Moderation of 5-HTTLPR and MAOA effects on alcohol dependence differs by type of childhood abuse

Jaime Derringer
Washington University in St Louis

Robert F. Krueger
Washington University in St Louis

Daniel E. Irons
University of Minnesota - Twin Cities

Matt McGue
University of Minnesota - Twin Cities

William G. Iacono
University of Minnesota - Twin Cities

Follow this and additional works at: https://digitalcommons.wustl.edu/guzeposter2009

Part of the Medicine and Health Sciences Commons

Recommended Citation
https://digitalcommons.wustl.edu/guzeposter2009/2

This Poster is brought to you for free and open access by the 2009: Translating Basic Science Findings to Guide Prevention Efforts at Digital Commons@Becker. It has been accepted for inclusion in Posters by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Moderation of 5-HTTLPR and MAOA Effects on Alcohol Dependence Differs by Type of Childhood Abuse

Jaime Derringer¹, Robert F. Krueger¹, Daniel E. Irons², Matt McGue², William G. Iacono²
¹Psychology, Washington University; ²Psychology, University of Minnesota

Background
• 5-HTTLPR is a variable-number-of-repeats region in the gene SLC6A4 located on chromosome 17.
• The two versions are Long and Short, with the Short allele associated with reduced transcription of serotonin transporter mRNA.
• Previous gene-environment interaction (GxE) studies indicated the presence of one or two Short alleles to be related to greater increases in substance use in adolescents from families low on involved-supportive parenting (Brody et al., 2000) and greater risk of early alcohol use in adolescents who were malnurtured as children (Kaufman et al., 2007).
• MAOA is a variable-number-of-repeats gene on the X-chromosome that codes for an enzyme (also MAOA) which degrades neurotransmitters.
• Number of repeats that result in Low MAOA activity have been linked to increased rates of delinquency and violence (Guo et al., 2008).
• The relationship between Low MAOA and violence, conduct disorder, and antisocial personality disorder is especially strong in individuals who experienced childhood maltreatment or physical abuse (Caspi et al., 2002; Kim-Cohen et al., 2006).

Current Study
• Previous studies of GxE interactions in childhood abuse and externalizing behaviors tend to collapse across the broad range of childhood maltreatment.
• We explored moderation of the effect of MAOA and 5-HTTLPR genotypes on alcohol dependence symptoms at age 25 by type of childhood abuse experienced (Physical and/or Sexual) prior to age 18.

Participants
• Minnesota Twin and Family Study (MTFS) community-sampled twin participants who were assessed for alcohol dependence at age 25 (N=2063, 44.9% female) were included in our sample.
• Of these, 1949 (44.1% female) had childhood abuse status data available.
• 1203 (45.1% female) were genotyped for 5-HTTLPR.
• 978 (27.4% female) were genotyped for and homozygous on MAOA.
• Females who were heterozygous for the High-Low activity genotype (N=227) were dropped from our genetic analyses due to uncertain MAOA activity level (see Kim-Cohen et al., 2006).

Measures
• Abuse status: Childhood Physical and Sexual abuse were assessed at either age 21 or age 29.
• 54.3% of those assessed for abuse were asked two Yes/No questions about physical and sexual assault respectively as part of a broader Life Events Inventory, as well as the first age at which they experienced that type of assault.
• 74.1% received a more extensive abuse assessment, including:
 • 4 items on severe Physical abuse if they were ever hit leaving a mark, hit with an object, assaulted with a weapon, or injured in another way by an adult responsible for them, and
 • 9 items on Sexual abuse (ranging from being propositioned to intercourse, whether in an unwanted situation prior to age 18 or with anyone more than 5 years older prior to age 13).
• For those assessed on both measures (N=1551) reliability was good as indicated by cross-measure correlations of r=0.72 for Physical abuse and r=0.73 for Sexual abuse. Discrepancies tended to favor abuse endorsement on the second, more specific measure.
• Abuse status was aggregated across measures separately for Physical and Sexual abuse.
• Proportion reporting Physical abuse was 22.4%, while 6.2% reported Sexual abuse.
• For each abuse type, exposure before age 18 was coded as 1, while non-exposure was coded 0.

Measures, continued
• Alcohol dependence symptoms: Participants were assessed for DSM-IV criteria alcohol dependence symptoms at age 25 covering approximately the past 4 years.
• Each individual received a count of symptoms which had definitely been met.
• The sample mean was 1.3 symptoms, with a standard error of 0.12 and a range of 0 to 10.
• 5-HTTLPR was assessed from participants’ peripheral blood samples or buccal swabs as described in Anchordoqui et al. (2003).
• Number of repeats was coded into Short (S, 4/5bp) and Long (L, 5/2bp).
• Proportions of each genotype were: LS=32.3%, LL=48.9%, SS=18.8%.
• 5-HTTLPR was in Hardy-Weinberg Equilibrium, with a Minor Allele (S) Frequency of 0.43, \(\chi^2(0.02) = 0.87\).
• Individuals were coded for number of Short alleles they possessed (0, 1, or 2).
• MAOA was assessed from participants’ peripheral blood samples or buccal swabs as described in Haberstick et al. (2005).
• Individuals were dichotomized for MAOA activity level, with high activity indicated by 3.5 or 4 repeats of the MAOA gene and Low activity indicated by 2, 3, or 5 repeats (as described in Caspi et al., 2002).
• The Low activity genotype was less frequent (31.4% of the sample), which is similar to previous reports (e.g. 43.3% males, 19.7% females, Guo et al., 2008).
• MAOA was coded as ‘O’ for High activity, ‘T’ for Low activity.

Analyses
• Multiple regressions were conducted in Mplus (Muthén & Muthén, 1997-2008), taking into account the non-independent nature of the twin data.
• Alcohol dependence symptom counts were modeled on a zero-inflated Poisson distribution.

Table 1. Regression Results

<table>
<thead>
<tr>
<th>MAOA</th>
<th>5-HTTLPR</th>
<th>Next</th>
<th>Beta</th>
<th>Z</th>
<th>Beta</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sex</td>
<td>-0.057</td>
<td>-0.858</td>
<td>-0.341</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Physical</td>
<td>-0.003</td>
<td>-0.066</td>
<td>-1.931</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAOA</td>
<td>0.080</td>
<td>1.863</td>
<td>0.063</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SS</td>
<td>-0.058</td>
<td>-0.345</td>
<td>0.730</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Physical</td>
<td>1.110</td>
<td>2.514</td>
<td>0.012</td>
</tr>
</tbody>
</table>

Figure 1. Moderation of 5-HTTLPR effect by sexual abuse status

Figure 2. Moderation of MAOA effect by sexual abuse status

Conclusions
• There was a significant interaction between exposure to childhood Sexual abuse and genetic status in predicting adult alcohol dependence symptoms for both 5-HTTLPR and MAOA. Similar to previous findings (Caspi et al., 2002; Kim-Cohen et al., 2006; Kaufman et al., 2007; Brody et al., 2009), the Short allele in 5-HTTLPR (p=0.001) and Low MAOA activity (p<0.01) increased number of alcohol dependence symptoms in individuals who had experienced childhood Sexual abuse.

• Physical abuse did not interact with either gene in predicting alcohol dependence symptoms, though there was a significant main effect in the 5-HTTLPR model (p=0.04) and a suggestive main effect in the MAOA model (p=0.05), indicating that physical abuse in childhood is predictive of increased alcohol dependence symptoms in adulthood regardless of genetic status on MAOA or 5-HTTLPR.

• Sex was a significant (p<0.001) covariate in each model, although the current models did not examine interactions separately by sex.

References

Acknowledgments: NIH grants DA045147 & AA009367
Contact: Jaime Derringer (jderringer@wustl.edu)