Except otherwise noted, this work is made available under a Creative Commons Attribution License. http://creativecommons.org/licenses/by/4.0

ENVIRONMENTAL ENTERIC DYSFUNCTION: ADVANCING CURRENT KNOWLEDGE

TABLE OF CONTENTS

ACKNOWLEDGMENTS viii

ABBREVIATIONS ix

SYNOPSIS xi

CHAPTER 1. ENVIRONMENTAL ENTERIC DYSFUNCTION (EED) BACKGROUND 1

1.1 EED HISTORY AND OVERVIEW 1

1.2 AN OLD PROBLEM REQUIRING NEW KNOWLEDGE 3

1.3 PATHOPHYSIOLOGIC PROCESSES AND CONSEQUENCES OF EED 7

1.4 THE ROLE OF BIOMARKERS AND DIAGNOSTICS IN EED 12

1.5 SCIENTIFIC BASIS FOR THIS REVIEW 13

CHAPTER 2. METHODOLOGY: BUILDING THE EED LIBRARY AND UNDERTAKING A SYSTEMATIC REVIEW OF EED BIOMARKERS/ DIAGNOSTICS 15

2.1 EED: A BROAD FIELD, MANY UNANSWERED QUESTIONS 15

2.2 CONSTRUCTING A SYSTEMATIC SEARCH STRATEGY: OPTIMIZING SENSITIVITY 20

2.3 REFERENCE VOLUME MITIGATION 23

2.4 BUILDING THE EED LIBRARY 25

CHAPTER 3. EED LIBRARY AS A BASIS FOR SYSTEMATIC REVIEWS 34

3.1 DEFINING SYSTEMATIC REVIEW QUESTION PRIORITIES 34

3.2 DETERMINING RELEVANCE TO THE SYSTEMATIC REVIEW 36

3.3 ACQUISITION OF REFERENCES AND COPYRIGHT FAIR USE COMPLIANCE 42

3.4 DOCUMENTING RELEVANCE TO THE SYSTEMATIC REVIEW 42
CHAPTER 4. SYSTEMATIC REVIEW OF EED BIOMARKERS/DIAGNOSTIC TESTS: RESULTS SYNOPSIS

4.1 BIOMARKERS AND DIAGNOSTICS SYSTEMATIC SEARCH RESULTS

4.2 CHARACTERISTICS OF REFERENCES INCLUDED IN THE SYSTEMATIC REVIEW

4.3 CLASSIFICATION OF BIOMARKERS AND DIAGNOSTIC TESTS

CHAPTER 5. SYSTEMATIC REVIEW RESULTS BY BIOMARKER CLASSIFICATIONS

5.1 MARKERS OF ABSORPTION AND PERMEABILITY: OVERVIEW

- **5.1.1 SUGARS AS TRACERS OF INTESTINAL FUNCTION**
- **5.1.2 ENDOMOLECULAR NUTRIENTS AS TRACERS OF INTESTINAL FUNCTION**

5.2 MARKERS OF ABSORPTION

- **5.2.1 D-XYLOSE**
- **5.2.2 ENDOMOLECULAR CHALLENGE ABSORPTION TESTS**
- **5.2.3 ENTEROCYTE-SPECIFIC PROTEINS**
- **5.2.4 FECAL FAT**
- **5.2.5 SUMMARY OF MARKERS OF ABSORPTION**

5.3 MARKERS OF PERMEABILITY

- **5.3.1 THE URINARY LACTULOSE:MANNITOL RATIO (L:M)**
 - **5.3.1.1 TECHNICAL ISSUES WITH THE L:M TEST**
 - **5.3.1.2 RANGE OF L:M VALUES REPORTED**
 - **5.3.1.3 ASSOCIATIONS BETWEEN L:M AND GROWTH OUTCOMES**
 - **5.3.1.4 ASSOCIATIONS BETWEEN L:M AND OTHER OUTCOMES**
 - **5.3.1.5 USE OF THE L:M TEST AS AN ENDPOINT FOR INTERVENTION TRIALS**
 - **5.3.1.6 ASSOCIATIONS BETWEEN L:M AND OTHER MARKERS**
- **5.3.2 THE LACTULOSE:RHAMNOSE RATIO (L:R)**
 - **5.3.2.1 THE L:R TEST AS A REFLECTION OF ISSUES IN SERUM OR URINE SUGAR TESTING IN CHILDREN**
 - **5.3.2.2 RANGE OF L:R VALUES REPORTED AND ASSOCIATIONS WITH GROWTH OUTCOMES**
 - **5.3.2.3 ASSOCIATIONS BETWEEN L:R AND OTHER MARKERS**
 - **5.3.2.4 METHODOLOGICAL ISSUES WITH THE L:R TEST**
- **5.3.3 SERUM AND URINARY LACTOSE**
5.3.4 SUMMARY OF MARKERS OF PERMEABILITY 154

5.4 MARKERS OF DIGESTION 157
5.4.1 SUCROSE AND LACTOSE BREATH TESTS 172
5.4.2 STOOL REDUCING SUBSTANCES 174
5.4.3 INTESTINAL DISACCHARIDASES 175
5.4.4 13C ASSESSMENT IN STOOL AFTER LIPID ADMINISTRATION 176
5.4.5 URINARY LACTOSE:LACTULOSE RATIO 176
5.4.6 SUMMARY OF MARKERS OF DIGESTION 177

5.5 MARKERS OF INTESTINAL INFLAMMATION AND INTESTINAL IMMUNE ACTIVATION 178
5.5.1 FECAL LACTOFERRIN 195
5.5.1.1 PREVALENCE OF FECAL LACTOFERRIN 195
5.5.1.2 ASSOCIATIONS BETWEEN FECAL LACTOFERRIN AND GROWTH OR OTHER OUTCOMES 196
5.5.1.3 ASSOCIATION BETWEEN FECAL LACTOFERRIN AND OTHER MARKERS 197
5.5.1.4 METHODOLOGICAL ISSUES WITH THE FECAL LACTOFERRIN TEST 197
5.5.2 FECAL CYTOKINES 198
5.5.2.1 PREVALENCE OF FECAL CYTOKINES 198
5.5.2.2 ASSOCIATIONS BETWEEN FECAL CYTOKINES AND GROWTH OR OTHER OUTCOMES 199
5.5.2.3 ASSOCIATIONS BETWEEN FECAL CYTOKINES AND OTHER MARKERS 200
5.5.3 FECAL LEUKOCYTES 200
5.5.4 FECAL NEOPTERIN 201
5.5.5 FECAL IgE 201
5.5.6 INFLAMMATORY INTESTINAL CELL MARKERS 201
5.5.7 INTESTINAL TISSUE CYTOKINES AND IMMUNE MARKERS 202
5.5.8 DUODENAL ASPIRATES FOR IMMUNOGLOBULINS 203
5.5.9 SUMMARY OF MARKERS OF INTESTINAL INFLAMMATION 203

5.6 MARKERS OF SYSTEMIC INFLAMMATION AND SYSTEMIC IMMUNE ACTIVATION 204

5.7 MARKERS OF MICROBIAL DRIVERS 232
5.7.1 LACTULOSE HYDROGEN BREATH TEST (HBT) 238
5.7.2 13CO2 IN BREATH OR STOOL AFTER ADMINISTRATION OF 13C GLYCOCHOLATE AS MARKER FOR SBBO 238
5.7.3 INTESTINAL ASPIRATES FOR BACTERIAL CONCENTRATIONS 239

5.8 MARKERS OF NONSPECIFIC INTESTINAL INJURY 239

5.9 MARKERS OF EXTRA-SMALL INTESTINAL FUNCTION 262

5.10 RELATIONSHIPS BETWEEN MARKERS OF EED, INCLUDING HISTOPATHOLOGY 270

5.11 RELATIONSHIPS BETWEEN EED BIOMARKERS AND GROWTH OR OTHER OUTCOMES OF INTEREST 272

CHAPTER 6. CONCLUSIONS AND FUTURE IMPLICATIONS 277
LIST OF CATEGORY-SPECIFIC EVIDENCE TABLES

EVIDENCE TABLE 1. MARKERS OF ABSORPTION ... 70
EVIDENCE TABLE 2. MARKERS OF PERMEABILITY .. 91
EVIDENCE TABLE 3. MARKERS OF DIGESTION ... 158
EVIDENCE TABLE 4. MARKERS OF INTESTINAL INFLAMMATION AND INTESTINAL IMMUNE ACTIVATION ... 179
EVIDENCE TABLE 5. MARKERS OF SYSTEMIC INFLAMMATION AND SYSTEMIC IMMUNE ACTIVATION ... 209
EVIDENCE TABLE 6. MARKERS OF MICROBIAL DRIVERS .. 233
EVIDENCE TABLE 7. MARKERS OF NON-SPECIFIC INTESTINAL INJURY 241
EVIDENCE TABLE 8. MARKERS OF EXTRA-SMALL INTESTINAL FUNCTION 264

LIST OF APPENDICES

APPENDIX 1. SEARCH TERMS FOR EED ARTICLES OF INTEREST 288
APPENDIX 2. REFERENCES USED TO TEST SYSTEMATIC SEARCH 303
APPENDIX 3. SUMMARY OF SAMPLLED REFERENCES PUBLISHED BETWEEN 1990-1999 ... 305
APPENDIX 4. SAMPLE REDCAP TEMPLATE ... 307
APPENDIX 5. HIGHLY CONSIDERED BUT EXCLUDED REFERENCES 308
APPENDIX 6. REVIEW ARTICLES WITH INFORMATION OF RELEVANCE TO THE SYSTEMATIC REVIEW ... 310
APPENDIX 7. EVIDENCE TABLE OF ALL STUDIES INCLUDED IN THE REVIEW 311
Acknowledgments

We would like to thank the Gates Foundation for their generous support of this project. We also thank Foundation program officers Dr. Debbie Burgess, Dr. Thomas Brewer, and Dr. Yiwu He, for sharing their valuable ideas.

We would also like to thank members of our research staff: Xeno Acharya, Nicole Basta, Kathryn Bergh, Jennifer Berthiaume, Tonya Cooksey, Teja Dyamenahalli, Diane Friedman, Marta Haftek, Christopher Kemp, Alastair Matheson, Jean McDougall, Majdi Osman, Anna Talman, Anjali Truitt, and Ngoc Wasson; as well as the members of our administrative staff: Cindy Bohse, Adrienne Genise, Alison Griffith, Ariana Jasarevic, Maida Redzic, and Jeanette Smith. We appreciate your dedication to the project.

We thank Tomas Allen of the World Health Organization for assistance in building the systematic search strategy. The project also benefitted from the database expertise of J. Kevan Essmyer of REDCap and Harry Stevens.

Many thanks to the Washington University librarians Cathy Sarli and Amy Suiter, who facilitated the e-publication process.

We would like to extend our thanks to those not named here who contributed to the project in various ways.
Abbreviations

ΔHAZ delta height-for-age Z-(score)
ΔWAZ delta weight-for-age Z-(score)
ΔWHZ delta weight-for-height Z-(score)
AGP alpha-1-acid glycoprotein
ANOVA analysis of variance
CF cystic fibrosis
CI confidence interval
CMA cow's milk protein allergy
CONSORT Consolidated Standards of Reporting Trials
CRP C-reactive protein
ED enteric dysfunction
EE environmental enteropathy
EED environmental enteric dysfunction
ESR erythrocyte sedimentation rate
ETEC enterotoxigenic \textit{E. coli}
FA fatty acid
GAG glycosaminoglycan
GCA glycocholate
HAZ height-for-age Z-(score)
HBT hydrogen breath test
HCT hematocrit
HGB hemoglobin
HLA-DR human leukocyte antigen DR-1
HPLC high-performance liquid chromatography
HSPG heparan sulfate proteoglycan
IEL intraepithelial lymphocytes
IFN-\gamma interferon gamma
IL interleukin
IBD inflammatory bowel disease
L:Cr lactose:creatinine ratio
L:M lactulose:mannitol ratio
L:R lactulose:rhamnose ratio
Synopsis

Purpose of Project: Gut dysfunction in children in resource-poor environments is well documented. The precipitant of this dysfunction is unknown. However, infections, nonspecific inflammation, malabsorption, and leakiness of mucosa are frequently incriminated as processes that underlie this dysfunction. Major consequences of this dysfunction have been postulated, the most critical of which is poor growth, especially stunting. The study of gut dysfunction in children would have as its ultimate goal the prevention of growth consequences. In this project, we have collated literature published between 2000 and 2010, with the purpose of guiding near-term research into the causes and pathophysiology of enteric dysfunction. In particular, we have attempted to identify biomarkers with which to detect this dysfunction.

Rationale for seeking biomarkers: Theoretically, tissue from the small bowel, the organ of greatest interest, could shed light on the underlying pathophysiology. However, analyzing this tissue poses challenges. These challenges include the practicalities of gaining access to this organ, incomplete confidence regarding sampling strategies to pursue, risk of sampling error, and the yet-to-be-determined value of the information that would be obtained. Thus, the more readily obtained and potentially more informative biomarkers found in stool or blood could feasibly advance the field.

Methods: A systematic literature review was performed by trained research analysts, two physicians, and two epidemiologists. Materials were collated in a master, highly inclusive database of publications relevant to environmental enteric dysfunction (EED) in children in resource-poor settings. This process was undertaken for two reasons. First, because search terms sensitive and specific for “enteropathy” and “enteric dysfunction” are not well indexed in literature databases (including PubMed), we had to create a resource with which to find data related to biomarkers. Second, the project was built to address multiple and different inquiries
related to the topic. Development of an internal library was the most efficient preparation for multiple interrogations, including those seeking to identify publications relevant to the following systematic review question, which is a main focus of this book:

What biomarkers or diagnostic tests have been used to identify, or have been shown to be associated with, mucosal dysfunction of the small intestine or host inflammation in children less than five years of age from developing-country settings?

Findings: 67,903 unique references were obtained from PubMed, Embase, Global Health and World Health Organization (WHO) Regional Libraries (1980-2010). 9,675 of these publications met EED Library inclusion criteria and 374 between 2000 and 2010 were potentially relevant to the systematic review question. Of these, 77 met the review inclusion criteria.

Each relevant publication was thoroughly and systematically reviewed and summarized in evidence table format. Biomarkers were categorized as being relevant to one of eight processes that could underlie, be associated with, or reflect enteric function/dysfunction in children: (1) absorption; (2) porosity/permeability; (3) digestion; (4) intestinal inflammation and/or intestinal immune activation; (5) systemic inflammation and/or systemic immune activation; (6) microbial drivers; (7) nonspecific intestinal injury, and (8) non-small intestinal organ function. A meta-analysis of pooled data from these publications was not possible because of the heterogeneity of study populations and methods, non-standardized information portrayal, scant attempts to correlate biomarkers to intestinal pathology (and where this was attempted, correlation was lacking), small population sizes, and limited relation of biomarkers with outcomes of interest, i.e., stunting. However, the data do strongly suggest the presence of broad categories of intestinal dysfunction, and imply a high prevalence of poorly functioning guts, in children in resource-poor environments. It is quite likely that a panel of biomarkers reflecting multiple physiologic derangements might predict intestinal injury.
Conclusions: Our novel search and EED construction methodology effectively identified a diffusely defined and poorly indexed (in the literature)—but nevertheless important—public health problem. Our EED Library format permits efficient information retrieval for multiple EED-related inquiries and the methodology can be applied to other health issues that face similar definition and search/retrieval issues.

Using this comprehensive data collation and extraction system, we found no evidence of a globally applicable, simple, single-purpose biomarker that reliably correlates with intestinal dysfunction in children or to growth faltering mediated by such a lesion. The studies that are available were often not performed with this goal in mind. However, there is a large body of evidence that enteric dysfunction in children is highly prevalent in resource-poor settings, and that this dysfunction could be an important, and potentially remediable, cause of stunting. Therefore, we urge that future research on biomarkers in human populations be pursued. We also urge that future work adheres to the following principles:

1. Assess function-related candidate biomarkers.
2. Relate the biomarker data to consequential outcomes.
3. Rigorously describe the study design and methodology underlying the data produced.
4. Provide robust data repositories. Employ best practices publication guidelines, such as those endorsed by the Consolidated Standards of Reporting Trials (CONSORT) system including the Standards for Reporting of Diagnostic Accuracy (STARD) Initiative.
5. Consider indices of enteric dysfunction, incorporating “stacking” multiple biomarkers representing diverse pathophysiologic processes, potentially also including non-laboratory test derived clinical characteristics.
6. Explore invasive, field-adaptable, host assessments (e.g., saliva, transcutaneous), even if technology needs to be developed or adapted.