Linkage findings on chromosome 2 suggest a gene predisposing to multiple behavioral undercontrol phenotypes

D. M. Dick
Washington University School of Medicine in St. Louis

G. Dunn
Washington University School of Medicine in St. Louis

A. Goate
Washington University School of Medicine in St. Louis

T. Foroud
Indiana University School of Medicine

V. Hesselbrock
University of Connecticut School of Medicine

See next page for additional authors

Follow this and additional works at: https://digitalcommons.wustl.edu/guzeposter2005

Part of the Medicine and Health Sciences Commons

Recommended Citation

This Poster is brought to you for free and open access by the 2005: Alcoholism and Comorbidity at Digital Commons@Becker. It has been accepted for inclusion in Posters by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Authors
D. M. Dick, G. Dunn, A. Goate, T. Foroud, V. Hesselbrock, L. Bierut, J. Rice, J. Wang, A. Hinrichs, S.
Bertelsen, P. Madden, A. Agrawal, M. Pergadia, S. Saccone, and A. Heath

This poster is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/guzeposter2005/5
ABSTRACT

Evidence from independent studies is converging to suggest that a region on chromosome 2p contains a gene (or genes) that predispose to multiple behavioral phenotypes related to behavioral undercontrol. Here we present data from the Collaborative Study of the Genetics of Alcoholism (COGA) and the Nicotine Addiction Genetics Project (NAG) demonstrating linkage to chromosome 2 with multiple, related phenotypes.

INTRODUCTION

Considerable overlap is observed between many psychiatric disorders. Twin studies have suggested that some of this overlap may be due to common genes that influence multiple phenotypes (also called pleiotropy). In particular, several studies have demonstrated that disorders characterized by behavioral undercontrol may be related through shared genetic vulnerabilities. Alcohol use and smoking (Hopfer et al., 2001), conduct disorder, and other drug use (Kendler et al., 2003) have all been demonstrated to have shared genetic liability.

SAMPLES

COGA. The Collaborative Study on the Genetics of Alcoholism (COGA, PI Henri Begleiter, MD) is a multi-site collaborative project designed to identify genes that contribute to the development of alcoholism and related disorders. Densely affected alcoholic families were ascertained from inpatient and outpatient treatment centers at several sites across the United States. Genome-wide linkage analyses have been conducted on a sample of 2273 individuals from 262 alcoholic families. All COGA subjects were interviewed using the Semi-Structured Assessment for the Genetics of Alcoholism (SSAGA).

NAG. The Nicotine Addiction Genetics Project (NAG, PI Pam Madden, PhD) was initiated with the objective of identifying genes involved in nicotine addiction and related phenotypes. Nuclear families containing at least one pair of heavy smoking siblings have been ascertained from Australia and Finland. Only data from Australian families are presented here. Linkage analyses on chromosome 2 are based on a sample of 1501 individuals from 289 families. NAG participants were interviewed using a semi-structured polydiagnostic interview developed from the SSAGA.

ANALYTIC METHODS

Linkage analyses were carried out on the binary COGA phenotypes using the program ASPAREX. All possible pairs were analyzed using the SIB JBD routine, which uses lod sharing estimates from pairs with genotyped parents. Binary phenotypes in the NAG project were analyzed using the program Merlin. Quantitative and semi-quantitative traits in both studies were analyzed using the Merlin regression routine.

DISCUSSION

Multiple phenotypes related to behavioral undercontrol evidence linkage to chromosome 2p, across independent datasets. In the COGA project, we find linkage with the phenotypes alcohol dependence, conduct disorder, suicide attempts, and quantitative indices of multiple substance use. In the NAG project, we find linkage with several smoking-related phenotypes to a similar region on chromosome 2. The marker yielding the maximum lod score in the NAG project is approximately 10 cM from the marker yielding the maximal lod score in the COGA sample. These peaks are sufficiently close as to be beyond the resolution of linkage analyses (Roberts et al., 1999), and provide converging evidence of a gene in the region that influences multiple substance use phenotypes and related behavioral problems. Several candidate genes are located in this region, including G-protein coupled receptors and zinc finger proteins. Next, we plan to initiate association studies of candidate genes in the region.

ACKNOWLEDGMENTS

The Collaborative Study on the Genetics of Alcoholism (COGA) (Principal Investigator: H. Begleiter; Co-Principal Investigators: L. Bierut, H. Edenberg, V. Hesselbrock, Bernice Porjesz) includes nine different centers where data collection, analysis, and storage take place. The nine sites and Principal Investigators and Co-Investigators are: University of Connecticut (V. Hesselbrock; Indiana University (H. Edenberg, J. Nurnberger Jr., P.M. Conelly, T. Forsd); University of Iowa (R. Crowe, S. Kuperman); SUNY HSCB (B. Porjesz, H. Begleiter); Washington University in St. Louis (L. Bierut, J. Rice, A. Goate); University of California at San Diego (M. Schuckit); Howard University (R. Taylor); Rutgers University (J. Tischfield); Southwest Foundation (L. Almasy). Lisa Neuhold serves as the NIAAA Staff Collaborator. This national collaborative study is supported by the NIH Grant U10AA040403 from the National Institute on Alcohol Abuse and Alcoholism (NIAAA). In memory of Theodore Reich, M.D., Co-Principal Investigator of COGA since its inception and one of the founders of psychiatric genetics, we acknowledge his immeasurable and fundamental scientific contributions to COGA and the field.

The Nicotine Addiction Genetics (NAG) Project is funded by NIDA and NCI (grant DA12854). Senior Investigators include Pamela Madden, Ph.D., John Rice, Ph.D., Andrew Heath, D.Phil., Alison Goate, D. Phil., Richard Todd, Ph.D., M.D., Alexandre Todorov, Ph.D. (Washington University School of Medicine, USA); Nick Martin, Ph.D. (Queensland Institute of Medical Research, Australia); Jaakko Kaprio, M.D., Ph.D., Leena Peltonen, M.D., Ph.D., Markku Koskenvuo, M.D., Ph.D. (University of Helsinki, Finland).