3-1-2010

Risk factors for endometritis after low transverse cesarean delivery

Margaret A. Olsen
Washington University School of Medicine in St. Louis

Anne M. Butler
Washington University School of Medicine in St. Louis

Denise M. Willers
Washington University School of Medicine in St. Louis

Gilad A. Gross
Washington University School of Medicine in St. Louis

Preetishma Devkota
Washington University School of Medicine in St. Louis

See next page for additional authors

Follow this and additional works at: https://digitalcommons.wustl.edu/id_facpubs

Part of the Medicine and Health Sciences Commons

Recommended Citation
Olsen, Margaret A.; Butler, Anne M.; Willers, Denise M.; Gross, Gilad A.; Devkota, Preetishma; and Fraser, Victoria J., "Risk factors for endometritis after low transverse cesarean delivery" (2010). Infectious Diseases Faculty Publications. Paper 8.
https://digitalcommons.wustl.edu/id_facpubs/8

This Article is brought to you for free and open access by the Infectious Diseases at Digital Commons@Becker. It has been accepted for inclusion in Infectious Diseases Faculty Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Risk Factors for Endometritis after Low Transverse Cesarean Delivery

Margaret A. Olsen, PhD, MPH; Anne M. Butler, MS; Denise M. Willers, MD; Gilad A. Gross, MD; Preetishma Devkota, MBBS, MPH; Victoria J. Fraser, MD

OBJECTIVE. To determine independent risk factors for endometritis after low transverse cesarean delivery.

STUDY DESIGN. We performed a retrospective case-control study during the period from July 1999 through June 2001 in a large tertiary care academic hospital. Endometritis was defined as fever beginning more than 24 hours or continuing for at least 24 hours after delivery plus fundal tenderness in the absence of other causes for fever. Independent risk factors for endometritis were determined by means of multivariable logistic regression. A fractional polynomial method was used to examine risk of endometritis associated with the continuous variable, duration of rupture of membranes.

RESULTS. Endometritis was identified in 124 (7.7%) of 1,605 women within 30 days after low transverse cesarean delivery. Independent risk factors for endometritis included younger age (odds ratio [OR], 0.93 [95% confidence interval [CI], 0.90–0.97]) and anemia or perioperative blood transfusion (OR, 2.18 [CI, 1.30–3.68]). Risk of endometritis was marginally associated with a proxy for low socioeconomic status, lack of private health insurance (OR, 1.72 [CI, 0.99–3.00]); with amniotomy (OR, 1.69 [CI, 0.97–2.95]); and with longer duration of rupture of membranes.

CONCLUSION. Risk of endometritis was independently associated with younger age and anemia and was marginally associated with lack of private health insurance and amniotomy. The odds of endometritis increased approximately 1.7-fold within 1 hour after rupture of membranes, but increased duration of rupture was only marginally associated with increased risk. Knowledge of these risk factors can guide selective use of prophylactic antibiotics during labor and heighten awareness of the risk in subgroups at highest risk of infection.

Infect Control Hosp Epidemiol 2010; 31:69-77

The rate of cesarean delivery has risen steadily in the United States during the past decade, exceeding 30% of deliveries in 2005.1 Endometritis is the most common maternal infectious complication of childbirth, occurring more commonly after cesarean delivery than after vaginal delivery.2 In a Cochrane review, the mean incidence of endometritis was 7% after elective cesarean delivery and 30% after nonelective or emergency cesarean delivery.3

A variety of independent risk factors for endometritis after cesarean delivery have been identified in other studies, including no prior cesarean delivery,4 trial of labor,5 rupture of membranes lasting more than 24 hours,6 preterm7 or post-term gestation,7 low infant Apgar scores,7 younger maternal age,8 antepartum infections,9 preeclampsia, presence of meconium in the amniotic fluid,9 amnioinfusion,10 postpartum anemia,10,8 large number of vaginal examinations,10 presence of internal monitors,8,10 and manual removal of placenta.11 Routine administration of intravenous cephalosporin plus azithromycin for antibiotic prophylaxis at the time of cord clamping has been temporally associated with significantly lower risk of endometritis compared with use of prophylactic cephalosporin alone.5,12 The results of the study by Tita et al5 are difficult to interpret, however, because an infection control intervention to promote aseptic technique was conducted at the same time as addition of the azithromycin prophylaxis. In a randomized placebo-controlled trial, administration of prophylactic cefazolin prior to skin incision was associated with significantly lower incidence of endometritis than was administration of cefazolin at the time of cord clamping.13 Preoperative vaginal antisepsis with povidone-iodine was also associated with significantly decreased risk of endometritis in one randomized controlled study8 but not in another.14 Screening of all pregnant women for group B streptococcal infection or colonization and treatment of colonization was associated with significantly decreased risk of endometritis, compared with selective screening and treatment of only women with risk factors for colonization.15

The association of duration of labor and duration of rupture of membranes with the risk of endometritis is difficult to determine, as a result of the variety of methods used to
TABLE 1. Potential Risk Factors for Endometritis after Low Transverse Cesarean Delivery for Which Data Were Collected from Medical Records

<table>
<thead>
<tr>
<th>Patient characteristics</th>
<th>Obstetrics-related risk factors</th>
<th>Surgical risk factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>No. of previous pregnancies</td>
<td>American Society of Anesthesiologists score</td>
</tr>
<tr>
<td>Race</td>
<td>No. of previous births</td>
<td>Urgency of operationb</td>
</tr>
<tr>
<td>Marital status</td>
<td>No. of abortions</td>
<td>Antibiotic prophylaxis agent and timing</td>
</tr>
<tr>
<td>Type of medical insurance (private, Medicaid, Medicare, or none)</td>
<td>No. of previous cesarean deliveries</td>
<td>Indication for cesarean delivery</td>
</tr>
<tr>
<td>Body mass index at hospital admission</td>
<td>No. of vaginal examinations before incision</td>
<td>Type of obstetric service (university teaching or private)</td>
</tr>
<tr>
<td>Alcohol use during pregnancy</td>
<td>No. of prenatal care visits</td>
<td>Duration of time between hospital admission and surgery</td>
</tr>
<tr>
<td>Tobacco use during pregnancy</td>
<td>Incompetent cervix</td>
<td>Type of anesthesia</td>
</tr>
<tr>
<td>Street drug use during pregnancy</td>
<td>Weight gain during pregnancy</td>
<td>Type of skin and uterine incision</td>
</tr>
<tr>
<td>Diabetes mellitus or gestational diabetes</td>
<td>Vaginal discharge present at admission to the hospital</td>
<td>Additional surgical procedure</td>
</tr>
<tr>
<td>Systemic lupus erythematosus</td>
<td>Preeclampsia</td>
<td>Exteriorized uterus</td>
</tr>
<tr>
<td>Group B Streptococcus colonization</td>
<td>Clinical and pathologic chorioamnionitis</td>
<td>Manual removal of placenta</td>
</tr>
<tr>
<td>Sexually transmitted diseases during pregnancy</td>
<td>Receipt of preoperative oxygen</td>
<td>Duration of surgery</td>
</tr>
<tr>
<td>Use of steroids during pregnancy</td>
<td>Vaginal bleeding before surgery</td>
<td>Use of surgical drains</td>
</tr>
<tr>
<td></td>
<td>Malpresentation</td>
<td>Use of staples for skin closure</td>
</tr>
<tr>
<td></td>
<td>Spontaneous rupture of membranes</td>
<td>Estimated volume of blood loss during surgery</td>
</tr>
<tr>
<td></td>
<td>Amniotomy</td>
<td>Blood transfusion after surgical incision</td>
</tr>
<tr>
<td></td>
<td>Duration of ruptured membranes</td>
<td>Development of a subcutaneous hematoma</td>
</tr>
<tr>
<td></td>
<td>Duration of labor</td>
<td>Minimum hemoglobin level ≤24 hours before incision</td>
</tr>
<tr>
<td></td>
<td>Use of internal fetal monitors</td>
<td>Minimum hematocrit level ≤24 hours before incision</td>
</tr>
<tr>
<td></td>
<td>Use of Foley bulb for cervical ripening</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amnioinfusion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Presence of meconium in amniotic fluid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minimum hemoglobin level ≤48 hours after incision</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minimum hematocrit level ≤24 hours before incision</td>
<td></td>
</tr>
<tr>
<td>Surgical risk factors</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
categorize duration and the primarily univariate statistical methods used in the older literature. More recently, one study showed that rupture of membranes of greater than 16 hours’ duration was independently associated with increased risk of endometritis after all deliveries in which premature rupture of membranes occurred. In that study, duration of ruptured membranes was categorized in 2-hour intervals and compared with a reference duration of less than 8 hours, and the risk of endometritis was not specifically reported for patients who underwent cesarean delivery. Seaward et al reported that duration of labor of greater than 3 hours and cesarean delivery independently increased the risk of postpartum fever.

We performed a case-control study of endometritis after low transverse cesarean delivery (LTCD) to determine clinically relevant independent risk factors associated with increased risk of endometritis and to determine the effect of increased duration of rupture of membranes, increased duration of labor, and number of vaginal examinations on the risk of endometritis. This knowledge is essential to develop targeted strategies to reduce the incidence of infection after cesarean delivery.

METHODS

We performed a retrospective nested case-control study at Barnes-Jewish Hospital, a 1,250-bed academic tertiary care hospital. Approval for this study was obtained from the Washington University Human Research Protection Office. Women who underwent LTCD during the period from July 1, 1999, through June 30, 2001, were identified on the basis of International Classification of Diseases, 9th Edition, Clinical Modification (ICD-9-CM) procedure code 74.1. We focused on LTCD because low transverse uterine incisions are the preferred type of incision, used for the vast majority of cesarean deliveries performed in the United States.

Demographic, pharmacy, and laboratory data were obtained from the Barnes-Jewish Hospital Medical Informatics database. Data on potential risk factors were collected from the medical records of each patient’s surgical hospitalization, including all notes by physicians, nurses, and/or operative staff concerning the hospitalization (Table 1).

Potential cases of endometritis were identified on the basis of the presence in the medical record of ICD-9-CM diagnosis codes for endometritis (670.02, 670.04) during the original surgical hospitalization or during an inpatient or emergency department rehospitalization within 30 days of surgery and/or the receipt of antibiotics for a prolonged duration beyond a prophylactic course after surgery, as described elsewhere. Endometritis was defined as fever (temperature of 38°C or higher) beginning more than 24 hours or continuing at least 24 hours after delivery plus fundal tenderness, with no other recognized cause for fever. Control patients were selected by means of a random-number generator from among the patients who underwent LTCD during the study period and did not receive a diagnosis of either endometritis or surgical site infection. The control patients have been described elsewhere in a study of risk factors for surgical site infection after LTCD. Medical records were reviewed for all case patients and control patients to determine whether they met the endometritis case definition within 30 days after LTCD.

Statistical Analysis

Univariate and multivariable logistic regression models were used to identify independent risk factors for endometritis. Continuous variables were compared by means of the Mann-Whitney U test. A multivariable logistic regression model was performed by means of backward selection, including all variables with \(P \) less than .15 in the univariate analysis or a priori clinical importance. All continuous variables with \(P \) less than .15 were evaluated by means of a fractional polynomial approach to preserve the continuous nature of covariates suspected to have a nonlinear relationship with endometritis.

To determine the final multivariable model, we used the SAS macro of Meier-Hirmer to determine the appropriate transformation of each continuous covariate. Since covariate values of zero preclude logarithm and negative power transformations, continuous covariates with values of 0 were transformed by adding 1. Odds ratios are presented for relevant exposure categories, by using the mean of each category as the reference point and 95% confidence intervals calculated as described by Royston and Sauerbrei. After identification of the main effects, clinically relevant interactions between dichotomous variables were tested, with \(P \) less than .05 the criterion for inclusion in the final model.
TABLE 2. Univariate Comparisons of Continuous Risk Factors in Case Patients with Endometritis and Control Patients without Endometritis after Low Transverse Cesarean Delivery

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>Median value (range)</th>
<th>Case patients (n = 124)</th>
<th>Control patients (n = 310)</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographic variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, years</td>
<td>21.2 (13.4–44.2)</td>
<td>26.5 (14.5–42.9)</td>
<td><.001</td>
<td></td>
</tr>
<tr>
<td>Body mass indexb</td>
<td>33.1 (21.1–66.1)</td>
<td>31.8 (16.7–64.8)</td>
<td>.138</td>
<td></td>
</tr>
<tr>
<td>Obstetrics-related variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of prenatal visitsc</td>
<td>10 (0–30)</td>
<td>10 (0–50)</td>
<td>.356</td>
<td></td>
</tr>
<tr>
<td>No. of vaginal examinations</td>
<td>4 (0–14)</td>
<td>1 (0–14)</td>
<td><.001</td>
<td></td>
</tr>
<tr>
<td>Duration of labor, minutesd</td>
<td>672 (24–2,204)</td>
<td>540 (27–3,841)</td>
<td>.168</td>
<td></td>
</tr>
<tr>
<td>Duration of rupture of membranes, minutesd</td>
<td>695 (22–131,118)</td>
<td>554 (8–68,610)</td>
<td>.309</td>
<td></td>
</tr>
<tr>
<td>Duration of operation, minutesf</td>
<td>52 (25–146)</td>
<td>55 (17–168)</td>
<td>.949</td>
<td></td>
</tr>
<tr>
<td>Gestational age, weeksg</td>
<td>39.3 (26.4–42.6)</td>
<td>38.9 (25.7–43.3)</td>
<td>.056</td>
<td></td>
</tr>
<tr>
<td>Preoperative variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemoglobin level, g/dLg</td>
<td>11.3 (4.3–14.2)</td>
<td>11.3 (8.0–15.2)</td>
<td>.223</td>
<td></td>
</tr>
<tr>
<td>Hematocrit level, g/dLg</td>
<td>33.3 (12.0–41.5)</td>
<td>33.4 (23.3–46.10)</td>
<td>.546</td>
<td></td>
</tr>
<tr>
<td>Postoperative variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimated blood loss, mL</td>
<td>800 (300–3,000)</td>
<td>800 (300–4,000)</td>
<td>.303</td>
<td></td>
</tr>
<tr>
<td>Hemoglobin level, g/dLh</td>
<td>8.8 (3.4–12.8)</td>
<td>9.7 (4.4–12.8)</td>
<td><.001</td>
<td></td>
</tr>
<tr>
<td>Hematocrit level, g/dLh</td>
<td>26.1 (9.5–38.0)</td>
<td>28.3 (14.0–38.0)</td>
<td><.001</td>
<td></td>
</tr>
</tbody>
</table>

*Comparison with Mann-Whitney U test.
b Data missing for 1 patient.
c Data missing for 10 patients. Number of prenatal visits counted from the prenatal record, or if missing, number of prenatal visits recorded on the birth certificate.
d Excluding 176 patients without labor.
e Excluding 170 patients without rupture of membranes.
f Data missing for 72 patients.
g Data missing for 47 patients.
h Data missing for 5 patients.

for inclusion in the model. Model fit was assessed by means of the C statistic. All tests were 2-tailed, and P less than .05 was considered to indicate a significant difference. Analyses were performed with SAS, version 9.1 (SAS Institute), and SPSS, version 14.0 (SPSS).

RESULTS

At Barnes-Jewish Hospital, 1,759 patients underwent cesarean delivery during the period from July 1, 1999, through June 30, 2001. Among the 1,605 patients (91.2%) with low transverse uterine incision, 124 (7.7%) of the 1,605 were identified as having endometritis within 30 days after operation. We randomly selected 310 control patients without endometritis or surgical site infection for comparison. One hundred seven (24.7%) of 434 women underwent elective cesarean deliveries, 254 (58.5%) women underwent urgent cesarean deliveries, and 73 (16.8%) women underwent emergent cesarean deliveries. The majority of patients (310 [71.4%]) underwent a primary cesarean delivery.

The univariate results of risk factors for endometritis are presented in Tables 2 and 3. Women with endometritis were more likely to be younger, nonwhite, or unmarried and to have Medicare, Medicaid, or no health insurance (ie, lacked private health insurance). Younger age was also associated with fewer prenatal visits \((P = .005, \text{ 1-way ANOVA}) \), as was lack of private health insurance \((P < .001, \text{ 1-way ANOVA}) \). Younger age was also associated with slightly higher gestational age at delivery \((P = .015, \text{ Spearman } \rho \text{ test}) \). Patients with Neisseria gonorrhoeae or Chlamydia infection during pregnancy and with higher American Society of Anesthesiologists physical status classification were also more likely to develop endometritis. For the mother, obstetrics-related factors associated with an increased risk of endometritis included preeclampsia, clinical chorioamnionitis, labor (spontaneous or induced), amnioinfusion (transcervical infusion of saline into the uterus to dilute meconium-stained fluid or relieve cord compression due to low amniotic fluid volume), use of internal fetal monitors, increased number of vaginal examinations, and spontaneous or artificial rupture of membranes (amniotomy). Surgical factors associated with a decreased risk of endometritis included elective surgery, manual removal of the placenta, and bilateral tubal ligation. Manual removal of the placenta (compared with cord traction) was significantly associated with the type of attending physician; physicians in private practice were significantly less likely to remove the placenta manually than were university faculty members \((P < .001, \chi^2 \text{ test}) \).

There were no statistically significant differences in pre-
operative hematocrit values, and the other variables (duration of rupture, membrane rupture, and the other variables) were adjusted for, the odds of endometritis increased approximately 1.7-fold within 1 hour after rupture of membranes. In our study, the odds of endometritis increased approximately 1.7-fold within 1 hour after rupture of membranes and remained at that level with increasing duration of rupture. Thus, our results are more consistent with increased risk of endometritis associated with rupture per se, regardless of the duration.

Duration of labor and occurrence of labor (yes or no) were not associated with increased risk of endometritis after controlling for duration of rupture of membranes. Rupture of membranes allows for ascending spread of bacteria into the previously sterile amniotic fluid, and thus this variable is more biologically plausible in the model than labor per se. Internal monitors was also excluded from the multivariate model after controlling for duration of ruptured membranes, although it was associated with more than a 3-fold higher risk of endometritis in univariate analysis.

Severe anemia or transfusion of packed red blood cells was...
Table 3. Univariate Comparisons of Categorical Risk Factors in Case Patients with Endometritis and Control Patients without Endometritis after Low Transverse Cesarean Delivery

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>Case patients (n = 124, no. (%))</th>
<th>Control patients (n = 310, no. (%))</th>
<th>OR (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographics and comorbidities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonwhite race</td>
<td>104 (83.9)</td>
<td>210 (67.7)</td>
<td>2.48 (1.45–4.23)</td>
<td>.001</td>
</tr>
<tr>
<td>Nonmarried status (single, divorced, or widowed)</td>
<td>105 (84.7)</td>
<td>199 (64.2)</td>
<td>3.08 (1.80–5.30)</td>
<td><.001</td>
</tr>
<tr>
<td>Nonprivate health insurance (Medicaid, Medicare, Public Aid, or none)</td>
<td>98 (79.0)</td>
<td>185 (59.7)</td>
<td>2.55 (1.56–4.15)</td>
<td><.001</td>
</tr>
<tr>
<td>Gonorrhea or Chlamydia infection during pregnancy</td>
<td>19 (15.3)</td>
<td>24 (7.7)</td>
<td>2.16 (1.14–4.10)</td>
<td>.019</td>
</tr>
<tr>
<td>Trichomonas infection during pregnancy</td>
<td>16 (12.9)</td>
<td>27 (8.7)</td>
<td>1.55 (0.81–3.00)</td>
<td>.189</td>
</tr>
<tr>
<td>Group B Streptococcus colonization</td>
<td>23 (18.5)</td>
<td>46 (14.8)</td>
<td>1.31 (0.75–2.27)</td>
<td>.340</td>
</tr>
<tr>
<td>Steroid use</td>
<td>15 (12.1)</td>
<td>55 (17.7)</td>
<td>0.64 (0.35–1.18)</td>
<td>.151</td>
</tr>
<tr>
<td>Tobacco use</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Previous use, quit during pregnancy</td>
<td>12 (9.7)</td>
<td>17 (5.5)</td>
<td>1.73 (0.80–3.76)</td>
<td>.165</td>
</tr>
<tr>
<td>Current use</td>
<td>15 (12.1)</td>
<td>55 (17.7)</td>
<td>0.67 (0.36–1.24)</td>
<td>.203</td>
</tr>
<tr>
<td>ASA score class 3 or 4</td>
<td>41 (33.6)</td>
<td>74 (23.9)</td>
<td>1.61 (1.02–2.54)</td>
<td>.042</td>
</tr>
<tr>
<td>Obstetrics-related variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Previous abortion</td>
<td>40 (32.3)</td>
<td>121 (39.0)</td>
<td>0.74 (0.48–1.16)</td>
<td>.188</td>
</tr>
<tr>
<td>No. of previous cesarean deliveries</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>102 (82.3)</td>
<td>208 (67.1)</td>
<td>Reference</td>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td>17 (13.7)</td>
<td>68 (21.9)</td>
<td>0.51 (0.29–0.91)</td>
<td>.023</td>
</tr>
<tr>
<td>≥ 2</td>
<td>5 (4.0)</td>
<td>34 (11.0)</td>
<td>0.30 (0.11–0.79)</td>
<td>.015</td>
</tr>
<tr>
<td>Preeclampsia</td>
<td>36 (29.0)</td>
<td>53 (17.1)</td>
<td>1.98 (1.22–3.23)</td>
<td>.006</td>
</tr>
<tr>
<td>Premature rupture of membranes</td>
<td>44 (35.5)</td>
<td>62 (20.0)</td>
<td>2.20 (1.39–3.49)</td>
<td>.001</td>
</tr>
<tr>
<td>Labor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>26 (21.0)</td>
<td>150 (48.4)</td>
<td>Reference</td>
<td>...</td>
</tr>
<tr>
<td>Spontaneous</td>
<td>55 (44.4)</td>
<td>99 (31.9)</td>
<td>3.21 (1.89–5.45)</td>
<td><.001</td>
</tr>
<tr>
<td>Induced</td>
<td>43 (34.7)</td>
<td>61 (19.7)</td>
<td>4.07 (2.30–7.20)</td>
<td><.001</td>
</tr>
<tr>
<td>Rupture of membranes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>23 (18.5)</td>
<td>147 (47.4)</td>
<td>Reference</td>
<td>...</td>
</tr>
<tr>
<td>Spontaneous</td>
<td>41 (33.1)</td>
<td>89 (28.7)</td>
<td>2.94 (1.66–5.23)</td>
<td><.001</td>
</tr>
<tr>
<td>Amniotomy</td>
<td>60 (48.4)</td>
<td>74 (23.9)</td>
<td>5.18 (2.97–9.04)</td>
<td><.001</td>
</tr>
<tr>
<td>Use of Foley bulb for cervical ripening</td>
<td>9 (7.3)</td>
<td>10 (3.2)</td>
<td>2.35 (0.93–5.93)</td>
<td>.071</td>
</tr>
<tr>
<td>Use of internal fetal monitors</td>
<td>86 (69.4)</td>
<td>118 (38.1)</td>
<td>3.68 (2.36–5.75)</td>
<td><.001</td>
</tr>
<tr>
<td>Amnioinfusion</td>
<td>46 (37.1)</td>
<td>59 (19.0)</td>
<td>2.51 (1.58–3.98)</td>
<td><.001</td>
</tr>
<tr>
<td>Presence of meconium in amniotic fluid</td>
<td>44 (35.5)</td>
<td>82 (26.5)</td>
<td>1.53 (0.98–2.39)</td>
<td>.062</td>
</tr>
<tr>
<td>Chorioamnionitis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>74 (59.7)</td>
<td>228 (73.5)</td>
<td>Reference</td>
<td>...</td>
</tr>
<tr>
<td>Subclinical chorioamnionitis (pathology only)</td>
<td>14 (11.3)</td>
<td>40 (12.9)</td>
<td>1.08 (0.56–2.09)</td>
<td>.823</td>
</tr>
<tr>
<td>Clinical chorioamnionitis</td>
<td>36 (29.0)</td>
<td>42 (13.5)</td>
<td>2.64 (1.58–4.43)</td>
<td><.001</td>
</tr>
<tr>
<td>Surgical variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective cesarean delivery</td>
<td>12 (9.7)</td>
<td>95 (30.6)</td>
<td>0.24 (0.13–0.46)</td>
<td><.001</td>
</tr>
<tr>
<td>Bilateral tubal ligation</td>
<td>10 (8.1)</td>
<td>58 (18.7)</td>
<td>0.38 (0.19–0.77)</td>
<td>.007</td>
</tr>
<tr>
<td>General anesthesia</td>
<td>17 (13.7)</td>
<td>28 (9.0)</td>
<td>1.60 (0.84–3.04)</td>
<td>.152</td>
</tr>
<tr>
<td>Exteriorization of uterus</td>
<td>115 (92.7)</td>
<td>287 (92.6)</td>
<td>1.02 (0.46–2.28)</td>
<td>.954</td>
</tr>
<tr>
<td>Manual removal of placenta</td>
<td>82 (66.1)</td>
<td>242 (78.1)</td>
<td>0.55 (0.35–0.87)</td>
<td>.010</td>
</tr>
<tr>
<td>Use of staples for skin closure</td>
<td>115 (92.7)</td>
<td>267 (86.1)</td>
<td>2.06 (0.97–4.36)</td>
<td>.060</td>
</tr>
<tr>
<td>Antibiotic therapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agents</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cefazolin or cefotetan</td>
<td>52 (41.9)</td>
<td>155 (50.0)</td>
<td>Reference</td>
<td>...</td>
</tr>
<tr>
<td>Amp, pen, or clindamycin alone</td>
<td>14 (11.3)</td>
<td>35 (11.3)</td>
<td>1.19 (0.60–2.39)</td>
<td>.620</td>
</tr>
<tr>
<td>Amp, pen, or clindamycin with a cephalosporin</td>
<td>22 (17.7)</td>
<td>46 (14.8)</td>
<td>1.43 (0.78–2.59)</td>
<td>.245</td>
</tr>
<tr>
<td>Gentamycin, tobramycin, or amp-sulb</td>
<td>27 (21.8)</td>
<td>43 (13.9)</td>
<td>1.87 (1.05–3.33)</td>
<td>.033</td>
</tr>
<tr>
<td>None</td>
<td>9 (7.3)</td>
<td>31 (10.0)</td>
<td>0.87 (0.39–1.94)</td>
<td>.725</td>
</tr>
<tr>
<td>Timing of administration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Only after incision</td>
<td>52 (41.9)</td>
<td>145 (46.8)</td>
<td>Reference</td>
<td>...</td>
</tr>
<tr>
<td>Within 1 hour before incision</td>
<td>13 (10.5)</td>
<td>26 (8.4)</td>
<td>1.39 (0.67–2.91)</td>
<td>.377</td>
</tr>
</tbody>
</table>
associated with 2-fold increased odds of endometritis in the multivariate model. Anemia has been reported in one study as an independent risk factor for endometritis.6 Severe anemia was not solely a proxy for excessive blood loss during surgery, since estimated volume of blood loss was not associated with increased risk of endometritis in our study population. We and others have reported that transfusion increases the risk of a variety of hospital-acquired infections.27-30 The reason for the association of severe anemia with increased risk of endometritis is not entirely clear, but the association may be due, in part, to residual confounding with underlying severity of illness. In addition, some investigators have suggested that transfusion increases the risk of infection because of immunomodulation and release of bioactive mediators from contaminating allogeneic white blood cells.27,31 Almost two-thirds of the patients who received blood transfusions in our study received only leukodepleted blood. Interestingly, there was no difference between the risk of endometritis associated with transfusion of leukodepleted blood and the risk associated with transfusion of nonleukodepleted blood. Our finding supports the findings of some researchers who have recently questioned the impact of leukodepletion on rates of nosocomial infection associated with transfusion.32,33

Chorioamnionitis was associated with significantly increased odds of endometritis in univariate analysis but was not formally associated with increased risk of endometritis in the multivariate model. In other publications that report an increased risk of endometritis associated with chorioamnionitis, investigators have controlled for duration of rupture or labor as categorical or binary variables, which most likely resulted in residual confounding.3,17

Nonprivate health insurance, our proxy for low socioeconomic status, was associated with a marginally increased risk of endometritis. Reasons for this association may include higher rates of sexually transmitted infections, higher risk of group B streptococcal colonization, and less likelihood of treatment of these infections because of fewer prenatal care visits. In addition, micronutrient and vitamin insufficiency may in part explain this relationship. Women with Medicaid coverage and African-American women have increased likelihood of prepregnancy anemia and are less likely to report multivitamin use than are non-Hispanic white women and women with private insurance.34,35 Higher body mass index has also been shown to be associated with lower diet quality during pregnancy.36 A variety of micronutrients play critical roles in immune responses,37,38 so it is plausible that micronutrient deficiencies associated with poor diet and lower multivitamin use could be associated with increased risk of endometritis in women with low socioeconomic status.

In contrast to the results of some previous work, we did not find an association between group B Streptococcus colonization and development of endometritis. This may be due to our inability to identify all women with group B Streptococcus colonization on the basis of retrospective review of hospital records. It is also possible that we did not detect risk of endometritis associated with group B Streptococcus colonization as a result of abrogation of this risk by antibiotic prophylaxis during labor. More than one-quarter of the women in our study received ampicillin, penicillin, or clindamycin before surgery (alone or in combination with cephalosporin prophylaxis). More than one-half of the women with documented group B streptococcal colonization received antibiotic prophylaxis against group B streptococcal infection, and another 20% of women with group B streptococcal colonization (14 of 69 patients) were treated for chorioamnionitis. Dumas et al39 recently reported that antibiotic prophylaxis against group B streptococcal infection was associated with significantly decreased risk of endometritis after vaginal delivery. Thus, it is possible that antibiotic prophylaxis and therapy in our study was successful at decreasing the risk of endometritis due to group B Streptococcus colonization.

A limitation of this study is the analysis of older data. During this study, routine administration of prophylactic antibiotics for cesarean delivery was performed at the time of cord clamping rather than before incision. In our population, almost one-half of the women received antibiotics before incision, and receipt of prophylactic antibiotics at cord clamping was not associated with increased risk of endometritis. Although earlier

Table 3. (Continued)

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>Case patients (n = 124), no. (%)</th>
<th>Control patients (n = 310), no. (%)</th>
<th>OR (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–8 hours before incision</td>
<td>50 (40.3)</td>
<td>108 (34.8)</td>
<td>1.29 (0.81–2.05)</td>
<td>.278</td>
</tr>
<tr>
<td>No antibiotics</td>
<td>9 (7.3)</td>
<td>31 (10.0)</td>
<td>0.81 (0.36–1.81)</td>
<td>.608</td>
</tr>
<tr>
<td>Postoperative variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transfusion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leukocyte-depleted blood only</td>
<td>17 (13.7)</td>
<td>14 (4.5)</td>
<td>3.64 (1.73–7.67)</td>
<td>.001</td>
</tr>
<tr>
<td>Non–leukocyte-depleted blood</td>
<td>10 (8.1)</td>
<td>8 (2.6)</td>
<td>3.75 (1.44–9.77)</td>
<td>.007</td>
</tr>
</tbody>
</table>

Note. Amp, ampicillin; ASA, American Society of Anesthesiologists; CI, confidence interval; OR, odds ratio; pen, penicillin; sulb, sulbactam.

* Data missing for 3 patients.

* Defined by fever during labor, fundal tenderness, and/or physician diagnosis.

* Information on type of blood product (leukodepleted or not) missing for 1 patient with packed red blood cell transfusion.

...
Table 4. Multivariable Model for Risk Factors for Endometritis after Low Transverse Cesarean Delivery

<table>
<thead>
<tr>
<th>Variable</th>
<th>Reference point</th>
<th>Adjusted OR (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>No health insurance or no private health insurance<sup>a</sup></td>
<td>Reference</td>
<td>1.72 (0.99–3.00)</td>
<td>.057</td>
</tr>
<tr>
<td>Clinical chorioamnionitis<sup>b</sup></td>
<td>Reference</td>
<td>1.60 (0.89–2.87)</td>
<td>.115</td>
</tr>
<tr>
<td>Anemia<sup>c</sup> and/or perioperative transfusion</td>
<td>Reference</td>
<td>2.18 (1.30–3.68)</td>
<td>.003</td>
</tr>
<tr>
<td>Amniotomy</td>
<td>Reference</td>
<td>1.69 (0.97–2.95)</td>
<td>.064</td>
</tr>
<tr>
<td>Presence of labor</td>
<td>Reference</td>
<td>1.23 (0.62–2.45)</td>
<td>.555</td>
</tr>
<tr>
<td>Younger age</td>
<td>Reference</td>
<td>0.93 (0.90–0.97)</td>
<td><.001</td>
</tr>
<tr>
<td>Duration of rupture before cesarean delivery<sup>d</sup></td>
<td>Reference</td>
<td>0.997–0.999)</td>
<td>0.094</td>
</tr>
<tr>
<td>None</td>
<td>0</td>
<td>1.72 (0.91–3.25)</td>
<td></td>
</tr>
<tr>
<td><1 hour</td>
<td>0.6</td>
<td>1.81 (0.90–3.64)</td>
<td></td>
</tr>
<tr>
<td>1–3 hours</td>
<td>2.0</td>
<td>1.85 (0.90–3.81)</td>
<td></td>
</tr>
<tr>
<td>3–6 hours</td>
<td>4.8</td>
<td>1.87 (0.90–3.90)</td>
<td></td>
</tr>
<tr>
<td>6–12 hours</td>
<td>8.9</td>
<td>1.89 (0.90–3.96)</td>
<td></td>
</tr>
<tr>
<td>12–24 hours</td>
<td>16.4</td>
<td>1.90 (0.90–4.02)</td>
<td></td>
</tr>
<tr>
<td>24–72 hours</td>
<td>35.3</td>
<td>1.90 (0.90–4.02)</td>
<td></td>
</tr>
</tbody>
</table>

NOTE. Model C statistic, 0.769; there were 124 case patients with endometritis and 310 control patients without endometritis. CI, confidence interval; OR, odds ratio.

^a Reference point is the mean value for each category for continuous variables.

^b Defined as Medicaid, Medicare, or Public Aid.

^c Defined by fever, fundal tenderness, or physician diagnosis.

^d Defined as hemoglobin level \(\leq 8 \text{ g/dL} \).

^e Results are presented at relevant exposures for duration of rupture by using coefficients for the best-fitting fractional polynomials in the multivariable model. The OR of endometritis for duration of rupture of membranes was calculated as \(\log \text{OR}_{\text{rupture}} = 0.037 - 0.655 \left[\frac{1}{(\text{duration of rupture} + 1)^{0.037}} \right] \).

The administration of prophylactic antibiotics should theoretically decrease the risk of endometritis, it would not be expected to alter the association of other variables with the risk of endometritis.

In summary, perioperative anemia or transfusion and younger age were independently associated with increased odds of endometritis, while lack of private health insurance, amniotomy, and longer duration of rupture of membranes were associated with marginally increased odds of infection. While most of these factors are not easily modifiable, knowledge of the increased risk associated with specific factors can be used to tailor antibiotic prophylaxis regimens and heighten surveillance for signs of endometritis in the postoperative period in women at highest risk of infection.

ACKNOWLEDGMENTS

We gratefully acknowledge Zohair Karmally, Cherie Hill, and Stacy Leimbach for assistance with data collection and management.

Financial support. This work was supported in part by grants from the Centers for Disease Control and Prevention (Prevention Epicenter Program, UR8/CCU715087) and the National Institutes of Health (K01AI065808 to M.A.O. and K24AI06779401 to V.J.F.).

Potential conflicts of interest. All authors report no conflicts of interest relevant to this article.

Address reprint requests to Margaret A. Olsen, Division of Infectious Diseases, Washington University School of Medicine, Box 8051, 660 South Euclid, St Louis, MO 63110 (molsen@im.wustl.edu).

Presented in part: Annual Clinical Meeting of the American College of Obstetricians and Gynecologists; San Francisco, California; May 2005; abstract 32.

References

