). This unit therefore doubles as an extender

unit for Data Cables (Fig. 15).

/
Fig. 15

Finally, it must be pointed out that two registers cannot exchange

information without _the aid of a third register. This follows from the fact

that simultaneity of events in different parts of an asynchronous system

cannot be assumed.

2O



Memory

The Memory Module has a capacity of 4096 12-bit words and contains,

in addition to a memory array, all required drivers, addressing logic, sense

amplifiers, internal address and data registers, etc. The units may be

plugged together, as discussed below, to form larger memory systems. (Inter-

module connectors are omitted from the figures for simplicity. )

Figure 16 shows a simple arrangement in which one Memory Module is

used. The unit marked S is a Register Module whose output is connected to

the Address Input of the Memory Module, the unit marked C is a Register Module

whose output is connected to the Data Input of the Memory Module, and a Data

Gate attached to Register Module B is connected to the Data Output of the

Memory Module. Initiation and completion terminals are provided for both

Read and Write operations.

MEMORY'

_ATAOUT /

2-' S/ /

I ,
c s

I I I I
I I J
I I I

Fig. 16
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The process of Reading involves two steps:

Step 1. An address is transferred into the memory's internal

addressregister.

Step 2. The Read operation is performed and the word obtained

is presented at the unit's Data Output terminals.

These two steps are initiated by a control signal on the Read operation's

initiation terminal and proceed automatically to conclusion with a com-

pletion signal appearing as soon as step 1 is finished so that the system

may execute other operations while waiting for step 2, typically a relatively

long operation, to be completed. S may be changed any time following the

completion signal without affecting the Read operation.

In this example the Memory Module Data Output terminals are con-

nected so that the word obtained from the memory array may be transferred

into B. The Read operation's completion signal or any subsequent signal

may be used to initiate this transfer opeIation. If the Memory Module has

not yet finished step 2, the Validation Signal to the Data Gate is held up

until the word is available.

Writing a word into the memory involves the following set of

operations:

Step 1. An address is transferred into the memory's internal

address register, and the word to be written is

transferred into the memory's internal data register.

Step 2. The Write operation is performed.

These operations are initiated when a control signal is presented at the

Write operation's initiation terminal and, as in the case of the Read opera-

tion, a completion signal appears as soon as step 1 above is completed.

Thereafter, registers C and S may be disturbed withsut affecting the Write

operation.

If an attempt is made to read from or write into the memory while

it is still responding to some earlier control signal, the new control signal

will be held up until it can be accommodated.

22



Memory Modules can be plugged together laterally to increase word

length, thereby forming what will be referred to as tiers. These tiers may

be stacked vertically to increase the number of words. Figure 17, for

example, shows a memory system containing 8192 thirty-six bit words.

i((C,
IN OUT IN _ IN OL,,,"T ,AJ_!:_E_

Fig. 17

To permit referencing in memory systems containing more than 4096

words, connectors are provided for additional Address Inputs for selection

of the appropriate tier. All address information is provided to the lower

rightmost unit which distributes this information throughout the assemblage

for proper word selection. Similarly_ the entire assemblage is controlled

by signals at the Read and Write control terminals on the lower rightmost

unit. For input and output data paths, each vertical column uses the data

terminals on the lowest tier.

Concurrent operation of different memory tiers is possible. That

is_ during step 2 of a Read or Write operation in one tier, a Read or Write

operation in another tier may be initiated and will proceed immediately.

However, the data resulting from one Read operation must be used before an-

otherReadoperationis initiated. 23



Time-Continuous Transformations

Three units are provided which perform time-continuous ,trans-

formations of data. These units continuously present at their outputs a

transformation of the data presented at their inputs. When the input

information changes, the outputs will reflect this change. These units

thus perform their functions continuously in contrast to Register Modules

and Data Gates, which react only to command signals presented at a discrete

time.

The Junction Unit, Adder Unit, and Function Unit discussed below

all perform time-continuous transformations. The outputs of these units

may be used in the same way in which Register Module outputs are used.

24



Junction Unit

A Junction Unit permits one to rearrange bits within a word or to

form words from bits selected from several words. The unit has two 12-bit data

· inputs and a single 12-bit data output. A set of switches on the face of the

unit can be set to connect each of the 12 output terminals to any of the 24

input terminals or to supply the value "l" or "0'.

Suppose_ for example_ that we wish to transfer information from parts

of two 12-bit registers, A and B_ into a third register_ C. Specifically_ sup-

pose that we wish to copy the rightmost four bits of A into the leftmost four

bit positions of C_ the leftmost four bits of B into the rightmost four bit posi-

tions of C_ and set the four middle bits of C to the binary value 1011. To

accomplish this we connect the units as shown in Fig. 18_ setting the switches

on the Junction Unit to perform the transformation as shown in Fig. 19. The

word made up by the Junction Unit is transferred into C via a Data Gate.

I !

f c t

Fig.18 25
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Fig. 19

Let us look briefly at the process of data validation in the pre-

ceding example. When the Data Gate is activated, it transmits a Validation

Request Signal to the Junction Unit which in turn sends Validation Request

Signals to each of the sources, A and B. When Validation Signals have re-

turned to the Junction Unit from both sources, the Junction Unit transmits

a Validation Signal back to the Data Gate.

For the permutation of bits within a 12-bit word, only one of the

two inputs is used. The absence of a cable on the unused input connects the

Validation Request Signal line to the Validation Signal line on that side,

thereby indicating constant validity.

26



Adder Unit

The basic Adder Unit is like the Junction Unit in general form.

It receives inputs from two 12-bit sources and, from these, forms a sum

' which is continuously presented at its output terminals. Figure 20 shows

an Adder connected to form the sum of the numbers in A and B. An initiation

signal at the Data Gate transfers the sum into C.

(

C i

i

......... A + I_-,-C

1

Fig. 20
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Adders for larger registers are formed by plugging Adder Units

together laterally. Carries are propagated from unit to unit through con-

nectors at their interface, which also interconnect internal circuits com-

pensating for the increase in carry propagation time. Figure 21 shows a

24-bit accumulator_ A, to which the contents of register B are added when

a control signal is presented at the Data Gate.

A A

I
A+B_C

ADbER ADDER

Fig. 21
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Before a sum is used at a destination module, a validity check is

performed. When an Adder Unit receives a Validation Request Signal, it in

turn sends Validation Request Signals to both input data sources. After

' both sources have returned Validation Signals and formation of the sum has

been completed, the Adder Unit returns a Validation Signal to the destination.

The Adder Unit contains three decision nodes which provide for the

detection of overflow, negativity, and the numerical sum zero. Their use is

discussed below in the section dealing with control decisions.

Function Unit

A Function Unit (Fig. 22) performs three logical operations on a

pair of data inputs. These operations are the logical "OR" (w), the logical

"AND" (-) and the "EXCLUSIVE OR" (9). The results of these operations are

presented at three 12-bit data output connectors.

./-- A. B OUTPUT

A ¥B OJTI:_T --,._ ,_ .,,_ A® i_ OJT'F_-r

. --/oG o

Fig. 22

Data Validation in the Function Unit is similar to that in the

Adder and Junction Units. However, as in the Data Branch unit, Validation

Signals must be returned only to a destination from which a Validation Re-

quest Signal has been received.
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Sequencing

In order to perform a desired sequence of operations, control signals

are routed along Control Cables from one set of control terminals to the next

set in a manner reminiscent of the plugboard programmed machines or the Bell

Computer Model VI.3 Thus to perform the sequence

J,_B I

[__x _1
IB-_c )

¢
one would interconnect control terminals as follows.

C

®

B

A []
Fig. 23

When a signal on line labeled (1) arrives at the control terminal on the

A--_-B Data Gate, it initiates the transfer of data from A into B. The com-

pletion signal from this operation is routed to the control terminal which

indexes B, and its completion signal is, in turn, routed to the initiation

terminal on the B-_C Data Gate, etc.



Concurrent Sequences

Use of the Control Branch unit makes it possible to perform se-

quences of steps which may be executed concurrently. A control signal

presented at the input terminal of such a unit causes control signals to

appear on each of two output terminals (Fig. 24).

Fig. 24

The Control Branch unit contains amplifiers associated with each output suf-

ficient to drive the maximum standard length of Control Cable, and therefore

is may also be used to extend Control Cables. These units may be intercon-

nected to form an arbitrary number of control path branches (Fig. 25).

® ' ®
Fig. 25

A signal on line 1 will cause signals to appear on lines 2 through 6. Alter-

natively, the units may be plugged directly together (Fig. 26).

®.- ®
.2;)
,,.-

®
:Fig. 26

In general, in the operation of two concurrent sequences, there

will be found a point at which ensuing steps can be taken only after all

steps of both sequences have been completed up to that point. A Rendezvous

Unit (Fig. 27), which produces a signal at its output terminal only after

signals have arrived at both of its input terminals, is used at the point

of conjunction. (A Rendezvous Unit can thus be identified as a Muller C-unit 4. )

Fig. 27

* The Rendezvous Unit is shown with a darkened top to distinguish it from

units of a similar appearance.
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For exampl% suppose that we have a problem which requires several

set-up steps_ one of which transfers data from register X to register A_ and

another of which transfers data from register Y to register B. These steps

may either be executed sequentially (Fig. 28), or they may be executed con-

currently (Fig. 29).

J

j e _

¥

× []
Fig. 28
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Fig. 29

In the latter case, both tr_sfers are activated and c_ take place at more or

less the same time. As each tr_sfer is completed, a signal is sent to the

Ren_zvous Unit. hen both signals have arrived, the _it sends out a signal

which proceeds on to the next step.

A signal indicating the completion of _ arbitrary n_ber of conch-

rent actions c_ be generated as shown in Fig. 30.

® ® ®
Fig. 3O

_is signal will appear on line 5 only after signals have been received on lines

i thro_h 4. _e same end My be achieved by plugging the _its together as

shown in Fig. 31.

®®®
Fig.31 33



Call Unit

For those situations in which more than one control path must have

access to a single pair of control terminals, calling elements must be used.

Five such calling elements are included in a single Call Unit.

A Call Unit is provided with the following terminals:

I
I

11/ 7

Fig. 32

l, 2, 3, 4 Md 11 are input termnals for the elements; 7, 8, 9, 10 and 12

are the output terminals. Terminals of the fifth element Be positioned at

the right end of the unit to permt easy extension, as discussed below.

Dotted lines show the separations between the elements. Whenever a control

signal arrives at the input terminal of one of the calli_ elements, a con-

trol signal is presented at terminal 5. When the unit is plugged onto a

pair of operation control terminals, terminals 5 Md 6 _te with the opera-

tion's initiation Md completion terminals respectively. _e signal pro-

duced _ terminal 5 thus initiates the operation. When the completion signal

from this operation is presented at terminal 6, the Call Unit, in turn, pro-

duces a completion signal at the output terminal of the element which called

for the operation.

Figure 33 shows a Call Unit attached to the Complement control

terminals of a Register Module.

Fig. 33
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When Call Units are plugged together (Fig. 34), terminals 5 and 6

of the right hand unit mate with terminals 11 and 12 of the left hand unit.

The unit on the right calls its left neighbor via that unit's fifth calling

element, the completion signal returning to the right hand unit through the

junction of terminals 12 and 6.

· ,_ I /_.

s : ,, _/

Fig. 34

Figure 35 shows a Register Module with two Call Units on the Index

operation terminals.

A "Dx.....::: 'y ._,-

Fig.35 "

Note that the control path shown calls for the execution of two Index A opera-

tions in sequence.
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CallUnits may be attached to the control terminals for any

operation. Figure 36 shows three control paths, two of which contain a step

which transfers A to B, and two of which index A.

C

COM )

[3

C__D},I

ND×

A

Fig. 36

The three sequences performed are:

(1) (2) (3)
COMPLEMENTA INDEXA INDEXA

A-_B A-_B

COMPLEMENTB B -_C

No Call Units are required on the complement A_ complement B, and B-_ C

operation terminals, as each of these operations occurs in only one of the

above sequences.
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A Call Unit need not be plugged directly onto a pair of operation control

terminals. It may, instead_ be connected by means of control cables (Fig. 37).

Fig. 37

Similarly, extension may be accomplished with cables (Fig. 38).

J

Fig. 38
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Sub-Sequence Calling

Suppose, now, that several main sequences have a co_on sub-

sequence (for exa_le, m operand fetch sub-sequence common to several in-

st_ctions). _ter completion of the steps of the sub-sequence, each _in

sequence must continue with its mn set of steps (corresponding perhaps to

different inst_ction execution steps).

Fibre 39 shes the Call Units which are associ_ed with the steps

of the sub-sequence md, without showing the steps explicitly, merely indi-

cates them as S1, S2, md S3.

ji f....
t _

/

/
/

/

/
/

/
t

' 00 _ 6e 0S

Fig. 39

All of the instructions signal the Call Unit assemblage on the right

at the point at which they require m oper_d. This stack calls on a series

of other Call Units, each of which in turn perfor_ a step of the _erand Fetch

sub-sequence. After all steps are completed, a signal is returned to the _in

calling assemblage, from which each inst_ction's control signal proceeds to

initiate succeeding steps defining that particular inst_ction. Essentially,

then, a Call Unit remembers which main control path is calling for the per-

formance of a step or a set of steps during the execution of those steps.
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Control Decisions

In order to permit the choice of alternative steps to be made on

the basis of data held by the system, two Processing Network elements, a

Detector Unit and a Decoder Unit, are provided.

A Detector Unit is used to detect a specific value on a data path.

It may be plugged directly onto the unit which provides the data or it may

be connected via a Data Cable to a source of data. A data input connector

on its base is provided for this purpose.

The binary value to be detected is entered in a set of 12 switches

on the unit. A third setting of each switch allows one to indicate indif-

ference to the value of the bit in that position.

A Detector Unit has three control terminals, one for interrogation

and the others to indicate the result. When a control signal interrogates

the Detector Unit, a data validity check is first performed and the data is

then compared with the pattern set in the switches. If the pattern matches

the data, a control signal will be presented at the "Yes" terminal. If the

pattern does not match the data, a control signal will be presented at the

"No" terminal.

For example, suppose that whenever register A contains the binary

number lOlllO in its rightmost 6-bit positions it is desired to perform'some

step X, whereas, otherwise, step Y is to be performed. A Detector Unit must

be set to detect the desired pattern. The leftmost six switches are set to

indicate indifference. The remaining switches are set to read 101110. The

Detector Unit is then connected to Register Module A, and the control termi-

nals are connected as shown in Figure 40.

TO STEP Y

'ro _TE:i::> X

XY,X ×X)( 101II0

INT,1D_..R!:_NDGAT E

A

Fig. 40
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The Detector Unit, in addition to the above function, passes the data from

its input connector through the unit to a data output connector on its top

surface, thereby making the register output information available for other

possible uses.

Detector Units can thus be stacked, making it convenient to test

for any of a variety of possible patterns of interest. Figure 41 shows

three Detector Units connected to a single Register Module. They are

stacked on top of one another, but in this case they are shown at a distance

from the source register and hence are connected to it by a Data Cable. The

cable extending above the Detector Unit stack carries the data from A on to

other modules.

0oo oo0 oooooo1___ _.1

XX)( _01_LO

Ill XXX Ill IIX

A

Fig. 41
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Detector Units can be plugged together laterally for the detection

of patterns of more than 12 bits (Fig. 42). The set of control terminals on

the rightmost unit serve_for the entire assemblage. No detection decision

is made until the data from all sources has been validated.

j o _ o
Iii III Ill III I Iii Ill III III

I

Fig. 42

Figure 43 shows an arrangement which detects a pattern of 24 bits

contained in two separate 12-bit registers_ A and B.

Iii III Ill II_ III III _11III

l

A B

Fig. 43
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Figure 44 shows an arrangement which detects a pattern of 24 bits

from a variety of sources.

[ 000000 001011 [ O00010lOlOII

-- OV=----'-R_=LOW? JUNCTION U!41T
1,4_-___k'""rlV _ ?

_Abb E :,.-E.o?

,JUNCTION l.JN_T I .....I
I

Fig. 44

The Adder Unit, as mentioned earlier_ has three sets of detector

terminals. These terminals are similar to the control terminals on the

Detector Unit and are used in an equivalent manner for detection of carry

overflow, negativity_ and the numerical sum zero. A signal returned at a

"Yes" terminal indicates that the associated condition exists.
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Detector Units make it possible to select one of two alternative

control paths on the basis of particular data values or patterns. Some-

times, however, it is desirable to select one of 2n paths on the basis of

2nn bits of data. In this case detectors might be used, but the number of

detectors required grows rapidly with n. Instead, therefor% a Decoder Unit

is provided (Fig. 45). This unit contains a 3-bit decoder which may be

interrogated by a control signal.

Y6543z%O

Ik_']'ERROGATE

Fig. 45

The cable shown entering the side of the unit is a standard Data Cable coming

from some source. The input data is passed through the detector to a data

output connector on the opposite surface of the unit. On the face of the

· Decoder Unit, switches are provided for selecting three of the 12 data lines

for decoding. When a control signal arrives at the interrogate terminal

(also on the front face of the unit), the data is validated and then a signal

is produced on one of the eight output terminals (shown on top). Each output

terminal corresponds to one of the eight possible values encoded on the

selected bits_ and the signal appears at the corresponding terminal.

To permit decoding of values encoded on fewer bits_ the switches for

bit selection include a position which supplies an apparent "0" to the decoder.

If, for example_ the most significant bit of the decoded subset is thus fixed,

an output signal will never appear on lines 4, 5, 6, or 7.
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To illustrate the technique of decoding values encoded on a

larger number of bits, let us consider the problem of selecting one of

32 alternative control paths. To be explicit, let us label the 12 data

lines XO_ X1, Xll and let us suppose that we wish to decode the

value on lines X0 - X 4. Figure 46 shows the necessary connections.

iii[Ill[[[TII[[I
x' x'

INTERROGATE

Fig. 46

Note, first of all, that the Detector Units can be plugged together lat-

erally. This passes the data on the X data cable to all of the units.

Each unit is labeled to indicate which lines are selected for decoding.

The leftmost unit decodes the value on two lines, X0 and X1. When the

interrogate signal arrives at the leftmost unit, a signal will appear on

one of four output lines as shown, depending on the states of X0 and X1.

This signal is routed to the interrogate terminal of one of the other

Decoder Units whieh_ based on the values on X2, X3, and X4, in turn pro-

duces a signal on one of its eight output lines. Extensions of this

technique make it possible to decode data values encoded on any number

of bits.
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Merge Unit

At some point after making a decision, all of the decision-

dependent steps will have been executed, and the corresponding alternate

control paths may be joined through the use of a Merge Unit.* This unit

produces a signal at its output terminal whenever a signal appears at

either input terminal (Fig. 47).

j

Fig. 47

Figure 48 shows these units connected to merge four control paths. An input

signal on any of lines l, 2, 3, or 4 will produce an output signal on line 5.

The units may also be plugged directly together laterally as shown in Fig. 49.

Fig. 48

Fig. 49

* This unit, like the Control Branch, may be used to interconnect and thereby

extend Control Cables.
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Decision Call Unit

A Decision Call Unit permits a detector unit to be accessed by more

than one control path and contains five decision calling elements as shown in

Fig. 50.

.

_o No _O

Fig. 50

This unit plugs directly onto the control terminals of a Detector Unit,

terminal 5 mating with the interrogate terminal and terminals 6 and T with

the "Yes" and "No" terminals as shown below.

Fig. 51

When a control signal is presented at the input of any of the five decision

calling elements, a signal is produced at terminal 5 which interrogates the

Detector Unit. A "Yes" or "No" signal is returned to the Decision Call Unit

and will appear at the "Yes" or "No" terminal of the element which called for

the interrogation.
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Decision Call Units can be plugged together to allow an arbitrar-

ily large number of control paths to access the same Detector Unit. Decision

Call Units may also be connected to the Detector Unit by means of control

cables as shown in Fig. 52.

,ri,. o_o: o: .:

, J
Fig. 52

Like the Call Unit, the Decision Call Unit may be used to provide

multiple access to a sub-sequence control path. In this case_ the sub-

sequence may include a decision in which one of two alternative control paths

is selected. In this context the Decision Call Unit may be thought of as

calling a subroutine which has two return points. A simple example of this

is shown in Fig. 53. Register C is used as a counter which, whenever indexed,

is checked for the value 77778. The use of the De¥ision Call Unit allows this

counter to be used by many different control paths. Obviously any number of

steps may occur in the sub-sequence prior to or following the decision.

J o:

i

C

Fig. 53
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Interlocking

In some situations two independent sequences will both require the

use of the same data_-processing element(s), (e.g., two sequences which make

use of the same memory), and conflicts may arise. For such situations an

Interlock Unit (Fig. 54) is provided. This unit sorts incoming control sig-

nals on a "first-come, first-served" basis, interlocking them in such a way

as to resolve conflicts.

.....[...l__l1_.11I z 3 _ I 8

I
I
[

Pig. 54

The left and right halves are associated with the control paths, I

and II, of two concurrent sequences which must be interlocked. For a sequence

to enter an interlocked phase, a signal must be presented to the interlock at

an input terminal (terminal 1 for I, terminal 7 for II). Because it must be

assumed that the sequences do not necessarily contain the same steps within

their interlocked phases, each control path is provided with its own terminals

(terminals 2, 3, 4 for I; terminals 8, 9, l0 for II) for use during the inter-

locked phase. If the interlock is off when a signal arrives at terminal l, it

is turned on and a signal is produced at terminal 2. This signal is used to

initiate the steps within the interlocked phase of the sequence associated with

control path I. After the last of these steps has been completed, a signal is

returned to terminal 3 or terminal 4. (Two return terminals are provided to

allow for a possible decision within the interlocked section. If no such de-

cision is required, either terminal 3 or 4 may be used for the return.) In

either case, the return produces a signal at either terminal 5 or 6, depending

on whether the return came to terminal 3 or 4, and shuts off the interlock. An

equivalent process takes place for control path II, using terminals 7 through

12. If either control signal enters the interlock while it is on, it will be

held up until the interlock is turned off. If signals arrive at terminals 1

and 7 simultaneously, only one will be accommodated immediately; the other will

wait its turn.
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Figure 55 shows an arrangement for interlocking two sequences_ both

of which use register A.

/

B

000 000 oo0 o00

INTERLDCK

A
NO

YES

Fig. 55

Interlock Units can be plugged together (Fig. 56) to permit inter-

locking of any number of sequences.

il 'ill'
. Fig. 56
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EXAMPLES

Two examples of macromodular structures are now presented. The

first is a simple multiplier. The second is a "central processor" for a

small computer.

5O
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Example No. 1 - A Multiplier

In this example, we will consider the multiplication of numbers

with a positive sign and eleven bits of magnitude. The multiplier and the

multiplicand are held in registers B and X, respectively_ and the product

is to appear in register A. Figure 57 shows the processing structure re-

quired.

J o0o 000 00! I00,

AL I
?

Abt) ER

E3 ×

Fig.57 51



Figure 58 shows the algorithm to be used 5. This algorithm calls

for a succession of shifts and conditional additions while register C counts

the number of times these steps are repeated. The process terminates when

twelve (148) cycles have been completed.

'I
CLEAR REGISTER C

CLEAR REGISTER A '

I TRANSFER THE CONTENTSOF REGISTER X TO AR i

t

IS THE RIGHTMOST_BIT OF ARA "l"?k NO

YES

i

r-- SUM'IT_SFER _THEADDER

SHIFT AL and AR RIGHT
ONE PLACE

[ INDEX REGISTER CI
1

o

?

Fig. 58
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Figure 59 shows the addition of the sequencing network which controls

the processing structure in such a way as to perform the multiplication accord-

ing to the algorithm. The multiplication is performed whenever a signal is

presented on line 1. A signal on line 2 marks the completion of the multipli-

cation. Careful inspection reveals that the control lines shown have a one-to-

one correspondence with the arrows which appear on the flow diagram. At the

terminus of each control line, one of the functions described in the flow dia-

gram boxes is performed.

Q

ADDER

Fig. 59
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Example No. 2 - A Small Computer

Let us consider the central processing portion of a very simple com-

puter and sketch out how it might be realized in macromodular form. The

computer will have a 12-bit word length, 4096 words of programmable memory,

and an instruction repertoire consisting of eight instructions encoded on the

leftmost three bits of the 12-bit instruction word.

Three of the instructions make reference to other memory locations

by a process of indirect addressing. These instructions are ADD/_ , STO/_ ,

and JMP/3 and use the contents of memory registerS? (0 _ _ _ 7778) as the effec-

tive address. Thus, for example, if register/_ contains the number 1476,

execution of an ADD/_ instruction will cause the contents of register 1476 to

be added to the contents of the accumulator (in ones' complement form). Simi-

larl_ a STO/a will store the contents of the accumulator in register 1476. A

JMP/3 will cause the next instruction to be taken from location 1476.

The remaining five instructions do not make reference to other memory

locations. Instead, they perform the following functions:

CLR - Clear the accumulator.

COM - Complement the contents of the accumulator.

APO - Skip the next instruction if the accumulator contains

a positive number.

SHL n - Shift the contents of the accumulator n places to the

left where n is specified by the four rightmost bits of

the instruction word.

NOP - Proceed immediately to the next instruction.

Figure 60 gives a two dimensional view of the processing network for

this machine. Register A is the accumulator; register S is used to provide

addresses to the memory and also to count out the number of shifts required by

an SHL n instruction. During the execution of an instruction, register P holds

the address of the next instruction to be executed. The Decoder Unit is set to

decode the instruction field (3 most significant bits) of the word from memory,

(M). The Junction Unit is set to mask out the instruction field when transfer-

ring/_to S.
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Figure 61 shows a flow diagram representation of the operation of

the machine. Entering the top of the flow diagram corresponds to getting

the next instruction from the memory. The contents of P are transferred to

S in order to locate the instruction, and P is then indexed in preparation

for locating the following instruction. Memory is read to obtain the in-

struction and the decoder is signaled to decode the instruction field of the

memory word. Eight decoder output control paths are provided, one for each

of the instructions, and a control signal is produced on the selected path.

After the required sequence of steps has been executed, the control signal

returns to get the next instruction, (GNI).

Figure 62 shows the control paths required to locate and decode the

instructions_ as well as the execution control paths for the instructions CLR

and COM. Figure 63 shows the execution control paths for the instructions

APO and NOP. The detector in the APO control path is set to detect a "0" in

the leftmost (sign) position of the accumulator. A "No" signal response from

the detector proceeds to the Merge Unit assemblage from which a signal to get

the next instruction emerges. A "Yes" response indexes register P and then

proceeds to get the next instruction. The NOP instruction has no execution

steps, and its control path is routed directly to the GNI merge unit assembly.

The SHL n instruction, shown in Fig. 64, uses the S register to

count the number of places which have been shifted. The SHL n instruction

word is transferred from the memory into S and complemented. A detector on

S monitors the rightmost four bits, (n), and provides a "Yes" response when

the value 178 (the minus zero in ones' complement form) is detected. A control

loop is entered in which the detector is interrogated. A "No" signal response

from the detector shifts A one place_ indexes the count in S_ and again checks

the detector. This process repeats as long as more shifts are required. When

the required number of shifts has been completed_ interrogation of the detector

will produce a signal at its "Yes" output, which is routed to the GNI Merge

Unit assemblage.

The control paths for the three memory reference instructions are

routed to a sub-sequence Call Unit. This sub-sequence fetches the operand

address and places it in the S register. This three-step sub-sequence is shown

separately on the flow diagram in Fig. 61_ and the control path which realizes

it is shown on Fig. 65. The first step of the sub-sequence is the transfer of

/<3to S. In the following steps, the effective address is obtained from
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memory register/9 and transferred into S. Beyond this point the three in-

structions' control paths diverge, as shown on Fig. 66.

In the ADD instruction the memory is again read to obtain the

operand. The adder forms the sum of this operand and the number in the

accumulator, and in the next step of the sequence, the sum is transferred

into A.

The STO instruction execution sequence consists simply of a single

Write command to the memory, as Register A is connected directly to the

memory Data Input.

In the JMP instruction, the effective address is transferred into
\

P from the memory. For this instruction the final step of the operand

address fetch subsequence (which put the operand address into S) was unneces-

sary but harmless.

This example demonstrates the ease and directness with which simple

systems may be put together. A total of 16 Data Cables, 35 Control Cables,

and 17 modules or module assemblages are required to form this complete, albeit

comparatively modest, central processor.
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CONCLUSION

We have presented an approach in which flexibility and simplicity

are brought to the forefront of factors relevant in computer design. Two

aspects of this approach can be distinguished.

First, it adds an experimental element to the theoretical and sim-

utational techniques now available to the system designer. Perhaps this can

most effectively be employed in research groups having as their main objec-

tives the creation of advanced computer systems for particular areas of work.

Because of the relative ease with which a given configuration of macromodules

can be profoundly altered, it is possible for such a group to work actively

with several widely different forms in an attempt to find optimal configura-

tions for different problem classes.

Second, it makes possible a smoothness of growth and refinement in

an operating computing system. Because of the electronic independence of the

macromodules_ it is relatively easy to expand a macromodular system and to

add new functions without seriously affecting the continuity of on-going work

and without jeopardizing any existing investment in programs and operating

procedures.

These properties of macromodular systems are of growing importance

as we turn increasingly toward the user for new concepts in the search for

more effective information processing systems.
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Macromodular computer systems.

by WESLEY A. CLARK
Chairman's Introduction
Washington Un'iversity
St. Louis, Missouri

INTRODUCTION importance. The requirements can be summarized as
follows:

The amount of logically irrelevent engineering detail (1) The modules must be functionally large

inherent in the design and construction of a compu- enough to reduce logical detail by a signif-
ter system is great. As a result, the task of creating icant amount and must be relatively easy
a system based on the use of present techniques is to understand and assemble. The number of

so difficult and time-consuming that the number of different types should be as small as possible
different systems that can be put into use for evalua- so as to limit inventory, but at the same time,

tion and study by any one group of workers is small, the set must be logically complete so that
This is unfortunate as we are thereby denied the op- whole systems can be assembled. There
portunity to develop that insight into logical or- must be not only central processor modules
ganization which can grow out of a working famil- such as register and memory units, but also
iarity with many diverse forms. What is needed modules for power, signal conditioning, in-
is a set of relatively simple, easily inter-connected put-output buffering and control, together
modules from which working systems can be with a reasonable selection of input-output
readily assembled for evaluation and study. With devices themselves.
such a set, both the designer and user would be

able to try out potentially powerful and novel (2) The mode of combining units into larger
structures on a very large scale, adjusting and structures must be very simple (a problem
improving the systems as needed. Once a design has first considered by Babbage, who examined
been realized and its value established, it could then this matter "with unceasing anxiety" one hun-

dred and twenty years ago)2 The modulesbe reworked into tighter engineering form for max-
imum efficiency and for production by automatic should be designed for easy mechanical as-
wiring and fabrication techniques, and the experi- sembly. Communication from one mechani-
mental units made available for further studies or re- cal assemblage to another should be accom-

turned to "inventory" in the manner proposed by Es- plished by means of easily connected cables.
trin2 (3) All units should be designed so that the as-

The approach presented in the "following", papers sembling of these units into a working system
describes modules which are primarily vehicles for presents no logically irrelevant problems such
experimental use and as such meet a set of require- as those relating to circuit loading, waveform
ments heretofore unnecessary in digital modules. Logi- deterioration, signal propagation delay, power
cai flexibility and ease of use are considered of pti- supply interactions, and so forth, regardless of

mary importance while factors such as operating the size or complexity o! the system. The
speed, economy, etc., are considered of secondary modules should be powered and perhaps con-

trolled individually, and all possible signal
paths must be provided with signal-standard-

*This research was supported in part by the Advanced Re- izing amplifiers capable of driving all possible
search Projects Agency of the Department of Defense loads.
through contract SD-302 and by the Division of Research
Facilities and Resources of the National Institutes of Health We call units which meet these requirements
through grant FRo00218. macromodules to distinguish them from the more

/
335



336 Spring Joint Computer Conf., 1967

conventional computer system modules. In this repor_ Second, it makes possible a smoothness of growth

we present a set of macromodules which, although and refinement in an operating computing system. Be-
not "complete" in the above sense, meets all other cause of the electronic independence of the macromod-
requirements and is sufficient for the synthesis of ules, it is relatively easy to expand a macromodular
all central processor functions of which we are present- system and to add new functions- Witholat ,seriously af- ,,
ly aware, fecting the Continuityof on-goingwork and without

The following papers present the principal direction, jeopardizing any existing investment in programs and

achievements, and goals of the macromodular corn- operating procedures.

puter development program under way at Washington These properties of macromodular systems are of
University. They describe an approach in which flex- growing importance as we turn increasingly toward
ibility and simplicity are brought to the forefront of the user for new concepts in the search for more ef-

factors relevant in computer design. Two aspects of fective information processing 'systems.
this approach are distinguishable.

First, it adds an experimental element to the theoreti-

cal and simulational techniques now available to the REFERENCES
system designer. Perhaps this can most effectively be
employed in research groups having as their main ob- I G. ESTRIN
jectives the creation of advanced computer systems for Organization o] computer systems the fixed plus variable
particular areas of work. Because 'of the relative ease structure computer
with which a given configuration of macromodules can Proc. wJCC 33-40 1960

be profoundly altered, it is possible for such a group 2 L. F. MENABREA
to work actively with several widely different forms Statement of the ctrcumstances attendmg the mvention
in an attempt to find optimal configurations for differ- . and construction o! Mr. Babbage's calculating engines

ent problem classes. Phdosophlcal Magazine 235 September 1848



A functional description of
macromodules.

by SEVERO M. ORNSTEIN, MISHELL J. STUCKI and WESLEY A. CLARK

Washington University
St. Louis, Missouri

*This research was supported in part by the Advanced Research
Projects Agency of the Department of Defense through contract
SD-302 and by the Division of Research Facilities and Resources
of the National Institutes of Health through grant FR-00218.

INTRODUCTION instruction code, will be more convenient or efficient

This paper describes a set of macromodular building for some tasks than it will for others.
blocks such as registers, adders, memories, control
devices, etc., from which it is possible for the elec- Generalcharacteristics
tronically-naive to construct arbitrarily large and corn- The macromodules to be described are relatively
plex computers that work. Machines are assembled small, dimensionally modular boxes which plug into

. by plugging the modules into cells of a special frame a cellular frame structure, some modules occupying
which provides for communication between adja- more than one cell. Each module contains all of the
cent cells. Explicit data pathways and control struc- electronic circuits and memory elements required
tures are then made by plugging in standard_zecl in the performance of its particular function. Con-

'' cables. All pieces of a system are therefore recover- nectors on the frame provide for communication be.

able and systems can be reconfigured easily. Data tween modules in neighboring cells, and assemblages
modules process twelve-bit word-segments; greater of units are thus made by plugging them into appro-
word lengths are obtained by interconnecting modules, priately adjacent positions. Faceplates attached to
Memory modules hold 4096 twelve-bit segments and the modules' front surfaces provide the electrical
can also be interconnected to form larger arrays, connectors for signal access, and standardized cables
Particular attention is given to the problem of design- are provided for inter-assemblage communication. All
ing control structures. The control signals for a given connectors are backed by signal-standardizing ampli-
process are routed along the cables of a control net- tiers capable of driving any adjacent module or at-
work whose topology is isomorphic to the flow dia- tachable cable. Since ali cabling takes place between
gram representing the process. The step from con- faceplates which are separable from the modules, it is

ception to realization can therefore be made directly, possible to remove modules from a frame for tempo-
rary use elsewhere without disturbing the cabling.

The task of defining a set ofmacromodules or build- Data processing modules are organized in parallel
lng blocks is not unlike that of defining an instruction binary form with a word-length modulus of 12 bits,
repertoire for a computer. The fundamental require- and are designed functionally for asynchronous
ment is that the set be sufficiently general to permit operation. Memory modules hold 4096 12 bit words.}
construction of any central processor.* The partic-

ular set described here embodies this generality The design of a system based on these modules re-
and satisfies the requirements set forth in another pa- quires, we believe, only the exercise of logic. The

per.' While it illustrates the approach we have taken, operability of the resulting system is not critically
the set is by no means unique and, like a particular affected by the physical distribution or arrangement of

*No input-output macromodules are discussed here although }The numbers 12, 4096, and other such parameters have been
modules for various devices (scopes, tapes, printers, readers, made specific, for purposes of this paper, only to simplify de-
etc.) are obviouslyrequiredto completethe set. scription.
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parts, the distances between units, the number or .+
diversity of modules, or the routing of the intercon- T_ME-CONTINUOUS

TRANSFORMATION
necting pathways. Macromodular systems are, as a ·ELEMENT
result, capable of continuous growth and functional
enrichment.

System organization DATA OPERATION COMPLETION TERMINAL

Macromodular systems may be viewed in terms of ELEMENT INITIATIONTERMINAL
tWO logically distinct, interacting networks as shown
in Figure 1. The processing network (the heavy-

lined structure) consists of data processing elements __}
int6'rconnected by data pathways, and provides for the DECiSiONOPERATION COMPLETIONTERMINALS
storage, propagation, and transformation of data with- ELEMENT

in a system. The sequencing network (the light-lined L___f__a-_ INITIATIONTERMINAL
structure) consists of control nodes distributed

throughout the system, interconnected by control Flgure2-Dataprocessmgoperatlons

pMhways. The structure of the processing network

defines the basic data processing operations of the tion while the others (completion terminals) indicate
system while the structure of the sequencing network the value of the data found. Also shown in Figure 2 is

defines the order in which sub_ets of these basic a time continuous transformation element. This ele-
operations can be camed out. ment, unlike those already described, performs its

Interaction between these networks takes place at operation continuously. The data presented at its out-
control terminals on the data processing elements, put changes directly in response to changes of input

· These terminals have two functions: )l) they allow data rather than in response to control signals, and as a
the sequencing network to initiate operations, and result, the element has no control terminals at ail.

(2) they return completion signals when the opera- An operation is initiated when a control signal arrives
tions are finished. Each basic data processing opera- at an initiation terminal. The operation is executed
tion has an associated set of these terminals (Figure and finally a control signal issues from the completion
2), the number of terminals in the set being determined terminal and travels to the next control node in the

, by the nature of the operation. Operations that mani- sequencing network.
pulate data, data operations, have two, an initiation The order or sequence in which operations are per-
terminal and a completion terminal. Operations that formed is determined entirely by the structure of

check data for specific values, decision operations, the sequencing network. This network is composed
have more than two, one of which initiates the opera- of signal nodes, calling elements, and interconnecting

pathways. A signal node is an element which provides
for the merging or branching of control signals
data operations, have two, an initiation terminal and

a completion terminal. Operations that check data for
specific values, decision operations, have more than
two, one of which initiates the operation while the
others (completion terminals) indicate the value of

the data found. Also shown ,in Figure 2 is a time
continuous transformation element. This element, un-

like those already described, performs its operation
continuously. The data presented at its output
changes directly in response to changes of input data
rather than in response to control signals, and as a
result, the element has no control terminals at all.

The order or sequence in which operations are per-
formed is determined entirely by the structure of
the sequencing network. This network is composed
of signal nodes, calling elements, and interconnecting

pathways. A signal node is an element which provides

far the merging or branching of control signals.
Figure I-Processmeand sequencmg networks There are several types, two of which are shown in
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that sequence. The sequencing network is therefore

_ _ thecontrolpathfortheentiresystem.CONTROL CONTROL _ SIMPLE

MERGE BRANCH SIGNAL Data validation
NODES Whenever data values are used in either a data

" operationor a decisionoperation,it _snecessaryto
be assured that 1) the results of all prior operations
which could have perturbed the data are complete

OMPLETION and 2) the values of the data havenew propagated to

RETURN _ ') OPERATmNthe point of use regardless of the length of the
CALL OPERATION _ 'x_j / NODE pathway.

I iNITiATION
When information is used in the immediate Iocahty

of its source, i.e., within the same module, allowances
_ d_cCOMPLET_ONA

OMPLETIONB for stabilization and signal progagation times are madewithin the module itself., When the source is remotef_

ALTERNATERETURNS _; _ x DECISION from the point of use, a procedure known as data vali-
NODE

CALLOPERATION dation is followed to guarantee that the above two re-

mINITIATION

Figure 3-Control nodes /

Figure3. Acallingelementisonewhich, whenacti-[ _ [ --- /---_ _-1vated by a control signal at tts inttlation terminal, x / -- -- ... I
causes an operation to take place and, when signaled /
of completion of the operation, produces its own corn- i __ __ _ _ _ ___j

pletion signal in turn. An operation node is a calling
'- element for data operations, and a decision node is a m

calling element for decision operations. I yiv

Control within a macromodmar system is asyn- t ___

chronous, that is, each event in a sequence of events Ican be initiated by the completion signal from the pre-

ceding event. The simplest way of accomplishing this I [ f........
is to connect a cable from the completion terminal as- I zr-

TM

sociatedwith each operationto the initiationterminal _ I ...

I I
associated with the next operation. This scheme, t _'--4 _-J
though simple and effective, has the limitation that \PROCESSING

once the control terminals for an operation have been STRUCTURE t CONTROLPATH
connected for one sequence, it is no longer possible CONTROLPAT_ FORSEQUENCE
to incorporate the operation into any other sequence. FORSEQUENCE Z,X
In such cases, rather than connect to the terminals z,y,x
associfi, ted with the operation, we connect instead to Figure4-Exampleofsequenceconuol
the terminals of a callingelement associated with the
operation, as shown in F_gure 4. Since any number et

calling elements may call the same operation, an ,_
operation may thus occur in as many distinct se- /

quences as necessary. Figure 4 illustrates this for f..... --- ---_ _--]

two differentsequences,namely,the sequencez, y, I ... I

x and the sequence z, x. Since both sequences include I -7 I

the operations z and x, they initiate the operations L ........ -q __j
through calling elements. Calling elements are not
needed for operation y, however, as it appears in
only one sequence and can therefore be incorporated
by connections directly to its control terminals. __

The control elements and interconnections defin- MAIN SEQUENCE
CONTROL PATHS

ing a given sequence are said to be the controlpath for Figure 5- Subsequence control
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quirements are met. This process is discussed else- DATA OUTPUT TO DATA INPUT FROM

where.2 For the presen[ purposes, we shall assume that OVERLYING CELL _t 1_ OVERLYING CELL
any attempt to use data following a perturbation of the

data source will work properly, i.e. that the correct

T l_ ' /_,NDEX TERMINALS
new value of the data will be used. Thus, there is no DATA OUTPU //._f-- COMPLEMENT

need for the designer to concern himself with details CONNECTOR _ _$"_x TERMINALS
of propagation times so long as proper sequence is [ o°°ogp_CLEAR TERMINALSestablished.

The macromodu/ex [*.--- DATA INPUT FROM
UNDERLYING CELL

We now proceed to give a functional description of Figure 6-- Reg_,ter module
the individual macromodules and illustrate their roles

in various systems. Processing network elements are most module bears control terminals, and these ret-
introduced first, and this is followed by a discussion of minals provide control for the whole register. This
the various sequencing network elements. Power con- feature is common to all data operation and decision
nections and the supporting frame structure are omit- operation modules, thereby making control of an

ted from the figures to avoid obscuring the logical operation independent of register size. Special
point being illustrated. A basic module type is some- circuits within each module are coupled in such a way
times fitted with more 'than one type of faceplate as to guarantee proper operation regardless of reg-
suiting it to different contexts. In such cases the _sterlength. 2
circuits within the module sense the faceplate type
and operation is suitably adjusted. Transfer operations

Data transfers from one register module to another

Cables require the use of a data gate module. This unit
Data paths are constructed with data cables, control plugs into the frame cell underlying the receiving re-

paths with control cables. These cables are made in glster and is connected by means of a data cable to
a limited number of lengths, but cables of any length the output of the data source register module (Figure
can be formed by using signal-standardizing extender 8). Twelve bits are transferred in parallel, and the
units. A control cable contains a single channel for transfer initiation and completion terminals appear
transmission of a control signal. A data cable con- on the data gate module. Transfers do not alter the
tains 12 channels for the transmission of data and two information at the source.

for the transmission of signals associated with data Ifa register module is to receive input from n
validation. In the illustrations, data cables are sources, n data gates are required (Figure 9). Stack-
drawn with heavy'lines and control cables are'drawn lng the units in this way allows each data gate to cum-

with thin lines, municate with the receivingregister module;any num-
ber of transfer paths into a register module can be

Input switchsets provided. Two registers cannot exchange information
Any faceplate data input connector will accept without the aid of a third register, however, since

either a data cable or an input switch set. The switch simultaneity of events in different parts of an asyn-
set is used to provide "constants" for presetting chronous system cannotbeassumed.

registers, masking, and so forth. Data gates plugged into laterally adjacent cells form

tiers which provide for transfers into longer registers.
Registers Figure 10 illustrates a 24-bit transfer. Interconnect-
The basic register module Figure 6 contains a

12-bit register together with logic for the operations t ! t ! ! !clear, complement, and index (count). Mounted on the t' ' e' / /
faceplate of the register'--'"are control terminals for these O O O
operations together w_th a data output connector.
Outputs are also carried up to the overlying cell.

Data input to the register comesfrom units plugged ooo
intotheunderlyingor overlyingframecells, ooo

Registers of any length can be formed by plugging T I Tthese modules into laterally adjacent cells in the
frame (Figure 7). Only the faceplate for the right- Figure7-Register extension
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id Memory

The memory module has a capacity of 4096 12-
a"z--- RECEIVING bit words and contains, in addition to a memory array,

REGISTER all required drivers, addressing logic, sense ampli-ooo

odd tiers, internal address and data registers, etc. Figure
DATA GATE 12 shows a simple arrangement in which one memory

f module is used.
CONTROL Reading is controlled by a pair of terminals on the

E TERMINALS module. In this example the memory module data out-

;n put terminals are connected so that the word obtained

from the memory array can be transferred into register

SOURCE REGISTER B. The read operation's completion signal or any sub-
sequent signal may be used to initiate this transfer

ooo operation.

Figure 8-Datatransfer Writing into the memory may take place from an
arbitrary number of sources and for this purpose data

gates are stacked in underlying cells just as for reg-

O ister transfers. Writing from each source is con-

A trolled by the terminals on the corresponding data
gate. ·

000 r / /

0.__ 0
I©

x---AolI REGISTER B
ooo

. DODO_' J oI II

I

I I REGISTER A

: :' I oooOOO
Figure I 0-- Double length transfer

o t

Z B

000 000
000 000

oooOOO

Figure 9-- Multiple transfers [ C _ A o C-'_ B o

ing data cables for the register segments may be of
different length, as compensation for signal propaga-
tion times is automatically made in each cable.

In order to permit the transfer of informaUon from a /4
single source into more than one destination module, _ DATA BRANCH
a data branch unit is used (Figure 11). Data branch C UNIT
units may be cascaded indefinitely to provide any
number of connections to the same source. As it is ooo
not necessary to use both outputs, the data branch ooo
also doubles as an extender unit for data cables. F]gure ll-Databranchmg
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MEM_ into ti_eleftmost four bit positions of C, the !ettmost

four bits of B into the rightmost four bit positions of
C, and the four middle bits of C are to be set to the

MEMORYDATA _DD.ESS binary value 1011. The units are arranged as shown in
OUTPUT '--'"_....O_. Dp [ _[ -'Il" Figure 14, and the junction unit jumpers as shown in

Figure 15. The word made up by the junction unit is

I ^IL-, CONTROLTERMINALS transferred into C via a data gate.

 AD'O"E"AT'O"I x II -'--r- ?IT_DATAGATE
(XTOMEMORY) Data input from overlying unitsL goooo_ ·

,_ZZZZ::Z::::Z_/__&l_ _- DATAGATE Three types of units, namely, Shifters, Adders, and

/_ i ii (YTOMEMO"Y} Function Units, overlie a register (or one another)
and transmit their outputs only downward to the reg-
ister via the implicit frame data pathway. These

-units have the following properties in common:
Figure 12 - Simple memory

I Each unit passes the data from the register on up

Memory modules can be plugged together laterally to overlying cells and similarly, promdes upward
to increase word length and vertically to increase the continuation of the down access route into the

number of words. Figure 13 shows a memory system register.

containing 8192 thirty-six bit words. To permit ref- 2 Each unit operates in response to control signals
erencing in memory systems containing more than presented to terminals on its faceplate.
4096 words, connectors are provided for additional 3 Each unit uses the information originally held
address inputs .for selection of the appropriate tier. in the register below in determining the results
All access to the memory, regardless of address, is to be returned to the register.
through terminals on the lowest tier. 4 Each umt extends laterally as the register length

Junctionunit extends, formingtiers whichoverlie the register
A junction unit is a continuous transformer which

permits one to rearrange bits within a word or to · ,- ,q

form words from bits selected ,from several words. ._,,_o C t,_L -

The unit has two 12-bit data inputs and a single
12-bit data output. A set of jumpers can connect ooo· 000

each of the 12 output terminals to any of the 24
input terminals or to fixed terminals supplying the g DATAGATE
value "1" or "0". /

Suppose, for example, that information is to be l_lr" _tD ]
JUNCTIONP UNIT

transferred from parts of two 12-bit registers, A _ ' ,_ _ 7(I

and B, into a third register, C. Specifically, sup- "'A_ _re :"

pose that the rightmost four bits of A are to be copied
A B

I -*----- 36 BITS 1 00o0

f

Figure 14-Junction un]l

12 OUTPUTS TO C

WORDS

I
C _ ,i ' ADDRESS / IDATA _

OUT 4

I : I : I ,' IIIII .-
12 A INPUTS 12 B INPUTS

DATA IN

Figure I3 -- Memory exienslon Figure 15 --Junction unit jumperlng
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As many tiers as desired may be stacked on top of 3 The bit is set to the yalue "0".
one another above the register. Each tier must ex- 4 The [;it is set to the value "1".

tend across the full length of the register and must con- 5 The bit is taken from the data input port at the
sist of only one type of unit. An example is shown in trailing end of the register. For leftward shift-
Figure16. lng the bit is taken from the most significantbit

Shiftunit position of the input; for rightward shifting,

Two types of shift modules are defined, one for from the least significant position. (The remain-

shifting right and one for shifting left. Figure 17 ing 11 bits of information at the data input are
shows a 36-bit register equipped to shift in either not used.)
direction.

Each of five pairs of control terminals causes the Adder unit

register to shift one position, but each pair treats The adder unit takes one input from the underlying
the incoming bit at the trailing end of the register register and the other input from a data input port
differently. The options are as follows: on the adder's faceplate. The sum is copied into

I The bit is not changed, the underlying register. Addition is controlled by
2 The bit is replaced with the bit previously at the terminals on the rightmost module in an adder tier.

other end of the register, i. e. a rotation occurs. Figure 18 shows a 24-bit register, A, equipped to

I I I add from registers X or Y, (i.e. A + X---_Aor A +
I I ii Y--_A).
I I The adder unit contains three decisionnodes which

F UN CT ION UN IT provide for the detection of overflow, negativity

I and the numerical zero sum. Their use is discussed
-- ADD E R __1 below in the section dealing with control decisions.

I Function unit

-- A DDE R _ A function unit may perform any of three logical

/ operations on a pair of data inputs. Like the adder,
S HI F T E R one of the data inputs comes from the underlying reg-

I ister and the other from a data input port on theI front of the unit. The result of the operation is

A DD E R -- returned to the underlying register. The
operations,

controlled by three pairs of terminals on the rightmost
--SHIFTER--/ unit, are the logical "OR" (v), the logical "AND"

I _ (.), and the "EXCLUSIVE OR" ( v ) Figure 19I shows a single 12-bit register equipped with a function

R EG IST ER unit as well as an adder.

I _ An exampleof the use of the functionunit mightbet the clearing of selected bits of the register. An

--DATA GATE-- input switch set may be inserted in the data input
I I port of the function unit. If the switches are set to
m m , the value !7778, then whenever the "AN D" terminals
I m

Figure 16-- Overlying units

'-.ADDITION

DATA INPUT DATA INPUT ..... ADOE_R gggg CONTROL
t t r r / I_.,,,,,,,,,,''_ I?' _ _ J_' I_ ooo_ JTERMINALS

SHIFTER -'"2- ooooo _ ,,/_ooooo ::0RIGHT .___ _ _ J ._.f] I 0oo000

SHIFTER -"-P_._ 0 0 0 °°°°°°°°°° _ggg_
REGISTER _ ooo Y

ooo _ I
Figure 17 - Shift un,ts Figure 18- Adder units
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f Concurrent sequences

DATA INPUT _ _ _ FUNCT ION UNIT Use of a control branch module (Figure 21) makes itOoo

oeo possible to perform sequences of steps which may be
executed concurrently. A control branch module con-n ooo _ ADDER

o0oo tains several identical control branch elements. A0000

O control signal presented at the input terminal of such
an element causes control signals to appear on each ofREGISTER
two output terminals. These elements may be cas-

o.. caded to form an arbitrary number of control pathooo

branches. They may also, of course, be used simply to
Fzgure 19-Funct:on umt extend control cables.

receive a control signal, the leftmost two bits of the In the execution of two concurrent sequences, there
register willbe cleared, will be found a point at which ensuing steps can be

taken only after all steps of both sequences have been

Sequencing completed up to that point. A rendezvous element

In order to perform a desired sequence of opera- (Figure 22) which produces a signal (Z) at its output
tions, control signals are routed along control cables terminal only after signals have arrived at both of its
from one set of control terminals to the next set in a input terminals, (X and Y) is used at the point of con-

manner reminiscent of the plugboard programmed junction. Like the control branch, several elements
machines or the Bell Computer Model VI2 Thus, to are housed in a rendezvous module.*

perform the sequence For example, suppose a problem requires several
set-up steps, one of which transfers data from reg-

A--* B ister X to register A, and another of which trans-

fers data from register Y to register B. These stepsINDEX B
may either be executed sequentially (Figure 23), or

$ they mav be executed concurcently (Figure 24). In -
B--*C the latter case, both transfers are activated and can

$ take place at more or less the same time. As each

one would interconnect control terminals as shown in
Figure20. X

_' [/ 0 0 0

J / 0

/ 0 0 0

C o o o

000 (

000

) x
· Figure 21--Control branch module

_'_j J '-'F SEQUENCE COMPLETE

A-_' B__ / INITIATE SEQUENCE

N X

Figure22-- Rendezvousmodule
ooo
ooo

*The rendezvous module zs shown with a darkened top to dzstm-

Figure 20-- Sequencing of operat:ons gmsh it from umts of a s:mdar appearance.
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transfer is completed, a signal is sent to the ren-

unit sends out a signal which proceeds on to the next 6 ? 8 9 lO
step. A signal indicating the completion of an ar- O O O O

· bitrary number of concurrent actions can be gener- O O O O I I
ated by cascading rendezvous units. I 2 3 4 [/'

t' · Figure 25-Call unit

O O
completion signal at the output terminal of the partic-

A B ular element which called for the operation. Call
oo *** units may be attached to the control terminals for
000 000

j any operation. Figure 26 shows a call unit connected
Iii p _ il to the complement control terminals of a register

,(_ t _ module.

Jl_ Call units may be cascaded, as shown in Figure 27,
to increase the number of accesses for a particular
operation to any desired number. Figure 28 shows

/ _l_ I three control paths, two of which contain a step

which transfers A to B and two of which index A.

Y The three sequences performed are:
000 000

00o oo. (1) (2) · (3)

Figure23-Sequentlaltransfers COMPLEMENT A INDEX A INDEX ,4
A--*B A--*B

I RENDEZVOUS 0 B _ COMPLEMENTB B---_B

A .._H !o__ g_ No call units are required for the complement A,

complement B, or B--)C operation terminals, as each
· ** _ _**° of these operations occurs ir, only one of the above

sequences.Sub-- sequence calling

)_ Call elements may be used to execute a sub-
sequence common to several main sequences (for

CONOCO _ LI / example, an operand fetch sub-sequence common toseveral instructions). After completion of the steps

¥ of the sub-sequence, each main sequence must con-
×' L tinue with its own set of steps (corresponding per-

o.. ooo haps to different instruction steps).ooo ooo

Figure 29 indicates, on the left, the steps of the sub-
F,gure 24 - Parallel transfers

sequences S,S2, and S3. All of the instructions signal

Call unit
For situations in which more than one control path I I

must have access to a single pair of control terminals, /

calling elements are used. Four calling elements are O _ _
included in a single call unit. / _ , ,

A call unit is provided with the terminals shown in [_o [to_oLo o

Figure 25. Terminals 1, 2, 3, and 4 are input terminals oj,oO?'2" ...-rr_ I???'---oIlv
for the elements, 7, 8, 9, and 10 are output terminals. I I
Whenever a control signalarrivesat the inputterminal L
of one of the calling elements, a control signal is pre- SEPARATE
sented at terminal 5 which thus initiates the operation. CONTROL

When the completion signal from the operation is re- PATHWAYS
turned to terminal 6, the call unit, in turn, produces a Figure26--Auseofthecallunit
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_._[ 000/0% MAIN SEQUENCE

t;'I I ]---.'Ii---. _ ___ -S, .o CONT"OL"ATNS
· SU.SEQUENCE °t or. t tool] .

STEPS S2 : _? °P'_'_V l/° ;; o°v

Figure 27 -- Extension of call units oo_] fl ,o-.4-1.
SI _ i oo o/o V

Figure 29- Sub-sequence calhng

Figure 30 shows a detector which tests for the value
101110 in the rightmost 6 bit positions of register A.
X's indicate indifference to the leftmost 6 bits. In

this configuration the detector unit receives its data
input from the underlying register. Likewise, the de-

tector unit passes the data on upward to the overlying
cell. Detector units may thus be stacked one above

o__ the other in adjacent vertical cells (Figure 31) making
it convenient to test for any of a variety of possible

_ J L _ patterns of interest. Note that a shifter and an adder
unit intervene between the register module and the de-
tector stack. This is permissible in that these units

Figure 28-Example ofcall unituse also pass the register outputs upward. It is not per-
missible, however, to place an adder, shifter or

the call unit assemblage on the right at the point in function unit above a detector unit inasmuch as these

the sequence at which they require an operand. After units require downward access to the register for
all steps are completed, a signal is returned to the depositing their results, a feature not required by or
main calling assemblage, from which each instruction's incorporated in the detector unit.

control signal proceeds to initiate succeeding steps Figure 32 shows the same stack of detectors, placed
defining that particular instruction. Essentially, in cells not overlying the'register. In this case, the
then, a call unit remembers which main control path source register outputs are delivered to the bottom-
is calling for the performance of a step or a set of most detector unit via a data cable.

steps during the execution of those steps. Detector units extend laterally in the usual fashion
Control decisions for the detection of patterns of more than 12 bits.

In order to permit the choice of alternative steps to Figure 33 shows an arrangement which detects a pat-
be made on the basis of data held by the system, two tern of 36 bits from a variety of sources.
processing network elements, a detector unit and a de- The adder unit, as mentioned earlier, has three sets
coder unit, are provided, of detector terminals (Figure 33). These terminals are

A detector unit is used to detect a specific value on similar to control terminals on the detector unit and

a data path. It may be plugged into a cell overlying /
the register which provides data, or alternatively

it may be connected via a data cable to a source of xxx xxx IOI I lO STEP X
data. The binary value to be detected is entered in YES

a set of 12 switches on the unit. A third setting of NO STEP Y

each switch allows one to indicate indifference to the IN T E R R OGATE
valueofthebitat that position. C)

A detector unit has three control terminals, one for

interrogation and the others to indicate the result. A
When a control signal interrogates the detector anit,
the data is compared with the pattern set in the
switches, if the pattern matches the data, a control
signalwillbe presentedat the "Yes" terminal. If o o o

the pattern does not match the data, a control signal o o o
willbe presented at the "No" terminal. F_gure30- Detectorumt
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/
000 010 III JOOOo10 iii omo

/
YES 0

YESo DETECTOR .0 o

, NO0 o I

0 J XXX XXX IOI 010
YES O

XXX XXX IOI OIO NOO
O

YESO DETECTOR i,,, xxx,,x ,ox
NO 0 YESo

0 NO0 o0o
0 000

,i,xxxi,x,ox

YES 0 DETECTOR Fmgure32- Separate detector stack
NO O

O

[] ooo ADDER
0000 Jl

0 O 0 O .................................. I1
YES O

DETECTORS _] .ooNoo P

00000
REGISTERS

ooo0 °°°

JUNCTION

REGISTER UN,TS
Ftgure 33-Combmed detectors

O O O duced on one of the eight output terminals. Each out-
O O O put terminal corresponds to one of the eight possible

values encoded on the selected bits.

F_gure 3 1 - Stacking of umts above the register To permit decoding of values encoded on fewer bits,
the jumpers for bit selection can providelan apparent

are used in an equivalent manner for detection of carry "0" to the decoder. If, for example, the most slgmf-
overflow, negativity, and the numerical sum zero. A leant bit of the decoded subset is thus fixed, an out-
signal returned at a "Yes" terminal indicates that the put signal will never appear on lines 4, 5, 6, or 7.
associated condition exists.

Figure 35 shows a stack of decoder umts which
Detector units make it possible to select one of two splits the control path into one of 32 alternatives based

alternative control paths on the basis of particular data upon bits 0-4 of the data input.

values or patterns. Sometimes, however, mt is desir-
able to select one of 2" paths on the basins of n bits of Merge unit
data, and for such cases a decoder unit !s provided At some point after making a decision, all of the de-
(Figure 34). This unit contains a 3-bit decoder which cision-dependent steps will have been executed, and

may be interrogated by a control signal. Data input the corresponding alternate control paths may be
comes to the decoder either from the underlying cell or joined through the use of a merge element, several
via a data cable. The input is passed upward to the elements being housed in a merge unmt (Figure
overlying cell. Jumpers within a unit select three of 36). A merge element produces a signal (Z) at its out-
the 12 data lines for decoding. When a control signal put terminal whenever a signal appears at either in-
arrives at the interrogate terminal, a signal is pro- put terminal (X or Y). Cascading permits the merging
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gr _, rogate terminal and terminals 6 and 7 to the "No"and "Yes" terminals as shown in Figure 38. When a
7 6 5 4 3 2 I 0 control signal is presented at the input of any of the

t_l_l_,Ot_td,O_t_ four decision calling elements, a signal is produced at
terminal 5 which interrogates the detector unit. A o

f' / INTERROGATE "yes" or "No" signal is returned to the decision call
unit and will appear at the "Yes" or "No" terminal of

O the element which called for the interrogation.
Decision call units can be cascaded (Figure 39) to

allow an arbitrarily large number of control paths to
access the same detector unit. Like the call unit, the
decision call unit may be used to provide multiple ac-

O O O cess to a sub-sequencecontrol path. In this case, the
sub-sequence may include a decision in which one of

o o o / two alternative control paths is selected.

Figure 34--A decoder umt on a register Interlocking ,

fl In some situationstwo independentsequenceswill

II both require the use of the same data-processing cie-X2 X3 X4
oooooooo I I merit or elements (e.g., two sequences which make

use of the same memory), and conflicts may arise.
For such situations an interlock unit (Figure 40)

- -- is provided. This unit sorts incomingcontrol signals
on a "first-come, first-served" basis, interlocking

X2X3X4 I I 'Io°°°°°*°11 I them in such a way as to resolve conflicts.

x,x xiiIlo iloooo iI , ofOfOooo
-- ?.o Io Io I o I)

x2x3x4 I I I I Io

x
OXoX, I III II F,gure36-Mergeun,t

ooo o???_o_4_1._J I I

DATA {,,,.__N_T_ER_ROGAT E
INPUT

Figure 35- Decod,ng five bits

of as many paths as desired. This unit, like the con-
trol branch, may also be used to interconnect, and

thereby extend,controlcableS.Decisionca!lunit _'_ NOJ_/_ ?

A decision call unit permits a detector unit to be ac- .0; /_ _ Q_
cessed by more than one control path and contains O
four decision calling elements as shown in Figure 37. NO
This unit is connectedviacontrolcables to the control

terminals of a detector unit, terminal 5 to the inter- Figure 37--Decision call umt
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provided with its own terminals (terminals 2, 3. 4
YES for I; terminals 8, 9, 10 for 11) for use during their in-

0 TiO/_ terlockedphase, lf the interlock is off when a signalN YES arrives at terminal I, it is turned on and a signal is

tloL oOyiosl_________:xxl_3" \l I / _1oO_/ produced at terminal 2. This signal Initiates the steps

I i__ o][ within the interlocked phase of the sequence as-

sociated with control path 1. After the last of these
steps has been completed, a signal is returned to ter-

s minal 3 or terminal 4. (Two return terminals are pro-

vided to allow for a possible decision within the in-terlocked section.) The return produces a signal at

Fagure38-Exampleofdec_s_oncalhng either terminal 5 or 6, depending on whether the re-
turn came to terminal 3 or 4, and shuts off the rater-

lock. An equivalent process takes place for control
path II, using terminals 7 through 12. If either
control signal enters the interlock while it is on. it
will be held up until the interlock is turned off. If
signals arrive at terminals I and 7 simultaneously.

YES only one will be accommodated immediately; the other
NO willwait its turn.

/ Figure 41shows an arrangement for interlocking two
,,, ,,, ,,, ,,, o o o sequences (! & ll), both of which use register A. ln-YES 0 0 0

No terlock units plugged into laterally adjacent cells
(Figure 42) permit interlocking of any number of

0 sequences.

Example of a small computer
Let us consider the central process,rig portion of

000

ooo a very simple computerand sketch out how it might
' berealizedinmacromodularform. Thecomputerhas

a 12-bit word length, 4096 words of programmable
Figure39- Extendmgdec_s_oncalls memory, and an instruction repertoire consisting of

/

B ooo

o

7 II 12 I [ ooo

-_ J

I

Figure40- Interlockumt __

II
The leftand right halvesare associatedwiththe con- _ 3 p

o

trol paths, ! and Il, of two concurrent sequences r AOo__[ pro !!.(

which must be interlocked. For a sequence to enter r_ I_ _
an interlocked phase, a signal must be presented to the

interlockat an input terminal(terminal1 for !, ter- J
minal 7 for 11). Because it must be assumed that the

sequences do not necessarily contain the same steps
within their interlocked phases, each control path is Figure 41-Example of interlocking
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During the execution of an instruction, register P
holds the address of the next instruction to be ex
ecuted The decoder unit is set to decode the in

struction field (3 most significant bits) of the word
from memory, (M) The junction unit is set to mask
out the instruction field when transferring /3 to S

lqgure 44 shows a flow diagram representation oflima

_ _"_ _ _ U('//--// fr//--// if] the operation of the machine Entering the top of

the flow diagram corresponds to getting the next
instruction from the memory The contents of P are
transferred to S in order to locate the instruction,

I_/0/$> l_O/O/fi> L_IO/O/O L_/O/O and P is then indexed in preparation for locating the
/ Id' _ J IL' IL' / t_ t_ / t_ _ following instruction. Memory is read to obtain the

instruction and the decoder is signaled to decode the

instruction field of the memory word. Eight decoder
output control paths are provided, one for each of
the instructions, and a control signal is produced on

: the selected path. After the requiredsequenceof
steps has been executed, the control signal returns
to get the next instruction,(GN 1)

Figure 42 - Extended interlocking
Figure 45 shows the control paths required to locate

eight instructions encoded on the leftmost three bits and decode the instructions, as well as the execution
of the 12bit instruction word control paths for the instructions CLR, COM, APO,

Three of the instructions make reference to other and NOP The detector in the APO control path is

memory locations by a process of indirect addressing set to detect a "0" in the leftmost (sign) position
These instructions are ADD/3, STO/3, and JMP/3 of the accumulator A "No" signal response from
and use the contents of memory register /3(0_< the detector proceeds to the merge unit assemblage
/3_<7778) as the effective address Thus, for ex- from which a signal to get the next instruction
ample, if register /3 contains the number 1476, emerges. A "Yes" response indexes register P and
execution of an ADD/3 instruction will cause the con- then proceeds to get the next instruction. The NOP in-
tents of register 1476 to be added to the contents of struction has no execution steps, and its control path
the accumulator. Similarly, a STO/3 will store the is routed directly to the GNI merge unit assembly.
contents of the accumulator in register 1476. A The SHL n instruction, shown in F_gure 46, uses the

JMP/3 will cause the next instruction to be taken from the S register to count the number of places which
location 1476. have been shifted. The SHL n instruction word is

The remaining five instructions do not make refer- transferred from the memory into S and comple-
ence to other memory locations, lnstead, they per- merited. A detector on S monitors the rightmost four
form the followingfunctions: bits, (n), and provides a "Yes" response when the

CLR Clear the accumulator _value 178 (the minus zero in ones' complement form)

COM - Complement the contents of the accu- i_ detected. A control loop,,,is,entered, in which the
mulator, d_tector is interrogated. A No signalresponse from

APO Skip the next instruction if the accu- the detector shifts A one place, indexes the count in

mulator contains a positive number. S, and again checks the detector. This process repeats
SH L n - Shift the contents of the accumulator n as long as more shifts are required. When the required

places to the left where n is specified by number of shifts has been completed, interrogation of
the four rightmost bits of the instruction the detector will produce a signal at its "Yes" out-
word. put, which is routed to the GNI merge unit assem-

NOP Proceed immediately to the next instruc- binge.
tion. The control paths for the three memoryreference

Figure 43 gives a two dimensional view of the pro- instructions are routed to a sub-sequence all unit.
cessing network for this machine. Register A is This sub-sequence fetches the operand address and
the accumulator; register S is used to provide ad- places it in the S register. This three-step sub-se-
dresses to the memory and also to count out the hum- quence is shown separately on the flow diagram in
ber of shifts required by an SHL n instruction. Figure 44 and the control path which realizes it is
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Figure 43 --Small computer processing network

shown in Figure 47. The first step of the sub-se- operand address into S) was unnecessary but harm-

quence is the transfer of /3 to S. In the following less.
steps, the effective address is obtained from memory This example demonstrates the ease and direct-

register /3 and transferred into S. Beyond this point ness with which simple systems can be put together.
the three instructions' control paths d:verge. A total of 13 data cables, approximately 50 _:ontrol

cables, and 26 modules are required to form this
In the ADD instruction the memory is again read complete, aibezt comparatively modest, central

to obtain the operand, which in the next step of the processor.
sequence, is added into A. The STO instruction ex-
ecution sequence consists of a single Write command CONCLUSION AND
to the memory, as register A is connected directly ACKNOWLEDGMENTS
to the memory data input. In the JMP instruction, The ideas presented here have evolved gradually
the effective address is transferred into P from the through a combination of individual effort and group
memory. For this instruct:on the final step of the discussions. The authors wish to express their grati-
operand address fetch sub-sequence (which put the tude particularly to A. Anne, J. R. Cox, Y. H. Chuang,
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Fagure 44 - Small computer control flow diagram

R. A. Ellis, G. C. Johns and C. E. Molnar who have REFERENCES

contributed helpful criticism and suggestions.
While some details of design are still in flux, the die I W A CLARK

for the basic scheme is cast and an initial evaluation Murromodular computer systems
effort is under way. Prototypes of the macromodules Proc SJCC 1967
are working and some small initial systems are planned
for coming months. Paper design of these systems 2 MJSTUCKI SMORNSTEINandWACLARK

Logtc al de_tgn of macromodules

indicates that the particular functional breakdown we ProcSJCC 1967
have chosen is a reasonable and convenient one.

Addition of new modules to the inventory together 3 EG ANDREWS
with some reshaping of those presently defined will The Bell computer model VI

certainly take place as experience guides us toward
ever increasing convenience and flexibility.
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St. Lams, Missouri

INTRODUCTION at the conclusion of the operation, a control signal is

The macromodules _'2 being developed at Washington generated at the completion terminal. The design of
University are logical building blocks which can be circuitry exhibiting this kind of behavior is one of the
inserted into a special frame and inter-connected more difficult logical design problems. The approach

by standardized cables to form digital computing used is to partition the circuitry for a given data
systems of any desired complexity. The logical processing operation (such as addition) into less

design of these modules is fraught with many prob- complex asynchronous circuits and to regulate their
iems, some of which yield easily to standard design behavior with a control network that utilizes the
techniques and others which do not. The purpose of basic circuits of the control macromodules. The

this paper is to present the design approaches in basic control circuits and their usage in control
present use for the handling of problems of the latter networks are described in the following paragraphs.
type. Specifically, rather than present the details of The circuitry associated with an operation designed

adders, shifters, registers, etc., discussion is confined for asynchronous control is represented diagram-
to those aspects of the logic within the modules which matically by a circle containing the name of the
simplifies the job of assembling the modules into a operation (Figure 1). The incident and extant arrows

working system. The general areas of asynchronous In it lotion Cam p lotion
control, data validation, and word-length extension
are discussed and design approaches presented. These TO r m i n o I Te r m i n a J

approaches are then illustrated in the design of the O_X f_'"'___._p.____q_f

macromodular data transfer operation, and the paper '_X /__
concludes with a few general comments on the
circuitry now in use.

' Name

,4 synchronous control 0 pe r a t ion
One of the more interesting aspects of the macro-

modules is the general control scheme which allows Figure I--Dlagrammatm representation for the mrcuitry associatedwith an operation designed for asynchronous control
complex system control structures to be implemented
with relative ease. In this scheme, data processing indicate connections to the initiation and completion
modules are designed for asynchronous control and terminals of the circuit. Operations can be made to
special control modules are provided for the parallel- occur in a specific sequence by connecting the com-
ing and conditional branching of control signals, pletion terminal of each operation to the initiation
By "asynchronous control" it is meant that associated terminal of the succeeding operation. Figure 2, for
with each data processing operation that a module example, shows the flow diagram and connection

can perform is an initiation terminal and a completion network for the sequence al-a_-aa. The arrows in
terminal; execution of an operation begins when a Figure 2b indicate that the completion terminal for
control signal arrives at the initiation terminal, and a_ is connected to the initiation terminal for a2 and

the completion terminal for a2 is connected to the in,-
*This research was supported m part by the Advanced Research tiation terminal for aa. Connected in this way, theProJects Agency of the Department of Defense through contract
SD-302 and by the Division of Research Facilities and Resources completmn signal from each operation initiates the
of the National Institutes of Health through grant FR-00218 next operation in the sequence.

357
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c_

I i [ I _

{b) I!1
Figure 2 -- Flow diagram (a) and control network (b) for a

simple sequence

Figure 3 shows the flow diagram and control network ( 0 ) ( b )
for a sequence containing a conditional branch: the

diagram defines the sequence al-aa-a4 when X=0 Figure 3-- Flow diagram (a) and control network (b) for a sequence
and the sequence al-aa-a4 when X=I. X is assumed contammgacondihonalbranch
to be a binary variable. The diamond-shaped element ! /

in Figure 3b is connectedto the completionterminal I 1
for al and the initiation terminals for aa and aa. This )

I 1

element, called a decision (D) element, is a circuit I 0'l [
that routes the completion signal coming from al ! I

l

to the initiation terminal for aa or aa depending on the l
value of X.* The M element in Figure 3b is connected 2,w

to the initiation terminal for a4 and the completion I 1
terminals for a2 and aa. This element, called a merge

(M) element, is a circuit that routes the completion 0.2 I [ 0.3 ] _ _ Q _signal coming from aa or aa to the initiation terminal

fora4. [
Figure 4 shows the flow diagram and control net- _.._. 4_ ')4

work for a sequence in which operations aa and aa 1
are.to be executed inparallel, in the control network,

the completion terminal for al is connected to the I Iinitiation terminals for a2 and as so that the completion Cl.4

signal from al will initiate both operations. The (R) 1
element in the network is connected to the initiation

terminal for a4 and to the completion terminals for aa
and aa. This element, called a rendezvous (R) element,
is a circuit that generates a control signal as soon as

it has received a completion signal from both aa and ( O. ) ( b )
aa. Inclusion of the R element in the network guar-

*Variable X is supplied to the D element at a terminal not shown Figure 4-- Flow diagram (a) and control network (b) for a sequence

m the figure involving parallel execution of operations
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antees that operations a2 and a3 will both be completed Data validation

before operation a4 is initiated.** Before any data processing operation may be
executed, the latest value of the data to be used must

The correspondence between a flow diagram and a be guaranteed present at the circuitry associated with
control network is not always one-to-one as implied the operation. This is a severe problem in macro-

by the preceding examples. The difference arises modular systems since the physical separation be-
when an operation occurs in several sequences or in tween modules is not constrained and data propaga-more than one place in the same sequence. In either

tion times are therefore unknown and unbounded. Thecase, independent access to the control terminals for

the operation is required at several points in the problem is solved by a scheme called Data Valida-
tion (DV): when a data processing operation disturbsnetwork, and this cannot be a(:complished by connec-

tions made directly to the control terminals. Consider, a source of data, the module does not generate a

for example, independent sequences a_-a3-a4 and completion signal for the operation until the new data
value has propagated to all parts of the system thata2-as-a_. Both require operation aa, and direct con-

nection to the control terminals of aa would result in may need it. Since subsequent data processing opera-
tions that use the data cannot occur until the com-the network shown in Fig. 5a. It is easy to see that

this network does not describe two independent pletion signal is generated, the new data value is
guaranteed available at the circuitry for these oper-

sequences. Proper implementation of the sequences, ations.
the network shown in Fig. 5b, uses a call (C) element

Data is carried from one module to another by
to keep the two sequences separate. The C element

means of special data cables or by inter-cell connec-
has three pairs of control terminals, one of which tions in the system frame. Included in each type of
connects to the control terminals of the operation data path is an extra pair of lines carrying control
to be multiply accessed. The other two pairs, indicated
by the dotted lines, act as independent control termi- signals associated with the DV process (Figure 6).
nals for the operation. When the completion signal Whenever a new data value begins to propagate
from a, arrives at the C element, the element initiates along a data path, the data source transmits a control

operation a_ and routes the completion signal from signal along line I of the path. This signal is generated
a_ to the initiation terninal of a_. When a completion slightly later than the propagating data value, and the
signal from a2 arrives, the C element initiates operation data path and associated circuitry are designed so

that the signal consistently lags the data. Hence,a_ and routes the completion signal from a_ to the
when the control signal reaches the other end of the

initiation terminal ofa_. data path, the circuitry there is guaranteed that the
new data value has also arrived. As soon as this

_ _ _l_ (_ circuitry has assimilatedthe newdata value, it sends

a control signal back to the data source via line C of
the path.

I DATA I DATA
C I SOURCE A C RECEIVER

Figure 6-General structure of a data path

The I and C lines of a data path can be treated as
control lines for an operation called dy. Figure 7a,
for example, shows part of the internal control

Figure 5--An xmproper way (a) and a proper way (b) of network of a module at the receiving end of a data
incorporating an operation's clrcmtly m two sections of path. The control lines labeled dv are the I and C

controlnetwork lines of the data path, and operation a_is the operation
(if any) performed by the module when notified of

**It must be noted that if one of the operat:ons is known to have a the arrival of a new data value. Figure 7b shows
longer executnon time than the other, Its completion signal may be part of the internal control network of a module at
used to initiate a4 and the R element can be removed from the net-

work It is assumed m this paper that the execution time of an the source end of a data path. It is assumed that
operation is unknown, and an R element wdl therefore always be operations a, and a_ disturb the data source and the
used to terminate parallel processes DV process is therefore performed after each of the _
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operations. Figure 7c shows the same module de- erated completion signals; hence, the completion
signed for two data paths. The DV process for one signal generated by the rightmost segment is the '
of the paths is called dy, and the DV process for the completion signal for the entire array.
otherpath,dv:. As shown,dv_and dy: areexecuted

_ Figure 8-Generalized representation of a WE segment

WE segments are composed of subsegments as

- tdv,,, shown in Figure 9. The segment labeled BD is a
"' '--' boundary delimiting network; its purpose is to in-

(,) (b) (c) hibit communication with the left-adjacent cell if
Figure 7-Examples showmg the incorporation of the DV process that cell does not belong to the array. The flow dia-

m the internal control networks of modules at either end

ofadatapath I I ] [ 1 I
Wordlength extension _ I _ _

In order to simplify the control structure that a I i I I I I
user ofmacromodules has to construct, system control a D I I D P I

has been made independentof data wordlength.Data I I I

processing modules are organized in parallel form with I ,V,L. I_t II ! f-
a wordlengthmodulusof 12 bits; a registermodule, I [
for example, contains a 12 bit register and the adder

! !

module contains a 12 bit adder. If the user requires a Figure 9-A WE segment designed m terms of subsegments.

wordlength of more than 12 bits, data processing
modules can be cascaded to handle greater word- gram for the BD segment is shown in Figure 10 and

lengths by plugging them into laterally adjacent cells is the same for all WE segments. The segment labeled
in the system frame. Inter-cell connections within DP is that portion of the WE segment which carries
the frame allow the internal control networks of the out the data processing operation in the module.
individual modules to link together to form a single Fig. 10 and is the same for all WE segments. The
control network for the entire array. This network, segment labeled DP is that portion of the WE segment

called the Wordlength Extension (WE) network, which carries out the data processing operation in
relegates operational control of the array to the control the module.
terminals on the rightmost module so that a data

processing operation has but a single pair of control I-' 1I DECISION IS

terminals regardless of the wordlength involved. /LLLFT_oNCE_ I

That portion of a WE network contained within a '1 BASEDON
I INFORMATION

single module is called a WE segment, and the general I

form of the WE segment for a single data processing _ YES I DERIVEDFROM
I AN INTER-CELLo'peration is shown in Figure 8. The terminals on the _PART OF_-

right are the control terminals associated with the I CONNECTION,
execution of the operation in this module; the terms- I
nals on the left connect to the control terminals on the . ] ANSWER IS "NO"

module m the left-adjacent cell that are associated / NO II IF LEFT-ADJACENT
with the execution of the operation in that module. _' I :_ CELL IS EMPTY OR

I NOT COMPATIBLE,The segment is designed according to the following I
rule: if it sends an initiation signal to the module in t_ ._/

the left-adjacent cell, it must receive a completion Figurel0-FIowdmgramoftheBDsubsegment
signal from that module before it can generate a
completion signal of its own. Th_s rule guarantees Figure 1 la, for example, shows the DP network
that a segment will not generate a compleUon signal for the operation CLR (set all bits to zero). The
until all activated segments to its left have gen- network here is a parallel one, a control signal being
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sent to the left at the same time that the CLR opera- Transfer of data
tion for the module is initiated. The R element The transfer of data into a register is accomplished
guarantees that the network does not generate a by means of a module called a data gate Figure 13).
completion signal until it has received a signal from the The terminals on this module are the control terminals
!eft. Figure 11b shows a serial network for the same for the transfer operation, and when the operation

is initiated, the data on the lateral data path is trans-
[ ! ferredinto the register.Data gatesmay be cascaded

I I as shownin Figure 14so as to allowdata fromany
4 _ a number of sources to be transferred into a register.I I

I ,_ ._ I The data paths running between the data gate modules
I /r -_ I allow each of these modules to communicate with the

I _ y I register.
I
i I
I , I

I _[) II I
I I I

u J t J REGISTER

(a) (b)

Figure I l -- A parallel network (a) and a serial network (b)
for the DP subsegment associated with the operation CLR

operation. In this network,a signalis sent to the left
only after the CLR operation for the module is DATA GATE
completed; hence the network can generate a com-

pletion signal as soon as it receives a signal from the ,t_,,
left. Figure 12 shows the flow diagram of a DP

F- I
I I Figure 13 - Proper interconnection of a data gate module
I I anda registermodule Broadarrowsrepresentdatapaths

' ..2RJ
IYES L IINDEX I The logic associated with the data path input of

F, I the register is shown in Figure 15. As indicated, the

NO I dv operation for the path causes the newly arrived
I data value to be loaded into the register. The general
I transfer process therefore consists of two steps:I
I (1) the data to be transferred must be gated onto

, . I the data path input of the register, and (2) the dv
I I operation for the path must then be initiated. These

I I functions are provided by the data gate moduleat
L _1

the other end of the data path. When a signal arrives
at the data gate's initiation terminal (Figure 16), a

Figure 12-FIowdlagramofa DPsubsegment forthe flip-flop G is set (I--->G) which gates the data of the
operation INDEX lateral input path onto the output path, and the dv

operation is then initiated. At the conclusion of the

segment for the operation INDEX (add 1 to the value dv operation, the flip-flop is reset (0-_G) so that the
of the data). In this. segment, a signal is sent to the lateral path is no longer connected to the output path,
left only if the 1NDEX operation in this module and the module then generates a completion signal.
indicates a carry into the next module.* When the transfer process is not being executed by

the module, the output path is connected to the bottom
*The most significant bit is m the leftmost module of the array, input path shown in Figure 16 so that modules located
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._ DATA PATH 3 _(_TiLi_ _

REGIST ER DATAGATE__._._

'1_ 'FOATAPA'H2 --a_ll-

x DATA PATH j v-

Figure 16-Data gate Iogm associated with the transfer process

DATA GATE ._.'-- below this module may communicate with the
register. The dv process associated with the bottom

input path initiates the dv process for the output

path, thereby insuring that the dv process initiated

by a lower module will propagate through this module
and on to the register. The C element in the figure

keeps the transfer sequence initiated by this module

DATA GATE separate from transfer sequences initiated by lower
modules.

DATA GAT E_:_ _ _ i

'_ BD TRANSFER]/
Figure ! 4 - Data gate modules cascaded to allow data from 'l

three dlfferept sources to be transferred into a register module _ _ _

J I
Figure 17--Flow diagram of the WE segment of a data gate module

Wordlengths of more than 12 bits are handled by

REGIST ER laterally cascading data gate modules as described
in the section on Wordlength Extension. The WE

segment for a data gate is shown in Figure 17, and
Figure 18 shows the assemblage of modules required

for 36 bit transfers from three different sources.

i Implementation
In present macromodular design, an initiation

DATA PATH terminal accepts a binary input, a completion terminal
produces a binary output, and a control signal is a
change in value, either from I to 0 or from 0 to I.

The control elements are realized in asynchronous
fundamental mode level logic form, and the state and

Figure 15-- Register logic associated with the transfer process output tables for each are given in Figure 19.
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Ii I _ _ The authorswish to express theirgratitudeto A.Anne

DATA GATE and Y.H. Chuang for their help in the development
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i

Figure 18-The assemblage of data gate modules reqmred for
transferring 36 bit words from three different data sources
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ABSTRACT

Macromodules are "bmlding blocks such as registers, adders, memories, control devices, etc.,

from which it is possible for the electronically naive to construct arbitrarily large and complex

computers that work." In the seven years since this statement was made In the presentation of a

program then being undertaken at Washington University, the design and construction of a several

hundred unit macromodular inventory has been accomplished, and some 60 or 70 widely different

"computers that work" have been constructed, used and dismantled. This report briefly reviews the

operational aspects of this inventory and our experience in working with it, and illustrates some of

our present attitudes and values concerning the macromodular approach, with special reference to

biomedical research applications.



-iii-

TABLE OF CONTENTS'

Introduction ....................................... 1

Characteristicsof MacromodularSystems ............................ 2

AssemblyProcedure ................................. 2

MacromodularCellLogic ............................... 7

SystemDesignPrinciples ............................... 8

Examplesof Systems.................................... 17

CHASM...................................... 17

ARGUSPreprocessor................................. 28

Conclusion ........................................ 30

Acknowledgements................................. 30

References........................................ 35



INTRODUCTION

Macromodules are "bufidmg blocks such as registers, adders, memories, control devices, etc., from which it ms

possible for the electronically-naive to construct arbitrarily large and complex computers that work" (Ornstein, et al,

. 1967, p. 337). In the sevenyears since this s_mple statement was made in the presentation of a program then being

undertaken at Washington University, the design and construction of a several hundred macromodular unit inventory

have been accomplished Over the last three years, some 60 or 70 widely different "computers that work" have
been constructed, used, and dismantled.

In this report we will review briefly the operational aspects of this inventory and our experience in working

with at, and illustrate some of our present atntudes and values concerning the macromodular approach to the

Implementation of algorithrmc systems, with special reference to biomedical research applications.

Why should one want to construct Ins own computer? Is it not clearly better to write a program for a

general-purpose machine which wall solve the problem at hand? The answers, of course, depend on what is meant by

"computer" and on how well the program fits the available stored-program machine. Problem solution often requires

only a relatively well-understood computation or processing task which can conveniently be programmed and run on

a general-purpose computer. There are many problems, however, which do not have convement computational

solutaons in the ordinary sense; they may require processing of data at expensively high speeds, for example, or gave

rise to unusually demanding algorithms which result in grossly inefficient operation on the so-called general-purpose

computer. Some research problems involving large and expensive computational tasks exhibit a particularly

inconvenient combination of traits, requiring dedicated machinery for good progress yet at the same time not being

well understood in either form or value. The research worker, If he opts to undertake the task of solution at all, runs

the considerable risk of premature or excessive commitment to what might well turn out to be the wrong way of

doing things, or perhaps, the right way of solving the wrong problem.

The macromodular approach is an attempt to introduce a new dimension in problem formulation and

solution. It permits the research worker to think In terms of computational, data processing, or algorithmic

machinery winch efficiently fits the problem as it is initially understood, can be adjusted or rearranged as the work

progresses, and finally, can be dismantled for subsequent use elsewhere and either conveniently forgotten or

gratefully memorialized as circumstances warrant. Naturally, this approach makes the most sense when the

computations are large enough and wall run long enough to justify the setup tune involved. It should not be assumed,

however, that macromodular systems are necessarily full computers in the ordinary sense. We have often found that

combining macromodular equipment with other parts of a larger system including a small stored-program computer

is most efficient and convenient, with the macromodular subsystem handlang those parts of the total processing task

in which the payoff of speclahzation and flexiblhty is relatively great. The reader may wash to refer to the program

presentation papers (Ornstem, et al, 1967), (Stuckl, et al, 1967), for a more complete exposition of the conceptual

framework, which has remained essentially Intact throughout the course of development despite inevitable

adjustment an detail. Much of the evolution of the development is recorded, albeit an an uneven and incomplete

form, in a series of Computer Systems Laboratory Technical Memoranda and Technical Reports (Computer Systems

Laboratory, 1972).

It is the dedication of the staff of the Computer Systems Laboratory over a period of several years which has

given substance to the macromodular system concept. The Computer Systems Laboratory was formed an 1967 to

continue the system development work of the Computer Research Laboratory, which had been established at

Washington Universaty mn 1964 under the darection of Wlllaam N Paplan The principal approaches to

macromodular system archatecture and logic were developed early in the program by Mishell J. Stucka and Severo M.

Ornstein. The detailed logic desagn of most of the macromodules described here was done by or under the

supervision of Mr. Stucki, with contrabutlons from Antharveda Ann[, Henry Y.H. Chuang, Kazuakl Harada, Maurice

· L. Pepper, Jr., Archie D Richardson, and Mary Allen Wilkes.
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Messrs. Asher S. Blum, Thomas J. Chaney, George R. Couranz, Howard C. Lewis, Warren M. httlefield,

Richard E Olson, and Ohver F. Stone shaped the early stages of engineering development, which led to a later phase _J

of manufacturing and production design in which the contributions of Robert J. Arnzen, Gerald C. Johns, George C.

Meyer, Fred U. Rosenberger and David L. Stewart were added. Important stimulation and criticism were generated

through system design studies by R Martin Arthur, Nadme Bmket, Jerome R. Cox, Jr., Richard A. Dammkoehler,

Robert A. Elias,Mark A. Frankhn, Mars J. Gralia, Thomas H. Jacobi, Garland R Marshall, Eitan Sadeh, Bruce F.

Spenner, and Donald F. Wann. Patncla B. Savage, Christine E. Dlckson and John A. Newell played a vital role m
developing critical documentation.

The energetic and enthusiastic technical support of Norman T. Kmch and his staff in providing all the vital

services needed to carry out a major program of design, development and fabrication has played an essential role, as

has the unfailing administrative support of Edward L. MacCordy, Dedie Fries, and the central administration of

Washington Umverslty. The patience and understanding of our sponsors are gratefully acknowledged.

CHARACTERISTICS OF MACROMODULAR SYSTEMS

Assembly Procedure

How does one use macromodules to braid a computer, given a statement of the problem? After identifying

the relevant computing tasks, the designer sketches a statable structure m block diagram form based on the logic of

macromodules, grouping umts into various storage and data processing substructures which seem to be useful, and

specifies data transfer pathways among these groups. He then draws a flow diagram specifying the sequences and

concurrences of the basic operations to be carried out within the resulting structure. When the design appears to be

approximately correct, though not necessarily complete, he is ready to build a macromodular system. Sometimes It

is more convement to design the system, or p_eces of it, in the frame itself with the actual parts, documenting it after

the fact; and sometimes it is easier to re-invent the system than it is to document it at all.

We have come to identify as "macromodular" not just the operational electronics packages, but rather all of

the physically distinct elements of the Inventory which must be assembled into a w_rkmg macromodular system.

This viewpoint and the kinds of elements dealt with are best understood by outlining the general assembly

procedure

First, a frame of suitable stze is formed by installing a Frame Block on top of a Pedestal Untt, stacking

addmonal Frame Blocks on top of the first until the estimated working size as achieved (Figure 1). This is the only

operatmn requiring a tool (a screwdriver). The resulting structure provides a regular array of mounting positions or

cells Into which other macromodular elements will be inserted, each Frame Block contributing 16 cells (4 x 4).

Wider frame structures are build by leveling a second Pedestal m a posmon contiguous with the first, stacking a

second column of Frame Blocks on this Pedestal, and interconnecting corresponding cell tiers (through connectors

on the ends of each lateral structural member) by means of bridging Coupling Untts There ISno intrinsic limit to the
width of a frame.

This part of macromodular system construction is relatively heavy work of no great fun.
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Figure 1

A third Frame Block bei ng added to a frame. Each Frame Block carries within its built-in

fan subassembly and structural members all necessary cooling air ducts, signal paths for

lateral (horizontal) communication between adjacent cells, and pov_er and system-wide
signal paths which lead from the Block below (ultimately from the Pedestal) and are
distributed in turn to all cells and to the Block above. The Pedestal Unit at the bottom

houses power supplies, distributes system-wide control signals, and provides mechanical
stability. Up to eight Frame Blocks can be stacked on a Pedestal.
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Next the system designer/assembler selects appropriate cable-to-connector adapter units called Faceplate

Boxes, attaches to the face of each a color-coded Overlay (Figure 2), bearing a friendly and useful label such as

LOAD, CALL, R = D?, etc., and snaps the boxes into the frame from the front (Figure 3) to form patches of filled

cells in which adjacency and ordering of the labelled functions begin to define the logic of the system under

construction. "Data processing" functions such.as ADD, COMPARE, REGISTER, MEMORY, etc., are implemented

in 12-bit Segments; data processing patches are called ManifoMs, structures in which contiguity of the boxesassures

appropriate "automatic" interconnection via implicit vertical and lateral pathways. Systems typica_y, require several

different manifolds. Manifolds for the processing of numbers greater than 12 bits in "width" are assembled by

. extension to the left, filling cell columns adjacent'to:the column defining the manifoldwith appropri_/te Facep!ace

: Boxes bearing "extender" overlays for each function, thus forming a manifold of 24 bits, 36 bits, etc. It is harder to

·make a 119-bit manifold than one of 120 bits, but there is no intrinsic Upper limit to manifold width. ' .

i.- 4141'_

::_ ,)%/' .;:'

I
Figure2 Figure3

An Overlay being mounted on a Faceplate Box. A The Faceplate 'Box being inserted into a

function code carried by the Overlay plate in the Frame-cell. Faceplate Boxes provide a

form of small punched holes along the bottom cable-to-connector adapter and establish vertical

edge is sensed by switches in the Faceplate Box interconnections between adjacent Electronics

and transmitted to the corresponding Electronics Packages.

Package. Indicator and Parameter Blocks and a

Miniconsole can be seen plugged into Data Ports in

the background.
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· · · . ,

' Faceplace Boxes for anticipated control functions such; as CALL, MERGE, RENDEzvOus, etc., are, , . - , , . .

Similhrly mounted in the frame, sometimes ·'with rearrangement 'of previously installed.boxes for ·reasons :of'. . -., . -

convenience, esthetics, oversight, or'caprice..Adjacency is generally irrelevant in the placement of control funchon

· FaceplateBoxes. : ' ' ' ........

The designer hag now' assembled in the vertical plane a giant, colorful plugboard _vhose'patchy facade

presents many cable .connector sockets, which appear through holes in the overlays. He .then makes any required

data pathway interconnections not' already, provided by the implicit lateral 'or vertical busses (e.g., those from

manifold to manifold) by means of'Data Cables of convenient lengths. At this point some useful monitoring Or

control modules' of' yet anotherkind may be p!ugged in here and there in place of cables: Indicator Blocks holding

12 lights may be plugged.into any. 0utput_ Parameter Blocks holding four 0ctaUy-coded thumbwheel switches, into' -'

anyinput. ' ' '
.' ., .

Next, following the flow diagram exactly, the control network is "wired up" by plugging in Control Cables

from the control output of one module to the control input of the .mOdule whose function is next to be evoked in

sequence. Miniconsoles can be "spliced" into any control signal pathway to interrupt and indicate an incident signal

(a completion signal from the previously evoked function) and to provide for manual initiation of the continuation
' . -. ..

control signal.

'_... With th_ final cabling Steps of'lead!ng data 'and control cables to an Interface Unit (through which-the syste m

can be connected to a' sep'arate conventional st0red program machine for further support if required), the.chainin g_'

together of.the Pedestals for power sequence control from a central Power Control Console, and plugging the. '

required power cables from the nearest AC power outlets into each Pedestal, the task of wiring the macromodular

system is finished (Figure 4). To complete the entire structure, it remains only to insert the required Electronics

Packages into the appropriate cells from the rear of the frame (Figure 5), and to install:the required number of

power supply slugs (Figure 6).

Figure 4

Data Cables (gray) carry 12-bit data and data

validation signals from point to point with great

flexibility; the placement of Control Cables

(black) determines the sequence in which

operations take place.
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Figure 5 Figure 6

Electronics Packages, typically containing 80 Indicator lights on the rear of the Pedestal Unit

integrated circuits of the MECL II family, are Signala need foradditional power supply units. UP

inserted into the frame from the rear after to three units can be plugged into the pedestal,

Faceplate Boxes and cables have been installed, providing a maximum power level of 2000 watts
per frame.

There are seventeen different Electronics Package types, each subserving a class of functions and

color-coded to match the corresponding Overlay on the Faceplat e Box to which it is to be connected 'on insertion

into the frame. Thus, for example, the LOGIC Electronics package.implements the 16 Boolean functions'of two

variables. When plugged from the rear into a cell holding an EXCLUSIVE OR-lfibelled Faceplate Box, the Exclusive

Or function will be the only one evoked by an incident control signal.' Manifold' Electronics Packages carry a

segment of the vertical bus pathways .as well, together with the associated amplifiers, so that the act of stacking

functions within the manifold builds the required bus automatically.

The designer of, say, a 50-cell macromodular system has now, in the course of an hour'or so; put together a

fairly large amount of equipment (which, incidentally, will have required the pluggable-contact interconnection of

about 20,000 electrical pathways). The power is then turned on and operation is begun.

The promise of the macromodular approach is that no logically-proper system assembled in this way will fail

to operate algorithmically. If the algorithmic behavior of the System is not what the designer intended, then it can be

presumed that the fault is attributable to the logic, not to a misbehavior of the electronics or mechanics or of any

other aspect of the hardware or of the signals represented therein. It is not necessary to assure the incredulous

engineer among the readers of our awareness that this promise can never be completely fulfilled. It should be

pointed out, however, that we have come workably close--an achievement which has required the carefully

coordinated solution of a great many design and engineering problems.
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Macromodular Cell Logic

With the problems of hardware, in effect, presolved, the designer of a macromodular system concerns himself

only with systems logic, conceptually and physically manipulating elements of macromodular hardware much as he

would symbolically mampulate the primitives of stored-program code at the assembly language level, in both cases
taking the algonthrnicity of the hardware for granted. We speak of the macromodular prnnitives in terms of the logic

of the cells, informally and rather inexactly ttunking of the diverse hardware elements, combined to make a given

cell work, as "the macromodule" The principal characteristics of the kinds of cells that can be composed from the

elements of the present inventory are summarized below:

1. REGISTER - Storage of one 12-bit number and a flag bit; 2 data cable outputs; vertical data
bus communication with cells above. ·

2. LOAD - Parallel transfer of number on data cable input via down bus; number reproduced on

data output cable to facilitate chaining.

3. LOGIC - Any of the 16 Boolean functions of 2 variables, one variable supplied by a data cable

input and the other from below (on the up bus), blt-columns affected are determined by a

second data cable mput; result transferred via down bus.

4. ARITHMETIC - The Add class functions (add, subtract, count, etc.) with or without overflow

(captured In the flag blt of the underlying register); one variable supplied by a data cable input

and the other from below (on the up bus); result transferred via down bus.

5. SHIFT - Umt, b_directlonal scaling and rotating functions w_th variations in end-blt treatment;
resulttransferredviadownbus.

6. COMPARE - Arithmetic comparison functions; zero value, positivity, flag status detection,

etc.; one variable supplied by a data cable input and the other from below (on the up bus); bit

matching in bit-columns determined by a second data cable input.

7. DECODE - One-to-eight control path decoding of 3 blt-columns of the up bus selected by a

data cable input.

8. MULTIPLY - Formation of double-length product of the number on the up bus with the

number on the data cable input; selectable half of the result transferred viadown bus, the other

half via data cable output. Requires double cell.

9. DATA BRANCH - Provides 2 data cable outputs which replicate the number on a data cable

input; presents the same number to up bus.

10. D/A UNIT - 2 storage e_ements, each element capturing a 12-blt number appearing on the up

bus upon external control signal command. A third control signal input causes convemon of

these two numbers to voltages which appear on two output coax cable connectors, while a

fourth control signal input produces an "analog-signals-ready" pulse on a tturd output coax
connector.

11. MEMORY UNIT - 4096-word, 1-/nseccore memory. Address and data in and out are passed by
vertmal busses. Requires double cell.

12. UNIT MEMORY CONTROL - Surmounts one MEMORY UNIT; provides for address Input and

memory output on data cables with control ports for "Read"; presents register-like vertical bus
Interface. '

13. GENERAL MEMORY CONTROL - Surmounts a stack of MEMORY UNITS, providing 2 data

cable inputs for address, together with data input and data output cables; contains a resident

high-speed scratchpad memory of 256 words; operating mode selected by FUNCTION CALL

unit; requires double cell
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14. CALL UNIT - 2 independent Call sections, each sectinn providing 3 sets of control ports (in

each set, one input and two outputs) together with a fourth common set. For each section a

control signal on one of the input (Call) ports produces a signal on the common output port. A

subsequent completion signalon one of the two common input ports produces an output signal

on the corresponding output port of the Called set.

15. FUNCTION CALL UNIT - Combines Call with parameter plug specification of the code

number of the function to be performed by the data processing macromodule to which it is

connected by special cable.

16. MERGE/RENDEZVOUS - Sets of SlXcontrol elements, each element combining asynchronous

input control signals on 2 control cable ports in either MERGE ("OR") or RENDEZVOUS

("AND") relationship and providing 2 output control cable ports on both of which an output

signal appears when the given condition ISmet.
17. INTERLOCK - Sets of four interconnected elements, designed to control access to a common

storage unit or processing structure used by several concurrently running macromodular
processors.

System Design Principles

We now proceed to illustrate the conceptual mampulatlon of macromodules as cellular block diagram

elements in the following sequence of figures. Each figure represents a logical structure which is somewhat more

complex than the one of the preceding figure within the sequence. The functions chosen are not remarkably

interesting ones, nor _stheir implementaUon here always optnnum. Furthermore, we have not attempted to illustrate

exhaustively the use of each type of macromodule. Our intention here, rather, is to g_ve the reader some feehng for

the dynamics of rearrangement and growth, aspects which might ideally be presented in motion p_cture form.

We begin with the basic storage element, the REGISTER, and the first figure (Figure 7) shows what one

might find after installing the Register Faceplate Box, Overlay, and Register Electronics Package in a handy frame

cell position, and then turning on the power and plugging Indicator Blocks into both Data Cable output connectors.

As indicated, the two data outputs are identical, showing, in this case, the number 5302 (octal; in decreasing

numerical order, the 12 bits are read left to right, top to bottom. Dark circles indicate ones.) This number is of no
significance, and merely represents the flip-flop state biases of the particular Register Electronics Package chosen.

Figure7 Figure8
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In Figure 8, a LOAD umt, pamculartzed to the data transfer function (D TO R), has been installed in the cell

above the REGISTER, the power has been turned on, and a Parameter Block set to 6666 has been plugged into the

Data Input connector; another Indicator Block plugged into the duplicate Data Output connector shows the same

value. The initial bias number reappears at the REGISTER as before

In Figure 9, a third cell has been filled with a statable umt (another LOAD, for example) to provide a

convenient, powered Data Connector into which a Mimconsole has been plugged. Control Cables are connected from

the Control Output of the Mimconsole to the Control Input (the initiation terminal) of the D TO R cell, and from

the Control Output (the completion terminal) of the D TO R cell back to the Control Input of the Miniconsole. The

figure shows the outcome of flipping the switch on the Mimconsole, an action wtuch sends a control signal to the D

TO R unit, which causes the number set in the Parameter Block to be transferred to the REGISTER via the vertical

data bus interconnecting the two cells, after which a completion signal returns to the Mmlconsole, whose indicator

lights then show that the operation has been carried out Changing the setting of the thumbwheel switches of the

Parameter Block has no further effect on the REGISTER until the Mmmonsole switch is flipped again. (The

duplicate data Indicator Block does, of course, follow the setting of the Parameter Block exactly regardless of the

action of the Mmiconsole.)

DlOll

i JO_ 0

Figure9 Figure10

In Figure 10, a second D TO R unit with another Parameter Block has been stacked above the hrst and

cabled to a second Mimconsole. The Indicator Blocks have been removed The parameter X can be transferred to the

REGISTER by flipping the left Mimconsole switch, the parameter Y, by flipping the right Mimconsole switch. These

actions are independent of one another so long as they are not asked to occur simultaneously. The units of the

REGISTER manifold, now three ceils high, are interconnected by the mapliclt vertical bus pathways.
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An ARITHMETIC unit particularized by an appropriate Overlay to the simple addition function R + D has

been added to the mainfold in Figure 11, with the Parameter Block holding parameter X moved to its Data Input

connector. Control cables have been rearranged so that flipping the Mmlconsole switch now causes a sequence of

actions to occur, first, the parameter Y is loaded into the REGISTER, and second, the parameter X is added to the

contents of the REGISTER, leaving the sum X + Y in the REGISTER and sending a completion signal back to the

Mmiconsole. The lower D TO R umt serves only to relay data and control signals via the vertical bus, but is

otherwise unused.

II*D

51°: 7qo:
01o_

o o
-0 0 ®

REGtgI£R

O0 0 '

I°

In Figure 12, a SHIFT RIGHT unit has been installed and tile control cabhng rearranged to show how the

result 2-?can be formed m the REGISTER
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By substituting a SHIFT LEFT umt for the unused D TO R unit and recabhng the control as in Figure 13,

the result --_-(4Y + X) can be formed in the REGISTER after the following sequence of steps Is initiated by fhpplng

the Miniconsole switch:

1) Y to R (Y to REGISTER),

2) 2R to R (SHIFT LEFT),

3) 2R to R (SHIFT LEFT again),

4)X+R toR,

5)_-R to R (SHIFT RIGHT).
The reader wall perceive that further rearrangements of this kind wall result in the generation of other simple
functions.

o_
OO'

TOP

oN °,
s_t,r T k[_

0 O0 O0

o lo
Figure 14

Figure 13

In Figure 14, the REGISTER manifold of Figure 13 has been extended to process 24-blt numbers by

installing additional umts in laterally adjacent cells. Extender Overlays are mounted on appropriate Faceplate Boxes;

the Electronics Packages in the left column of the manifold match those to the right. Note that the control cabling is

unchanged. Two additlonal Parameter Blocks are reqmred to hold the most-significant halves of the parameters X

and Y OX2 and Y2)'
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Figure 15

Leaving the mainfold and control structure of Figure 14 intact for the moment,we proceed next to build a

second, qmte independent REGISTER manifold as m Figure 15, together with a MERGE unit and a new control
network. This new structure acts as a counter. Fhppmg the leftmost Mmiconsole switch causes a lengthy sequence of

steps to occur: first the new REGISTER is cleared (the CLEAR Overlay on a LOAD umt Faceplate Box specifies

ttus function), after which a completion signal _ssent to one of the two inputs of a MERGE element (the remaining

five elements are unused) whose output next evokes the function R + I to R (as determined by an Overlay for the

ARITHMETIC umt), which is then followed by a test for equahty to the parameter N (as determined by the EQUAL

Overlay for the COMPARE umt). There are two alternaUve outcomes following th_s comparison, and a control s_gnal

wfil continue along one of the two paths as shown. If the 12-bit number m the REGISTER has not yet reached the

value N set m the Parameter Block, the comparison completion signal will return via the N (No) output to the

second of the MERGE element inputs (to "merge" with any signal on the first input in OR combmanon) and

another MERGE output signal Is then generated to repeat the sequence. The sequence will be repeated untfi the

"count" held in the REGISTER equals the number N, whereupon the comparison compleUon signal _sreturned

along the Y (Yes) pathway to the Mmlconsole and all further acUon stops. We say that the "control loop" thus

defined _straversed, or iterated, N tunes following the mmal CLEAR operation.
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Figure 16 shows the addition of another 24-bit REGISTER manifold to the structure of Figure 15,
interconnected to the first 24-bit manifold in such a way as to "accumulate" the result

N-1

K+ Z_- (X + 4i)
i=l

in REGISTER T. The heavy lines represent Data Cables, each carrying 12 bits of data from a REGISTER output

connector to an input connector of another unit. The cable from REGISTER I carries the number i to the rightmost

D TO R unit of the S-manifold, while the cables from the S REGISTER carry the sum 1ACX + 4i) to the R + D data

inputs of the T-manifold for accumulation with previous results. Since the parameter X and the number i are both

12 bits in length, zeroes are supplied to the most-significant (leftmost) data inputs of the S-manifold as shown. The

control loop defined in Figt_e 15 has been rearranged to include the required S- and T-manifold operations, and the
reader will have no difficulty in tracing the sequence of steps initiated by flipping the Miniconsole switch.

It is easy to see how the process of Figure 16 can be further extended to include the generation or retrieval

of an indexed value, Xi, by including within the control loop some additional macromodular process whose structure

in Figure 17 is simply designated by the box labelled FIND Xi. The result now left in REGISTER T is the sum

N-1

K + E '_(X i + 4i).
1=1

Finally, the entire calculation of Figure 17 can be made a subsequence which can be "called" just as a

subroutine would be "called" in programming practice. Figure 18 shows the replacement of the manually-operated

Miniconsole by a CALL unit through which three independent (though of course non-simultaneous) calls can be

made along three separate pathways which themselves might appear in some further superstructure not shown. The
result of the calculation, Y, appears on the T REGISTER output cables.
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EXAMPLES OF SYSTEMS

To filustrate macromodular systems that have been apphed to biomedical research problems, three specific

macromodular systems that have been built and used will be described. The first, the CHASM, is a simulation and

modeling system that is convenient for carrying out lengthy calculations at high speed. It is presented in considerable

detail and illustrates the relatively small amount of documentation needed to completely describe a macromodular

system of moderate size and complexity. The second, MMS-4, Is an example of the use of macromodules in an

evolving system that has grown in five years from a program on a MmroLINC with 8K of 12-bit memory to a very

powerful and tughly accessible system for modehng and displaying molecule structure. The third, the ARGUS

Preprocessor, is an example of part of an electrocardiographic monitoring system designed and bufit m a short time

in response to an immediate need which could not be met by other means

CHASM

The CHASM (CHarlie, Antharvedi, and Severo's Machine) is a macromodular computer which is designed to

compute certain probabilities associated with a class of Markov processes. This class of random processes provides

useful models for the mechanisms that generate spike discharges m certain neurons in the central nervous system.

The algorithm used is based upon one originally implemented as a LINC program 0Vlolnar, 1966). The CHASM

version described here is similar to that presented in a preliminary description in 1967 (Molnar, Ornstein, and Ann[,

1967), but incorporates design improvements and modifications resulting from changes in the functional defimtion

of macromodules from that assumed earlier. A number of errors in the earlier description are also corrected here.

The Markov process analyzed by the CHASM is a continuous-tame Markov process, with both continuous and

discontinuous transition mechanisms, that has been studied by Kolmogorov (1931) and Feller (1936), and more

recently described by Takacs i1962). The rationale for the use of this type of Markov process as a neural model is

discussed by Stem (1964), Molnar (1966), and Molnar and Pfefffer i1968). The model assumes that a neuron

receives inputs m the form of discrete events generated by an mhomogeneous Polsson random process with rate pi t) ,

The state of the neuron is represented completely by its depolarization, D. Each input event Instantaneously

Increases the value of D by a positive amount, RiD ). During the intervals between input events, the depolarization

decays monotonically toward zero at a rate aiD] = -_-t' Whenever D reaches or exceeds a threshold value T, an

output event is generated and the value of D is reset to an initial value DO >_0.
These assumptions, subject to certain conditions on a[D] and R[D], define a class of Markov processes

within which particular members are distinguished by specifying p(t), R(D), T, DO and decay functmn a [D]. Such a
Markov process is completely characterized by the transition probability distribution, F[t,x Ir, vi, Much is the

probabfilty that the state variable D is less than x at time t, condmonal upon D having the value v at a prewous tune

r. Although it is known that F [t,x [ r, v] must satisfy certain lntegro-dlfferentml equations (Molnar, 1966, p.131),

analytic solutions for these equations are not known for most cases of interest as neural models. Such a solution, if

available, would yield F[t,x I O_,Do] , the probability distribution for the depolarization at time t given an inltml
value of D = DO at t = 0.

Instead we can recursively calculate F[(k+l)fit,x I O,Do] from F[kAt,x I 0,Do] using the Chapman-
Kolmogorov equation (Cox and Miller, 1965, p. 205):

[O,Do]= fO TF[(k+l)ht,xlkAt,v] dvF[kAt, v l0,Do]
(1) F [ik+l)At,x
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l

We can approxunate F[(k+l)/Xt,x I k/Xt, vi for small At as follows The probability ofn events m the tune interval

[k/Xt,(k+l)At) is given by the Polsson distribution:

-Xk
e Xkn

Pn(kAt) =
n !

e

£ (k+1)at . __
where Xk = kJ_t o(t)at

Thus: PO(kAt) =1-Xk +O(Xk),

Pl(kAt) = Xk + O(Xk),

and Pn(kAt)=O(Xk) forn> 1.

For small Xk and small At, we ignore terms O(Xk), assume that a jump can occur only at t = kAt, and obtain
the approxunanon:

F [(k+l)At,x IkAt, vi

=0, x_<v-a[v]At;

= 1 -Xk, v-a[ v ]At< x _<v+ R(v)-a[ v+ R(v)]At,

=1, v+ R(v )-a[v+ R(v )]fit <x_<T.

Applying the Chapman-Kolmogorov equation (1), and adopting abbreviated notation:

F[kAt,x] -F[kft,x IO,D0],

£ T
F

[(k+ 1)At,x] =JO F [(k+l)At,x IkAt, v] dvF [kAt, v]

F[(k+l)At,x] =foVO(X)l dvF [kAt, v] + Vof(x)Vl(X)(1. Xk) dvF [k/Xt, v] + Vl(x)fTO dvF [kAt, VI
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(2) F[(k+l)At,x] = Xk F[k,Xt, Vo(X)]+ (1- Xk)F [lc_t, Vl(X)] ,

where v0(x) satisfies the equation x = v0 + R(v0) - a[v0 + R(v0)] At and can be interpreted as that value ofv from
which a jump followed by a decay transition would lead to the new value x at a time At later; and where Vl(X)

satisfies the equation x = v 1 - a [v1] At and can be interpreted as that value of v from which a decay transition would
lead to the new value x at a time At later.

A 4096 x 24 macromodular memory segmented into four 1024-word quadrants is used as the working

storage for the CHASM. The first quadrant, addresses 0-1777 octal, is used to store F [k_t,x] for odd values of k,

and the second quadrant, addresses 2000-3777 octal, for even values of k. Values of F[lc_t,x] are stored as

non-negative 24-bit signed fractions, with the largest possible value, 3777 7777 octal, taken as the approximate
representation of one. By suitable scaling, x may be allowed to take on the values 0, 1,2, 3.... ,1023 and T be fixed
equal to 1023 without loss of generality.

Tables representmg the transition functions Vl(X) and Vo(X) are stored in the third and fourth memory
quadrants respectively, with the left 12 bits interpreted as the integer part and the right 12 bits as the 2's

complement of the fractional part of the tabulated functions. These functions, as well as the initial values for

F[O,x [ O,D0] are lbaded from an external source, which also provides successive values of Xk as needed. This
support is presently provided by a Spear MicroLINC 300, equipped with a macromodule interface, winch also reads
results from the CHASM and initiates each calculation for successively increasing values of k.

The following description of the CHASM is detafied enough to define the structure of the system. Various

points, such as the placement of data cables, are conveyed implicitly, but in a manner sufficient to define a working
system functionally (i.e. leaving only choices to be made at assembly time which do not endanger correctness of the

implementation of the desired algorithm, although they may influence the speed). In this sense, the documentation
is complete.

Figure 19 shows a photograph of the front face of the CHASM, while Figure 20 identifies the electronics

· package type and overlay type for each cell (by the code number shown in the lower right) and the data cable

connections (by the names associated with operations)

The CHASM registers and their major functions are as follows:

A (24 bits) serves as a general accumulator for 24-blt arithmetic and
communication with the LINC interface

B (24 bits) serves as a 24-bit buffer and result register for multiplications.

C (12 bits) contains the multiplier during multiplication.

D (24 bits) serves as a display buffer.

E (12 bits) serves as a scaling step counter for display.

M (12 bits) controls memory quadrant selection and address selection.

S (12 bits) is the memory address register and a buffer for loading C.

The LINC interface contains a 24-bit output register L, which can be read into A, and a 12-blt output
register X, which communicates with S. The LINC interface can also read data from A, and controls initiation and

senses completion of four macromodular operation sequences.

The control structure is defined by the flow diagrams of Figures 21 and 22 in which the operations identified

in each box correspond to individual macromodular operations or to macromodular subroutines. Four different

operation sequences can be called by the LINC.

LOAD transfers a 24-bit word from the LINC output to a memory location specified by the contents of the

S register, reads the new contents of memory back into A for check purposes, and increments S.
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MEMCHK loads the A register from the memory location specified by the interface X-register.

INITIALIZE sets the contents of the S and M registers to zero.

EXECUTE cames out one complete calculation of F[(k+l)At,x] from F[kAt,x], taking Xk from the

interface X register.

The major calculation of the CHASM, carried out by EXECUTE, involves straightforward evaluation of

equation (2) for successively mcreasing values of x. First, Vl(X ) is obtained by table look-up. Next, F [kAt,Vl(X)] is

obtained by linear interpolation m the table for F [kAt,v]. Next, multiplication by (1 - Vk) is carried out and the

result temporarfiy saved m memory. The process is repeated to obtain XkV0(x), with the final result

(1 - Xk)F [kAt,Vl(X)] + XkF [kAt,v0(x)]

stored in memory location x. A sense switch on the console selects optional display of the calculated value of

F [kAt,x]as a function of x, with a variable scale factor selected by a parameter switch in (Switch-->).

The CHASM is an evolving system that has been used and modlhed extensively (Arthur and Molnar, 1971).

The particular version shown here represents a system in transition, and contains several sub-optimal arrangements,

vestiges of earlier forms, concessions to debugging convenience, and even a CALL module not connected to

anything. The assembly and check-out of the system typically requires a day, and proper construction of the dnving

tables for Vo(X) and Vl(X ) and correct interpretation of the results have been more of a hindrance than the physical
realization of the system itself. The CHASM, as described here, can carry out thirteen repetitions of the EXECUTE

operation per second, compared with an execution rate of four per second for a less general and less precise

algorithm executed on the MlcroLINC, and sixty-seven executions per second for the algorithm programmed in

Fortran and executed on a CDC-6600. A newer version of the CHASM, using a prototype MULTIPLY macromodule,

carries out about 26 executmns per second. Another version of the CHASM adapted to model neurons with

inhibitory as well as excitatory inputs has been built and operated, but the performance has not yet been fully
evaluated.
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Figure 19

The macromodular frame assembly of the CHASM (CHarlie, Antharvedi and Severo'sMachine).
Identification of the function of each cell is given in Figure 20, while the control structure is

described in Figmes 21 and 22. Cables leaving the area shown in the photograph connect to a
console (to the right) and to the LINC interface (underneath).
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A cell map of the CHASM system pictured in Figure 19 identifies modules within the frame. Notations on each overlay assign names to operations

and identify the module type and overlay code by the number in the lower right. Parameter switch locations and values are shown, and the

locations of Data Cables are implied by the operation and register names. The names on CALL modules (code 801) identify subroutines or

operations that are called. The CALL modules identified as COUNTER call the multiply kernel 12 times as explained in the text.

The abbreviation EX denotes a module that extends in word length the operation of the module to the right. Other abbreviations used are: CLR -

dear, CV- convert, INT - intensify,( )L ' left half-word,( )R ' right half-word, INSR- interpolate normalize subroutine.
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EXECUTE INITIALIZE LOAD MEMORY "

I I I
I CALL JClear B I ClearM [if I L'-_A ]1[' I X'-_'S I

CALL] CALL CA_LLCALL M --e- S A--_'-Memor y Memory.-e-A
B---_A 1if

CALLMemory--e,.A
t

A .--B,-D [ S+1--""S [

IM"--'M
CALL

M --_,"S

CALL
INSR

1 - S--e,-S

C_ = MERGECALL
Mulhply

CALL
B --_A SwJtch--_-E

CALL A - D--e-D _
A--e-Memor_

CALL E - 1--e-E
INSR Shaft D

CALL
Multiply

CALL NO

Memory--_A Set Y

CALL
A +B--e,-B S--I,,O

CALL Set X
B.--e,-A

Convert M+ 1-'-_M
A--_Memory

Intensify

Figure 21

Control flow diagram for the four CHASM programs. Each program is initiated by a

control signal from the LINC interface, and m turn commumcates its completion back to
the LINC. Control terminals associated with indiwdual operations can be identified on

the cell map of Figure 20.



-25-

/

' CALLS
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CALL J
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I CALL
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i

t

MIJltll)ly L t

C,A--B I M-'SI
I CA" I I

C x A--.,.B Clear B _
CO[IlllEr

(12 Ttnles)

A + B.-e,.B

_) = MERGE

_) = BRANCH

Shift B+C (_) = RENDEZVOUS

I ReCALMLem 1 Real I_ I

Figure 22

Subroutines used in the CHASM. Nesting of subroutines and concurrent execution of

operations are direct and easy to realize. Calls used to increase the number of accesses to
single operations are not shown.
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Figure 23 .....

The MMS-4 system as of October,. 1972. From left to 'right in 'the re.ar can be

seen: macromodule-compatible memoi'y stacks; the macromodular frame

assembly; the Evans & Sutherland LDS-1 Matrix Multiplier and Line-Drawing
Scope; the Spear MicroLINC 300. The LINc interface can be seen below the

frame assembly. The LINC console'in the foreground and a set of control knobs

providethe user with means to manipulate the operati6n of the system.

MMS-4

The MMS-4 system, shown in Figure 23, is a powerful and conver/ient system for manipulation and disp!ay

of molecular models. It is an interesting example of an evolving syst9 TM which includes a general-purpose stored

program computer (Spear MicroLINC 300), and commercially built specialized hardware (Evans and Sutherland

Line Drawing Scope and Matrix Multiplier). About 150 macromodules 'unt_lement specialized data handling and

control functions optimized for molecular modeling, and serve to tie together the_other parts of the system in a

functionally convenient and efficient way. The macromodules effectively implement powerful high-level commands

which are called by the MicroLINC. For example, one complete molecule picture is generated in response to a single

LINC command. The thousands of individual steps required are controlled by "soft wired" control pathways

established by macromodular control cables. The system'can, in present form, comfortably handle large protein

models such as myoglobi n (Figure 24), and can carry out such functions as continuous ·rotation of.a complete

molecule about a desired axis, geometric transformation of part of a molecule with respect to another part, and

fitting of molecular models to simultaneously displayed contour plots of experimentally determined electron density

maps.
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This system has evolved from early experiments using the MicroL1NC alone (Barry, et al.,1971), (Dickson, et

al., 1972), on which display, manipulation, and data storage techniques were developed and applied to small

molecules. Systems MMS-1, MMS-2, MMS-3 (Ellis, Fritsch, Dodds, 1971), representing successive experiments in

structuring a system for convenient and flexible extension of the LINC-based system,had lifetimes of a few weeks

each. The present version, MMS4 (Ellis, et al., 1974), has been in continuous existence for over a year, and has

slowly evolved through weekly-to-monthly additions and modifications. The most recent change was an increase in

the precision of coordinate storage and manipulation from 12 bits to 24 bits. This change, made in response to the

needs of a visitor, required 18 additional modules. The hardware modification and changing of the programs was

completed with less than a one-day interruption in the use of the system. The software for the system has also

evolved in a smooth manner. Important functions have been implemented one at a time in macromodules and moved

out of the LINC without major disruptions to system use.

The direction and speed of evolution of the macromodular molecular modeling system have been determined

principally by the needs and ideas of the vigorously active group of system user/designers, whose work is described

in detail elsewhere (Marshall and Bosshard, 1972) (Marshall, Barry, et aL, 1972) (Marshall, Beitch, et al, 1972)

(Marshall, Bosshard, et al., 1972). Major accomplishments have been the construction of a library of protein

structures from coordinates supplied by others, the generation of several films Showing various aspects of protein

structure (Beitch, et aL, 1971), and the development of techniques for fitting models to X-ray maps of electron

density.

The next major step in this evolution is the implementation in macromodules of operations which determine'

and test the distances between any pair of atom centers. The resulting system will be used to enumerate exhaustively'

sterically possible conformations of biologica/ly interesting molecules (Bosshard, et al., 1972), a task that is

overwhelming for existing computer systems. Experimentally determined parameters such as nuclear magnetic

resonance spectra or circular dichroism spectra can then be compared with those calculated for each sterically
allowed conformation (Barry, North, et al, 1971).

Figure 24

The structure of myoglobin (Watson, 1969)

as photographed from the MMS-4 scope.
connect the positions of linked atom

:enters in the structure. Superimposed

electron density maps can be displayed

simultaneously.
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ARGUS Preprocessor

The development at Washmgton University of effective algorithms for electrocardiographic monitormg m

coronary care units (ARGUS - ARrhythmla GUard System [Cox, Fozzard, Nolle, Oliver, 1968] [Nolle, Clark,

1971] [Nolle, 1972]) has led to Interest in the processing of taped electrocardiograms obtained from ambulatory

patients. Tens of thousands of hours of recording are necessary from hundreds of subjects to obtain statlmcally
meanmgful answers to each of a number of interesting questions in the study of the relation of heart rhythm to

coronary artery disease. A high-speed system for analyzmg these recordings msclearly reqmred, perhaps with the

capability of processing an hour's worth of electrocardiogram m a minute, a 60 to 1gain m speed.

In the sprig of 1971 the need for such a high-speed processing syslememerged clearly, but the feasiblhty

turned on a technical question of computer processing speed Could a system be designed that would handle an

input data rate of about 300,000 bits/sec, given the 27 memory cycles required, on the average, to process each bit?

An experiment was devised that concentrated on the preprocesslng section of ARGUS. If this preprocessor, called

AZTEC (Amphtude-Zone, Time Epoch Coding), could keep up with the Input data, the reduction m data rate that

AZTEC could provide would make the task of succeeding portions manageable.

Smce the preprocessing algorithm (Cox, Nolle, Fozzard, Oliver, 1968) was well defined, the design of a

macromodular system to accomplish the task was a matter of only a few hours. The next day, the system was

assembled and debugged (Figure 25) Taking shghtly under fifty modules, including modules used as debugging aids,

the system was of modest size, but could remove from the stored-program portion of the system more than

two-thirds of the memory cycles required by the ARGUS algorithms (Cox and Logue, 1971).

The performance was well in excess of that required: data presented at a megabit rate could still be

processed, an increase in speed of 200 to I over real-time processing. Of course, some paths through the

preprocesslng algorithms take substantially more time than others (ranging from 2//sec to 10gtsec)tTheperformance of
&

the system cited above is based on the worst-case path.

A comparison of the AZTEC preprocessor implemented mnsoftware and in macromodules is instructive (Cox,

1968), the most frequently used path through the algorithm takes the following times: CDC 6600 - 7 /lsecdIBM

360/75 - 10 gtsec,IBM360/65 - 12/_sec,SIGMA 7 - 17 /_sec,PDP 10 - 18/_s_SIGMA 2 - 27/4sec,PDP9 - 37 #seeThe

equivalent path through the macromodular system takes 3/lsec Littleof the sophisticated processing hardware of the

larger systems applies since the operations are largely composed of additions, tests and branches. The cost per

execution favors the SIGMA 2, nearly the smallest of the conventional systems, and a substantial cost premium .

(about two orders of magmtude) rffust be paid for the CDC 6600 to achieve only a factor of four increase in speed

over the SIGMA 2. The macromodular system achieves a factor of 9 increase in speed with a inuch smaller cost

premium (presently about a factor of two)

The success of the experiment with the ARGUS' preprocessor has led us to pursue the devel6pment of a
tugh-speed processmg system for the analysis of electrocardiograms recorded from ambulatory patients. Succeeding

portions of the ARGUS algorithm are being implemented in an IBM System 7. Tapes reproduced fit 60 times real

time will be played directly mto the macromodular preprocessor whose output wdl providethe mput for the System

7. Future experiments will help to shape the best form for this preprocessor. If the system proves to be successful

scientifically, a further optimized preprocessor design may be developed, based upon the experience with th'e

macromodular system.
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The AZTEC (ARGUS Preprocessor) System can accept input

electrocardiographic data at speeds up to 200 times real time.



-30-

_x

CONCLUSION

Although the process of learning to design, build, and use macromodules has been lengthy and difficult, we

are encouraged by our recent experience to believe that the approach is technically and intellectually sound The

abfiity to quickly and easily design and modify computer systems of novel structure and arbitrary size introduces a

new degree of freedom of great value to the problem-solver Particularly significant is the increased ease of thinking

about a problem m purely algorithmic terms winle taking for granted the ability to construct a system winch wfil

efficiently execute that algorithm m a direct and simple manner.

Continuing research use of our macromodule inventory by ourselves and our colleagues at Washington

Univemty and elsewhere should teach us a great deal more about administering the shared use of a macromodular

resource. We have yet to determine how to exploit optunally the inherent ecologmal soundness of macromodules

whmh allows them to be recycled indefinitely.

Development of a "restructured" form of macromodules intended to preserve the essentml features of

macromodules in a more cost-effective and exportable form _snow m an advanced stage, and engineering prototypes

are being built. Winle different In many detafis, macromodules m this new form wfil, in general, have the same

functmnal structure as the macromodules descnbed here, and wfil allow the same style of use (Clark and Molnar, 1972).
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, APPENDIX

MACROMODULAR SYSTEMS BUILT DURING THE PERIOD

, JANUARY 1971 THROUGH JUNE 1972

SYSTEM CELLS FUNCTION/DESCRIPTION

Memory Tester 18 Tests the 2-cell core memory macromodule.

DIS 1 27 A 24-bit stored-program special-purpose display processor programmed to display
functions stored as tabulated values in its memory.

JANC 24 A 12-bit stored-program general-purpose computer with 4096-word 1-microsecond
memory.

HISTOt 23 Displays selected segments of memory as histograms with parameter-switch control
of bar width, scaling, and memory segment location.

Stimulus 10 Stores samples of an arbitrary periodic function and delivers them as a continuous

Generator analogsignal.

4-SORT 19 Sorts four 12-bit numbers by recursive execution of comparisons and exchanges of

· data m adjacent positions.

Pseudorandom 20 Based on an algorithm used in an early TX-Oprogram.
Number Generatort

LISP 77 A rough equivalent to PDP-I LISP without I/O; i.e., a LISP interpreter plus a dozen

Machine or so primitive functions. Speed about the same as for PDP-10-compiled LISP.

Relaxation 25 Performs a linear ordering by relaxation averaging.

Technique

3-D Histogram 30 Generates a 3-dimensional histogram and displays it on a macromodular display
scope.

Pseudorandom 24 Implementation of the algorithm described by Rader, Rabiner, and Schafer (Bell
Number Generator System Technical Journal, Nov. 1970). Computes and displays a histogram of the

number distribution.

t

Hadamard 52 Implementation of an algorithm for Fast Hadamard Transforms. Operates about eight

Transform Processor times faster (215 ms) than an IBM 360/50 programmed in Fortran IV.

tDesigned and constructed by a visitor.
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SYSTEM CELLS FUNCTION/DESCRIPTION

Gaussian Random 31 A special processor, based on the Rader algorithm described above, which forms a

Number Generatort sum of 12 uniformly distributed random numbers to produce Gaussian numbers, and _,

displays these as a bell-shaped frequency histogram.

Pair Interchange 30 Sorts a series of numbers using a pair interchange algorithm.
Sorter

Pattern 20 Examines selected field of data input stream and records the number of occurences

Occurrence of each pattern that appears.
Recorder

Log Generator 23 Forms logarithm of n by an incremental method suggested by a time interval analog

technique.

Stack Computer 47 An elementary general-purpose (programmable) stack computer.

Sorting 97 An tmplementatlon of D.L. Shell's minimal storage sorting algorithm. Sorts up to

System 4096 twelve-bitwords.
t_

Digital Ffiter 56 A general recurslve second-order d_gltal filter with constant coefficients, to be used in
ECG faltering experiments.

Macromodular 29 Designed to test the feasibility of a two-system interlock, in preparation for the

Interlock construction of a multiprocessor.

FFT 85 Performs Fast Fourier Transforms. The number of complex 12-bit points

Computer* transformed is any power of 2 up to 212; transform time as approx. 0.67 sec. for

4096 12-blt complex numbers.

r n
Digital 16 Solves the equations y=x/2 ; x=y'/2 TM. If the initial conditions cause arithmetic

Oscfilator*t overflow, a type of limit cycle results, the period of which (for 12-blt words)can be

as high as (211,071,162)8 coordinate pairs before repeating.

P.D.E. Processor I 60 Solves a restricted class of partial differential equations (elliptical for I, elliptical and

P.D.E. Processor II 60 parabolic for II), using Monte Carlo methods.

*Assembled and demonstrated m Harriman, New York.
11

¢

?Designed and constructed by a vmtor.
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- SYSTEM CELLS FUNCTION/DESCRIPTION

CUDDLYI 124 Finds sociable, amicable, and perfect numbers, printing out each set as found.

, Reached the number 4,002,206 after 85 hours, using 24-bit arithmetic on chains no

longer than 256, and appears to have found 3 new sets. The overflow cases remain to

be resolved by larger systems.

Markov Algorithm 60 Implementation of a Markov algorithm for string manipulation, controlled on-line
Processor from the keyboard. Uses both LINC and macromodular frame memory for storage.

Fabri-Tek 12 Used to test the Fabri-Tek core memory units used m many macromodular systems.

Memory Tester

CHASM Multiplier 20 Developmental stages in the implementation of a Markov Process model of a single

CHASM 60-66 neuron. Recursively computes state probabihty functions from imtial conditions and

transition probability tables.

AZTEC 46 Stages in the implementation of a system for analysis of tape-recorded ECGs played

QRS Detector 35 back at 60 times real time. Uses an algorithm developed at George Washington

ARGUS Preprocessor 100 University for QRS detection and boundary determination based on analysis of the

' ECG Data Encoder 60 first derivative of the ECG. Final data compression: 100 to 1.

MMS-1 85 Successive developmental versions of a system composed of an Evans and Sutherland

MMS-2 70 Line Drawing System, a Spear Micro-Linc 300 computer, and up to 120

MMS-3 81 macromodules. The MMS-4 system allows rapid and flexible manipulation and

MMS-4 116 display of molecules containing as many as 2500 atoms, and the fitting of protein

models to electron density maps obtained by X-ray diffraction.

MARC I 85 A series of stored program computers designed to determine essential concurrencles

COMRAD 94 in a sequential computer program (Implementation of Flsher's Algorithm). Successive

MARC II 91 versions were designed by using the current version to analyze and improve its own

MARCIII 97 algorithm.

RAP-1 30 Provides on-line editing and retrieval of sounds. Macromodules are interfaced to

M-compatible devices (devices that are not macromodules but are compatible with

them): a microphone, A-to-D converter, storage disk, and clock.

' Speech Pattern 80 Uses a "real-time", Newton-Raphson-like algorithm to solve the parameters of a

Analyzer linearpredictionmodelof speech.

IL
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SYSTEM CELLS FUNCTION/DESCRIPTION

Glitch Counter 32 Records histogram data on flip-flop glitch times.

MUMPS 64 Implements the character processing routines of the MUMPS interpreter in

Character macromodules, the rest of MUMPS in the PC-1200. Considerable speed increases over
Processor the full PCversionwere realized.

Matrix Inverter 91 Inverts a matrix by Gauss-Jordan elimination. Constructed as a class project.

\
Speech Processing 64 A fully buffered driver for a high-speed display scope, which forms part of an

Display Controller interactive computer system for speech analysis and synthesis.

HOBBIT 68 Performs the calculations necessary to determine all possible ring conformations of a
molecule.

Basllar Membrane 74 Simulates the Klm non-linear phenomenol(Tgicalmodel for basilar membrane motion.
Model

v.

SIMBC 133 Simulates a broadcast computer system, displays the results, and stores the optimal
Aggregate orderingobtainedsofar.

Video Data 16 Accepts video data generated by an A-to-D converter, and stores it m real time for

Acquisition later processing. The system is presently in use at the cardiac care umt of Jewish

System Hospitalm St.Louis.

Digital Stimulus 37 Produces three phase-locked tones for use in experiments on combination tone
Generator perception.

Broadcast 30 Tests the performance of a cable television channel, by supplying random inputs and
ChannelTester checkingthe outputs.
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