Adenylyl cyclases types 1 and 8 promote pro-survival pathways after ethanol exposure in the neonatal brain

Alana C. Conti
Washington University School of Medicine in St. Louis

Chailllie Young
Washington University School of Medicine in St. Louis

John W. Olney
Washington University School of Medicine in St. Louis

Louis J. Muglia
Washington University School of Medicine in St. Louis

Follow this and additional works at: https://digitalcommons.wustl.edu/guzeposter2009
Part of the [Medicine and Health Sciences Commons](https://digitalcommons.wustl.edu/guzeposter2009)

Recommended Citation
Conti, Alana C.; Young, Chailllie; Olney, John W.; and Muglia, Louis J., "Adenylyl cyclases types 1 and 8 promote pro-survival pathways after ethanol exposure in the neonatal brain" (2009). *Posters*. Paper 1
Samuel B. Guze Symposium on Alcoholism.
https://digitalcommons.wustl.edu/guzeposter2009/1
Adenylyl cyclases types 1 and 8 promote pro-survival pathways after ethanol exposure in the neonatal brain

Alana C. Conti1, Chainllie Young2, John W. Olney2, and Louis J. Muglia1
1Depts of Pediatrics and 2Psychiatry Washington University School of Medicine, St. Louis, MO 63110

Introduction

- A wide range of developmental disabilities following fetal alcohol exposure is observed clinically, however, the molecular factors that determine the severity of these sequelae remain undefined.
- Deletion of adenylyl cyclases (ACs) 1 and 8 exacerbates the neuroapoptosis that occurs in the delayed period after ethanol exposure; however, it remains unclear whether AC1 and AC8 are critical to the primary or secondary mechanisms underlying ethanol-induced neurodegeneration.
- In order to examine this distinction, P7 WT and AC1/AC8KO (DKO) mice were given one injection of saline or ethanol (5.0 g/kg) and their striata were examined in the acute post-treatment period (1-4 hrs) to assess the activation of both caspase-3 and pro-survival mechanisms.

Results

1. Abundant protein expression of AC1 and AC8 is detected in membrane-enriched striatal protein extracts obtained from P7 WT and DKO mice.

2. Representative sagittal sections from the P7 mouse brain demonstrate widespread protein distribution of AC1 and AC8.

3. ACKO mice demonstrate increased activation of caspase-3 following acute ethanol treatment.

4. DKO mice demonstrate impaired pro-survival protein phosphorylation in the striatum acutely following 5.0 g/kg ethanol administration.

Conclusions

- Deletion of AC1 and AC8 exacerbates the neuroapoptotic response in the striatum acutely following a single ethanol exposure.
- Pro-survival signaling involving phosphorylation of IRS-1, Akt and ERK is impaired in DKO mice following ethanol treatment.
- Variation in activity of AC1 and AC8 may have important ramifications for the likelihood of a fetus’ susceptibility to FAS.

Acknowledgements: This work was supported by NIH grants to ACC (HD049305), LJM (AA12957) and JWO (DA005072, MH37100).