2011

Cardioprotection by endogenous fibroblast growth factor 2 in cardiac ischemia-reperfusion injury in vivo

Stacey House
Washington University School of Medicine in St. Louis

Carla Weinheimer
Washington University School of Medicine in St. Louis

Attila Kovacs
Washington University School of Medicine in St. Louis

David Ornitz
Washington University School of Medicine in St. Louis

Follow this and additional works at: https://digitalcommons.wustl.edu/em_conf

Recommended Citation

This Presentation Paper is brought to you for free and open access by the Division of Emergency Medicine/Emergency Care Research Section at Digital Commons@Becker. It has been accepted for inclusion in Conference Abstracts and Posters by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Cardioprotection by Endogenous Fibroblast Growth Factor 2 in Cardiac Ischemia-Reperfusion Injury *In Vivo*

Stacey House MD PhD, Carla Weinheimer MS, Attila Kovacs MD, and David Ornitz MD PhD

Washington University in St. Louis School of Medicine
Fibroblast Growth Factor 2

22 different FGF family members (10 in heart)

FGF2 or basic FGF – first member of the FGF family identified, expressed fairly ubiquitously

FGF2 expressed in all developmental stages of heart; found in cardiomyocytes, fibroblasts, endothelium

FGF2 known functions:
- Hematopoiesis
- Angiogenesis
- Wound Healing
- Mesoderm Induction
- Cell Survival/Death
- Cardiac Hypertrophy
FGF2 Isoforms

FGF2 mRNA (1) (484) (951)

- CUG (86)
- CUG (319)
- CUG (346)
- CUG (361)
- AUG (486)
- Stop (951)

5’ 3’

Nuclear localization signal

34 kDa
24 kDa
22.5 kDa
22 kDa
18 kDa

34 kDa
24 kDa
22.5 kDa
22 kDa
18 kDa

HMW

LMW

nuclear
cytoplasmic

Nuclear localization signal
FGF2 and Cardioprotection

Isolated work-performing global low-flow IR injury-Fgf2 KO have worsened post-ischemic function Cardiac-specific human FGF2 Tg have improved post-ischemic cardiac function reduced infarct size

FGF2-induced cardioprotection mediated through PKC, MAPK, and NOS signaling
What is the *in vivo* cardioprotective efficacy of FGF2?
FGF2 Knockout

Targeted ablation of all isoforms of FGF2

Viable and fertile

No difference from wildtype with respect to cardiac morphometry, function, or vessel density
Closed Chest Ischemia-Reperfusion

Instrumentation

90 min Ischemia

7 Days

7 Days Reperfusion

Echo Day 1

Echo Day 7

From Dewald et al. 2004
Echo Determination of Ejection Fraction
Endogenous FGF2 in Cardiac Function Post IR Injury

- **n=6**
- **p<0.05 vs. wildtype**
Echo Analysis of LV Wall Motion Abnormalities

Serial short-axis slices of the LV 1 month post-MI

Kanno et al, JASE 2002;15:601
Echo Analysis of LV Wall Motion Abnormalities

n=6

*p<0.05 vs. wildtype
Trichrome Staining of Fibrosis

Wildtype Fgf2 KO
Picosirius Red Stain of Collagen Fibrils
Endogenous FGF2 Effect on Cardiac Hypertrophy

Heart Wt vs. Body Wt Ratio

Wildtype
FGF2 KO

n=7
Myocyte Area Staining

Wildtype

Fgf2 KO
Myocyte Cross Sectional Area Post IR Injury

- Wildtype
- Fgf2 KO

n=6
Smooth Muscle Actin Staining

Wildtype

Fgf2 KO
Vessel Density After IR injury

n=6

*p<0.05 vs. wildtype
Future Directions

Analysis of capillary density and vascular remodeling at early time points post IR injury

Analysis of inflammatory response post IR injury
Acknowledgements

Dave Ornitz
Carla Weinheimer
Attila Kovacs
Sarah Davis

Funding Sources
American Heart Association
Emergency Medicine Foundation
Missouri ACEP