2012

Endothelial-specific fibroblast growth factor receptor 1 and 2 deletion impairs vascular remodeling and recovery in an in vivo, closed-chest model of cardiac ischemia-reperfusion injury

Stacey House
Washington University School of Medicine in St. Louis

Carla Weinheimer
Washington University School of Medicine in St. Louis

Attila Kovacs
Washington University School of Medicine in St. Louis

David Ornitz
Washington University School of Medicine in St. Louis

Follow this and additional works at: https://digitalcommons.wustl.edu/em_conf

Recommended Citation

This Presentation Poster is brought to you for free and open access by the Division of Emergency Medicine/Emergency Care Research Section at Digital Commons@Becker. It has been accepted for inclusion in Conference Abstracts and Posters by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Ablation of FGFR1 and FGFR2 in endothelial cells has no baseline effect on cardiac function or vessel density (both arteriole and capillary). After in vivo, closed-chest cardiac IR injury, FGFR1 and FGFR2 ablation in endothelial cells resulted in reduced cardiac function and increased wall-motion abnormalities at 7 days but not 1 day of reperfusion. Ablation of FGFR1 and FGFR2 in endothelial cells does not effect the cardiac hypertrophic response to IR.

Vascular remodeling after IR injury is impaired in mice with endothelial-specific ablation of FGFR1 and FGFR2.

CONCLUSION

Ablation of FGFR1 and FGFR2 in endothelial cells results in impaired vascular remodeling, worsened cardiac functional recovery, and increased infarct size without affecting the cardiac hypertrophic response in an in vivo, closed-chest model of cardiac ischemia-reperfusion injury.