The influence of green space on obesity in China: A systematic review

Jing Shen
China University of Geosciences (Beijing)
Mengfei Li
China University of Geosciences (Beijing)
Qianhui Wang
China University of Geosciences (Beijing)
Ruidong Liu
Beijing Sport University
Mengmeng Ji
Washington University School of Medicine in St. Louis

See next page for additional authors

Follow this and additional works at: https://digitalcommons.wustl.edu/oa_4

Part of the *Medicine and Health Sciences Commons*

Please let us know how this document benefits you.

Recommended Citation
https://digitalcommons.wustl.edu/oa_4/19

This Open Access Publication is brought to you for free and open access by the Open Access Publications at Digital Commons@Becker. It has been accepted for inclusion in 2020-Current year OA Pubs by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Authors
Jing Shen, Mengfei Li, Qianhui Wang, Ruidong Liu, Mengmeng Ji, and Ruopeng An

This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/oa_4/19
The Influence of Green Space on Obesity in China: A Systematic Review

Jing Shena Mengfei Lia Qianhui Wanga Ruidong Liub Mengmeng Jic Ruopeng And

aDepartment of Physical Education, China University of Geosciences (Beijing), Beijing, China; bSports Coaching College, Beijing Sport University, Beijing, China; cDepartment of Medicine, Washington University School of Medicine, St. Louis, MO, USA; dBrown School, Washington University, St. Louis, MO, USA

Keywords
Green space · Body weight · Obesity · China · Review

Abstract
Introduction: This study systematically reviewed scientific evidence concerning the influence of green space on obesity in China. Methods: Keyword and reference search was conducted in PubMed, Web of Science, Scopus, EBSCO, and CNKI. Predetermined selection criteria included study designs: experimental and observational studies; subjects: people of all ages; exposures: green space (i.e., any open land partly or entirely covered with grass, trees, shrubs, or other vegetation); outcomes: body weight status (e.g., body mass index [BMI], overweight, or obesity); and country: China. Results: Ten studies met the selection criteria and were included in the review. All studies adopted a cross-sectional design. Overall greenness measures were found to be inversely associated with BMI, overweight, and obesity in most included studies. Street greenness, which measures the perceived greenness at the eye level on streets, was found to be inversely associated with BMI and obesity. By contrast, mixed results were observed for the relationship between green space accessibility and weight outcomes. Air quality was found to mediate the relationship between greenness and obesity. The influence of green space on obesity tended to vary by residents’ gender, age, and socioeconomic status. Boys, women, older residents, and those with lower education or household income were more likely to benefit from greenness exposure. Conclusion: The literature on green space exposure in relation to obesity in China remains limited. Longitudinal and quasi-experimental studies are warranted to assess the causal link between green space and obesity. Future measures should better capture the self-perception, quality, and attractiveness of green space. The underlying pathways through which green space affects residents’ weight outcomes should be further elucidated.

Introduction
Obesity is a leading risk factor for various chronic diseases and health conditions, such as hypertension, dyslipidemia, diabetes, cardiovascular disease, sleep apnea, and many types of cancer [1, 2]. Obesity has become a significant population health concern in China. In 2019, about half of Chinese adults and a fifth of children were overweight or obese [3]. It was projected that the prevalence of overweight and obesity in China would reach 15.6% in preschoolers, 31.8% in school-age children and adolescents...
cents, and 65.3% in adults by 2030 [4]. The prevalence of various chronic diseases caused by obesity imposes a long-term burden on both patients and society and results in an increase in health expenditures [5,6]. In emerging economies such as China, how to balance the need to promote public health, control noncommunicable diseases, and improve the health of the population remains a major challenge [6,7].

Green space is any open land partly or entirely covered with grass, trees, shrubs, or other vegetation [8]. Many potential benefits of green spaces have been studied, including mitigating air and noise pollution, reducing heat island effects, promoting local ecosystems, and improving health and overall well-being [9–12]. Green space is also thought of as an essential environmental determinant of obesity [13–16]. Conceptually, green space may prevent obesity by promoting physical activity, reducing stress and negative emotions, improving neighborhood cohesion and residential satisfaction, mitigating air pollution, and moderating temperature and humidity [17,18].

A growing body of studies has reported mixed findings concerning the associations between obesity and spatial characteristics of green space, such as accessibility, frequency of use, and vegetation coverage [10,15]. While some studies reported an inverse relationship between green space and obesity [17,19], others only identified a relationship for some subgroups [20,21], a null or non-linear (e.g., U-shaped) association [22–24], or even a positive association between green space exposure and obesity [25]. Potential reasons for the inconsistencies may involve different approaches used to measure green space features, varied spatial scales, and different geographical environments [26–28]. It is noteworthy that most studies were conducted in high-income countries such as the USA, the UK, Australia, and Canada [20,29–31]. Differences in urbanization, residential density, transportation systems, and socioeconomic status may contribute to the differential relationships reported for green space and obesity [32]. Therefore, the evidence found in those developed countries may not be generalizable to developing nations.

China has experienced rapid urbanization and industrialization over the past several decades – the Chinese urban population increased from 17.9% in 1978 to 63.9% in 2020 [33]. Increasing attention has been paid to health behavior promotion in urban areas, where green space may play a critical role [34]. The Chinese National Development and Reform Commission has recently launched a plan to build a thousand recreational parks nationwide [35]. Building green cities has also been proposed by many Chinese local governments [36]. This public health agenda, which promotes physical activity and healthy lifestyles, forms part of the national public health policy to improve the health of the population and reduce the burden of noncommunicable diseases [6].

This study, to our knowledge, is the first that systematically reviews the scientific literature regarding the influence of green space on obesity among Chinese residents. Findings from this review could help policymakers and stakeholders make informed decisions in incorporating green space in urban design to promote physical activity and prevent obesity.

Methods

Search Strategy

Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [37], relevant articles were identified by searching five electronic bibliographic databases: PubMed, Web of Science, Scopus, EBSCO, and CNKI. The search algorithm included all possible combinations of two keyword groups concerning green space and obesity. The Medical Subject Headings terms “overweight,” “obesity,” “China,” and “human” were used in the PubMed search. The search algorithm in PubMed is provided as an example in online supplementary Material 1 (see www.karger.com/doi/10.1159/000524857 for all online suppl. material). Titles and abstracts of the articles identified through the keyword search were screened against the study selection criteria. Potentially eligible articles were retrieved, and their full texts were evaluated. Two co-authors independently performed title and abstract screening. Cohen’s kappa (κ = 0.75) was used to assess inter-rater agreement. Discrepancies were resolved through discussion under the participation of a third co-author. Besides the keyword search, a reference list search and a cited reference search were conducted.

Study Selection Criteria

Studies that met all of the following criteria were included in the review: (1) study designs – experimental (e.g., randomized controlled trials or pre-post-studies) and observational studies (e.g., longitudinal or cross-sectional studies); (2) study subjects – people of all ages; (3) exposures – green space (e.g., parks, vegetation areas, or open green fields); (4) outcomes – body weight status (e.g., body mass index [BMI], overweight, or obesity); (5) article type – peer-reviewed journal publications; (6) time window of search – from the inception of an electronic bibliographic database to September 2021; (7) country – China; and (8) language – articles written in English or Chinese. Studies that met any of the following criteria were excluded from the review: (1) studies that examined either green space or body weight status but not both; and (2) letters, editorials, study/review protocols, case reports, or review articles.

Data Extraction and Synthesis

A standardized data extraction form was used to collect the following methodological and outcome variables from each included study: author(s), year of publication, city, study design, sample
size, age range, the proportion of females, sample characteristics, statistical model, nonresponse rate, geographical coverage, study setting, green space measure(s), body weight measure(s), estimated effects of green space on weight outcomes, and main findings of the study. Two co-authors independently conducted the data extraction, and discrepancies were resolved through discussion with a third co-author. Heterogeneous exposure and outcome measures prevented meta-analysis, so we summarized the common themes and findings of the included studies narratively.

Study Quality Assessment

We used the National Institutes of Health’s Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies to assess the quality of each included study [38]. For each criterion, a score of one was assigned if “yes” was the response, whereas a score of zero was assigned otherwise. A study-specific global score, ranging from 0 to 14, was calculated by summing up scores across all criteria. Study quality assessment helped measure the strength of scientific evidence but was not used to determine the inclusion of studies.

Results

Study Selection

Figure 1 shows the study selection flowchart. We identified 981 articles through keyword and reference search, including 257 from PubMed, 26 from Web of Science, 112 from Scopus, 86 from EBSCO, and 500 from CNKI. After removing duplicates, 943 articles underwent title and abstract screening, in which 909 were excluded. The remaining 34 articles were reviewed in the full text against the study selection criteria. Of these, 24 were excluded – six were not conducted in China, six reported no green space measure, seven reported no body weight status, and the remaining five were reviews or commentaries instead of original studies. Therefore, a final pool of ten articles was included in the review [18, 21, 26–28, 39–43].

Characteristics of the Included Studies

Table 1 summarizes the characteristics of the ten studies included in the review. All studies were published within the past 5 years (one in 2015, eight in 2020, and one in 2020). Three exclusively focused on residents in Shanghai [39, 42, 43], two in Guangzhou [26, 40], one in Shenyang, Anshan, and Jinzhou [21], one in seven provinces or municipalities including Liaoning, Tianjin, Ningxia, Shanghai, Chongqing, Hunan, and Guangdong [28], one in 64 townships or neighborhoods [18], and one each in Harbin [41] and Hong Kong [27]. All studies adopted a cross-sectional study design. The sample sizes were generally large but varied substantially across studies. Three studies had a sample size of over 10,000 par-
participants [18, 21, 28], but other three had less than 1,000
[26, 40, 42]. Two studies focused on middle-aged and old-
er adults [18, 39], four on adults 18 years old and above
[21, 40–42], two on children and adolescents under 18
years old [27, 28], and two on people of all ages [26, 43].
The percentage of females across studies ranged from
48% to 58%. Various statistical models were applied, in-
cluding multivariate logistic regression [40], ordered lo-
gistic regression [26], multilevel regression [27], struc-
tural equation model [18, 42], and generalized linear re-
gression [21, 28].
Table 2 summarizes the measures for green space and
body weight status among the included studies. The ma-
ajority (n = 7) of studies adopted objective green space
measures [18, 21, 26–28, 39, 43], two used subjective mea-
sures [40, 42], and one used both objective and subjective
measures [41]. Objective green space measures included
satellite-based remote sensing images from Google or
Baidu street view [26, 27, 43], geographical data collected
by the Lands Department of Hong Kong or Landsat 5
Thematic Mapper satellites [18, 21, 27], and measures
constructed using geographical information system (GIS)
[28, 43]. Subjective green space measures were collected
by field surveys [41] or questionnaires administered to
study participants [40]. Four studies examined the acces-
sibility of green space [26, 39, 40, 43], five examined nor-
malized difference vegetation index (NDVI) [18, 21, 27,
28, 43], three examined street greenness or green view
index [27, 41, 43], and two examined the perceptions of
green space or green space ratio [41, 42]. Measures for
body weight status included BMI (n = 9), BMI z-score (n
= 1), overweight (n = 8), obesity (n = 9), and waist circum-
ference (n = 3). Body weight status was objectively mea-
sured in half of the studies [18, 21, 28, 39, 41].

Table 3 summarizes the key findings of the included
studies concerning the estimated influences of green
space on body weight status in Chinese residents. We
grouped the results into four categories.

Table 1. Basic characteristics of the studies included in the review

<table>
<thead>
<tr>
<th>Study ID</th>
<th>First author, year</th>
<th>Region</th>
<th>Study design</th>
<th>Sample size</th>
<th>Age, years</th>
<th>Female, %</th>
<th>Sample characteristics</th>
<th>Statistical model</th>
<th>Non-response rate, %</th>
<th>Geographical coverage</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Zhang et al. [39]</td>
<td>Shanghai</td>
<td>Cross-sectional</td>
<td>1,100</td>
<td>46–80</td>
<td>Middle-aged and older residents</td>
<td>Hierarchical linear models and hierarchical nonlinear models</td>
<td>6</td>
<td>Green and open spaces</td>
<td>Urban, rural</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Chen et al. [40]</td>
<td>Guangzhou</td>
<td>Cross-sectional</td>
<td>938</td>
<td>18–70</td>
<td>58</td>
<td>Adult residents</td>
<td>Multivariate analysis Logistic regression</td>
<td>6.9</td>
<td>Urban green space</td>
<td>Urban</td>
</tr>
<tr>
<td>3</td>
<td>Huang et al. [18]</td>
<td>China</td>
<td>Cross-sectional</td>
<td>12,112</td>
<td>50+</td>
<td>53.17</td>
<td>Middle-aged and older residents</td>
<td>Multilevel structural equation models</td>
<td>Neighborhood greenness</td>
<td>Urban, rural</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Huang et al. [21]</td>
<td>Shenyang, Anshan, and Jinzhou</td>
<td>Cross-sectional</td>
<td>24,845</td>
<td>18–74</td>
<td>49</td>
<td>Adult residents</td>
<td>Two-level logistic and generalized linear mixed regression models</td>
<td>13.8</td>
<td>Community greenness</td>
<td>Urban</td>
</tr>
<tr>
<td>5</td>
<td>Leng et al. [41]</td>
<td>Harbin</td>
<td>Cross-sectional</td>
<td>4,155</td>
<td>20–98</td>
<td>47.7</td>
<td>Adult residents</td>
<td>Logistic regression</td>
<td>Green space of neighborhood</td>
<td>Urban</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Lu et al. [42]</td>
<td>Shanghai</td>
<td>Cross-sectional</td>
<td>403</td>
<td>18–80</td>
<td>51.4</td>
<td>Adult residents</td>
<td>Structural equation modeling</td>
<td>5.6</td>
<td>Main green space in the survey area</td>
<td>Urban</td>
</tr>
<tr>
<td>7</td>
<td>Xiao et al. [43]</td>
<td>Shanghai</td>
<td>Cross-sectional</td>
<td>8,988</td>
<td>All ages</td>
<td>54.08</td>
<td>Residents</td>
<td>Two-level multilevel mixed effects ordered logistic regression</td>
<td>5.6</td>
<td>Neighborhood greenness</td>
<td>Urban</td>
</tr>
<tr>
<td>8</td>
<td>Yang et al. [26]</td>
<td>Guangzhou</td>
<td>Cross-sectional</td>
<td>418</td>
<td>16–60</td>
<td>55.5</td>
<td>Residents</td>
<td>Ordered logit model</td>
<td>Neighborhood environments</td>
<td>Urban, suburban</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Yang et al. [27]</td>
<td>Hong Kong</td>
<td>Cross-sectional</td>
<td>1,148</td>
<td>11–13</td>
<td>48.6</td>
<td>Primary school students</td>
<td>Multilevel regression analysis and structural equation modeling</td>
<td>7.1</td>
<td>Urban greenery</td>
<td>Urban</td>
</tr>
<tr>
<td>10</td>
<td>Bao et al. [28]</td>
<td>Seven provinces/municipalities</td>
<td>Cross-sectional</td>
<td>56,401</td>
<td>6–18</td>
<td>48.7</td>
<td>Children and adolescents</td>
<td>Generalized linear mixed regression models</td>
<td>Greenness surrounding schools</td>
<td>Urban, rural</td>
<td></td>
</tr>
</tbody>
</table>

Seven provinces/municipalities include Liaoning, Tianjin, Ningxia, Shanghai, Chongqing, Hunan, and Guangdong.
First, overall greenness measures were found to be inversely associated with BMI, overweight, and obesity in the majority of the included studies. Higher school-based greenness levels were associated with lower BMI z-score, lower odds of overweight and obesity, and lower waist circumferences in Chinese children and adolescents [28]. Greater greenness levels were associated with lower BMI and peripheral or central obesity prevalence in adults [21], lower abdominal obesity in middle-aged and older adults [18], and lower odds of overweight and obesity [18, 26]. In neighborhoods with a green space ratio lower than 28%, residents had a higher risk of being overweight or obese [41]. By contrast, Xiao et al. [43] reported no correlation between the NDVI within a 1,000 m buffer and residents’ BMI.

Second, street greenness, typically measured by the green view index, reflects the perceived greenness at the eye level on streets and is an essential indicator for urban residents’ daily green space exposure. Street greenness was found to be inversely associated with BMI within a 400 m buffer [27]. In neighborhoods with a green view index lower than 15%, residents had a higher risk of being overweight or obese [41]. An increase in the green view index within a 1,000 m buffer was inversely associated with obesity [43].

Third, accessibility to green space was found to be inversely associated with BMI and overweight or obesity in some but not all studies. Living within 1 km to urban green space was correlated with lower odds of being overweight or obese [40]. Distance to parkland was positively associated with overweight and obesity [39]. By contrast,

Table 2. Measures of green space and body weight status in the studies included in the review

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Type of green space measure</th>
<th>Detailed measure of green space</th>
<th>Type of body weight status measure</th>
<th>Detailed measure of body weight status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Objective measure: GIS</td>
<td>Parkland proximity, green, and open spaces</td>
<td>Objective measure</td>
<td>BMI, overweight, obesity</td>
</tr>
<tr>
<td>2</td>
<td>Self-report questionnaire</td>
<td>The distance and time from homes to green space</td>
<td>Self-report questionnaire</td>
<td>BMI, overweight, obesity</td>
</tr>
<tr>
<td>3</td>
<td>Objective measure: Landsat 5 Thematic Mapper images</td>
<td>1. Neighborhood greenness 2. NDVI</td>
<td>Objective measure</td>
<td>Height, weight, waist circumference, BMI, general obesity, and abdominal obesity</td>
</tr>
<tr>
<td>4</td>
<td>Objective measure: Landsat 5 Thematic Mapper satellite images, GIS</td>
<td>1. NDVI 2. SAVI</td>
<td>Objective measure</td>
<td>Height, weight, waist circumference, BMI, peripheral obesity, central obesity</td>
</tr>
<tr>
<td>5</td>
<td>Objective measure: land use data, the field survey</td>
<td>Green space ratio, green view index, and type of evergreen tree configuration</td>
<td>Objective measure</td>
<td>Height, weight, BMI, overweight, obesity</td>
</tr>
<tr>
<td>6</td>
<td>Self-report questionnaire</td>
<td>Perceptions of green space</td>
<td>Self-report questionnaire</td>
<td>BMI</td>
</tr>
<tr>
<td>7</td>
<td>Objective measure: GIS, the novel technique of deep convolutional neural network architecture, Baidu street view images</td>
<td>Green access, green exposure index, NDVI, and view-based green index</td>
<td>Self-report questionnaire</td>
<td>Height, weight, BMI, overweight, obesity</td>
</tr>
<tr>
<td>8</td>
<td>Objective measure: GIS, Baidu map application</td>
<td>Green coverage rate and distance to the park</td>
<td>Self-report questionnaire</td>
<td>Height, weight, BMI, overweight, obesity</td>
</tr>
<tr>
<td>9</td>
<td>Objective measure: Land Department of Hong Kong SAR, Google street view images</td>
<td>The number of parks, NDVI, and street greenness</td>
<td>Self-report questionnaire</td>
<td>Height, weight, BMI, overweight, obesity</td>
</tr>
<tr>
<td>10</td>
<td>Objective measure: ArcGIS, Landsat 8 Operational Land Imager (OLI) satellite images</td>
<td>1. NDVI 2. SAVI</td>
<td>Objective measure</td>
<td>BMI z-scores, waist circumference, and overweight/obesity</td>
</tr>
</tbody>
</table>

GIS, geographic information system; BMI, body mass index; NDVI, normalized difference vegetation index; SAVI, soil-adjusted vegetation index.
1. In neighborhoods with a green space ratio lower than 28%, residents had a higher risk of overweight or obesity (OR = 1.28, 95% CI = 1.09, 1.52).
2. In neighborhoods with a green view index lower than 15%, residents had a higher risk of overweight or obesity (OR = 1.22, 95% CI = 1.01, 1.46).
3. Evergreen tree configuration was found to be associated with overweight/obesity (OR = 1.44, 95% CI = 1.09, 1.91).

Distance from parks was reported to be inversely associated with BMI in two studies [26, 43].

Fourth, a few studies reported a dose-response relationship between green space exposure and BMI. A one-unit (10%) increase in green space areas was estimated to be associated with a 12% reduction in BMI [39]. Self-perceived of small park size was inversely associated with BMI [42].
Pathways Linking Green Space to Obesity

Several studies explored the pathways linking green space to obesity, such as air pollution, physical activity, and temperature. Among those studies, ambient NO₂ and PM₂.₅ were found to mediate the estimated associations between greenness and weight outcomes [18, 21, 28]. Moreover, active commute to and from school was found to partially mediate the influence of urban greenness on BMI [27]. By contrast, three studies found no evidence that physical activity or sedentary behaviors mediated the greeness-adiposity associations [18, 21, 28]. Also, no mediation effect of perennial mean temperature was found for greenness and adiposity [18].

Study Quality Assessment

Table 4 reports criterion-specific and global ratings of the study quality assessment. The included studies, on average, scored seven out of 14 (ranging from five to eight). All studies included in the review clearly stated the research question or objective, defined the study population, had a participation rate of over 50%, recruited subjects from the same or similar populations during the same period, and pre-specified and uniformly applied inclusion and exclusion criteria to all potential participants. Nine studies measured and statistically adjusted potential confounding variables for the associations between exposures and outcomes. Eight studies implemented valid and
reliable exposure measures. Five studies implemented valid and reliable outcome measures. Four studies examined different levels of exposure in relation to the outcome. By contrast, none of the studies adopted a longitudinal study design, had the outcome assessors blinded to the exposure status of the participants, provided a sample size justification using power analysis, measured exposures of interest before the outcomes, had a reasonably long follow-up period that was sufficient for changes in the outcomes to be observed, or assessed the exposures more than once during the study period.

Discussion

This study reviewed the scientific literature linking green space to body weight status in China. Ten studies met the selection criteria and were included in the review. Overall greenness measures were found to be inversely associated with BMI, overweight, and obesity in most included studies. Street greenness, which measures the perceived greenness at the eye level on streets, was found to be inversely associated with BMI and obesity. By contrast, mixed results were observed for the relationship between green space accessibility and weight outcomes.

Coinciding with the reviews focusing on developed countries [12], we found mixed results on the relationship between green space and weight outcomes. Several reasons may explain the discrepancies. First, given the lack of randomization, self-selection might lead to opposite findings on the association between accessibility to green space and obesity. For example, China’s urbanization has increased the risk of overweight among residents with higher-than-average income levels [44, 45], and those people might choose to live closer to green spaces [43]. In addition, studies measured greenness using different scales (e.g., 500 m or 1,000 m buffer), which may differentially relate to weight outcomes [46]. Yang et al. [26] recommended a walking distance of 1,000 m to green space to define a “walkable” neighborhood, whereas 300–400 m was used as the threshold because green space usage was found to decline rapidly above that [47]. The relationship between green space and obesity varies by green space measures [10]. For example, perceived street greenness tends to predict weight outcomes better than NDVI. Street greenness could more accurately capture residents’ daily exposure to green space than NDVI since it represents eye-level perception.

In contrast, NDVI identifies greenness from the bird’s-eye view. In addition, NDVI measurement does not provide detailed information about vegetation types of green space [48]. For example, NDVI extracted from remote sensing images includes farmland or forest unsuitable for physical activity [25, 28].

The influence of green space on obesity tends to vary by gender, age, and socioeconomic status. Boys, women, older residents, and those with lower education or household income were more likely to benefit from greenness [18, 21, 28]. The findings were largely consistent with prior studies conducted in developed countries, which found that women, older adults, and those with lower socioeconomic status benefited more from exposure to greenness [20, 29, 30, 48–50]. Such findings may inform future interventions targeting population subgroups and people with limited resources through increasing their proximity and accessibility to green space.

Many mediating factors (e.g., social cohesion, noise, stress) may be involved in the pathways linking green space to weight outcomes [18]. Physical activity was considered one of the main pathways [19], but several studies failed to identify relevant evidence [18, 21, 28, 39]. Differences in physical activity levels across age groups and diverse physical activity measures (e.g., intensity, duration, or metabolic equivalent task) might explain the mixed results [21].

Several limitations of this review and the included studies should be noted. First, we excluded most articles by performing title and abstract screening. It is suggested that future studies should screen articles according to the full texts and methodologies, which may be a more accurate method. Second, although this review compiled the results following systematic review guidelines, the relevant studies are scarce due to the scope of the review being limited to the sample of “studies conducted in China.” This study could be an important review but may limit the level of evidence as a systematic review. Third, all studies adopted a cross-sectional study design, which could not infer causality between green space and obesity. Fourth, most studies were conducted in high population-density cities, and thus, the generalizability of study findings to smaller cities could be limited. Fifth, half of the studies used self-reported body weight measures prone to recall error and social desirability bias [51]. Finally, heterogeneous greenness exposure and outcome measures prevented meta-analysis.

Future research should investigate the role of affluence (e.g., social class, income level) in the relationship between green space and obesity. Longitudinal and quasi-experimental studies are warranted to assess the causal link between green space and obesity. Underlying mech-
organisms through which green space affects residents’ weight outcomes should be further elucidated. With a deep understanding of the complex relationship between green space and obesity, at the proximal end, communities and individuals can prevent noncommunicable diseases by changing their lifestyles, living and working environments, and eating habits. In the long run, environments and behavior changes could potentially reduce health expenditure [52]. Future measures should better capture the self-perception, quality, and attractiveness of green space.

Conclusion

This study systematically reviewed the scientific literature concerning the relationship between green space and weight outcomes among Chinese residents. Ten studies met the eligibility criteria and were included in the review. Overall greenness measures were found to be inversely associated with BMI, overweight, and obesity in most included studies, and street greenness was inversely associated with BMI and obesity. By contrast, mixed results were observed for the relationship between green space accessibility and weight outcomes. Air quality was found to mediate the relationship between greenness and obesity.

In conclusion, the literature on green space exposure in relation to obesity in China remains limited. Longitudinal and quasi-experimental studies are warranted to assess the causal link between green space and obesity. The underlying pathways through which green space affects residents’ weight outcomes should be further elucidated.

Statement of Ethics

An ethics statement is not applicable because this study is based exclusively on published literature.

Conflict of Interest Statement

The authors have no conflicts of interest to declare.

Funding Sources

This research was funded by the Fundamental Research Funds for the Central Universities, CUGB, Grant No. 2-9-2020-036.

Author Contributions

J.S. conceived and designed the study and wrote the manuscript. M.L. and Q.W. conducted the literature review and constructed the summary tables and figures. R.L. contributed to manuscript drafting. M.J. and R.A. contributed to manuscript revision. All authors have read and agreed to the published version of the manuscript.

Data Availability Statement

A data availability statement is not applicable because this study is based exclusively on published literature.

References

13 Mackenbach JD, Rutter H, Compernolle S, Glonti K, Oppert JM, Charreire H, et al. Obe-
sogenic environments: a systematic review of the association between the physical environ-
ment and adult weight status, the SPOT-
LIGHT project. BMC Public Health. 2014
Mar 6;14:233.

14 Ghimire R, Ferreira S, Green GT, Poudyal
NC, Cordell HK, Thapa JR. Green space and
adult obesity in the United States. Ecol Econ.
2017;136:201–12.

15 De la Fuente F, Saldías MA, Cubillos C, Mery
exposure association with type 2 diabetes mellitus, physical activity, and obesity: a sys-
tematic review. Int J Environ Res Public

16 Reuben A, Rutherford GW, James J, Razani
N. Association of neighborhood parks with
2020 Dec;141:106265.

17 James P, Banay RF, Hart JE, Laden F. A review
from 246,920 Australians. Int J Obes.

18 Huang W, Liu Y, Chen Y, Wei H, Dong G,
Helbich M. Establishing associations between
residential greenness and markers of adipos-
ity among middle-aged and older Chinese
adults through multilevel structural equation
models. Int J Hyg Environ Health. 2020 Sep
01;230:113606–6.

19 Dadvand P, Banay RF, Hart JE, Laden F. A review of
the health benefits of greenness. Curr Epidem-

20 Huang B, Liu Y, Chen Y, Wei H, Dong G,
Helbich M. Establishing associations between
residential greenness and markers of adipos-
ity among middle-aged and older Chinese
adults through multilevel structural equation
models. Int J Hyg Environ Health. 2020 Sep
01;230:113606–6.

21 De la Fuente F, Saldías MA, Cubillos C, Mery
exposure association with type 2 diabetes mellitus, physical activity, and obesity: a sys-
tematic review. Int J Environ Res Public

22 James P, Kioumourtzoglou MA, Hart JE,
Dadvand P, Villanueva CM, Font-Ribera L,
James P, Banay RF, Hart JE, Laden F. A review
from 246,920 Australians. Int J Obes.

schools and adiposity in children and adoles-
cents: findings from a National Population-
Based Study in China. Environ Res. 2021 Oct
04;192:110289–9.

24 Prince SA, Kristjansson EA, Russell K, Billette
Martinez D, Basagaña X, Belmonte J, et al. A multilevel
analysis of neighbourhood built and social envi-
nronments and adult self-reported physical ac-
tivity and body mass index in Ottawa, Cana-
8(10):3953–78.

25 Sarkar C. Residential greenness and adiposity:
findings from the UK Biobank. Environ Int.
2017 Sep;106:1–10.

26 Yang W, Zhen X, Gao W, Ouyang S. An ex-
amination of the impact of neighbourhood
walking environments on the likelihood of
residents of dense urban areas becoming
overweight or obese. Canadian Geographer/
Le Géographe Canadien. 2020;64(4):619–33.

27 Yang Y, Lu Y, Yang L, Gou Z, Zhang X. Urban
greenery, active school transport, and body
weight among Hong Kong children. Trav Be-

28 Bao WW, Yang BY, Zou ZY, Ma J, Jing J,
Wang HJ, et al. Greenness surrounding
schools and adiposity in children and adoles-
cents: findings from a National Population-
Based Study in China. Environ Res. 2021 Oct
04;192:110289–9.

29 Prince SA, Kristjansson EA, Russell K, Billette
Martinez D, Basagaña X, Belmonte J, et al. A multilevel
analysis of neighbourhood built and social envi-
nronments and adult self-reported physical ac-
tivity and body mass index in Ottawa, Cana-
8(10):3953–78.

30 Sarkar C. Residential greenness and adiposity:
findings from the UK Biobank. Environ Int.
2017 Sep;106:1–10.

31 Browning MHEM, Rigolon A. Do income,
neighborhood parks with
202110/t20211029_1301583.html?code=&

32 Luo YN, Wang WZ, Liu XX, Markveych I,
Bloom MS, Zhao TY, et al. Greenspace with
overweight and obesity among Norwegian
105.

33 Xiao Y, Song Y, Wu X. How far has China's
urbanization gone? Sustainability. 2018;
10(8): 2953.

34 UN sustainable development goals. [cited 2021
un.org/sustainabledevelopment/sustainable
development-goals/.

35 Guidance on promoting the construction of
sports parks. [cited 2021 Nov 1]. Available from:
https://www.ndrc.gov.cn/xwtg/tggg/
202111/t20211129_1301583.html?code=&

36 Fujian: plans to build more than 100 provin-
cial-level forest cities by 2022. [cited 2021

37 Moher D, Liberati A, Tetzlaff J, Altman DG.
Preferred reporting items for systematic re-
views and meta-analyses: the PRISMA state-

38 Quality assessment tool for observational co-

39 Zhang Y, Liu Dong N, Liu X. Relationship be-
 tween community greenness and obesity in
12(4):569–78.

40 Chen TT, Lang W, Li X. Exploring the impact of
Urban Green Space on Residents’ Health in
Guangzhou, China. J Urban Plan Dev. 2020
Mar;146(1):11.

41 Leng H, Li S, Yan S, An X. Exploring the rela-
tionship between green space in a neighbour-
hood and cardiovascular health in the Winter
City of China: a study using a health survey for
17(2):513.

42 Lu T, Lane M, Van der Horst D, Liang X, Wu
J. Exploring the impact of living in a “green”
city on individual BMI: a study of Lingang
new town in Shanghai, China. Int J Environ

43 Xiao Y, Zhang Y, Sun Y, Tao P, Kuang X. Does
green space really matter for residents’ obe-
sity? A new perspective from Baidu Street

44 Philipson TJ, Posner RA. The long-run
growth in obesity as a function of technologi-
cal change. Perspect Biol Med. 2003 Summer;

45 Lakdawalla D, Philipson T. The growth of
obesity and technological change. Ecol Hum

46 Duncan MJ, Winkler E, Sugiyama T, Cerin E,
duToit L, Leslie E, et al. Relationships of land
use mix with walking for transport: do land
uses and geographical scale matter? J Urban

47 Annerstedt M, Ostergren PO, Björk J, Grah
P, Skärböck E, Währborg P. Green qualities in
the neighbourhood and mental health: results
from a longitudinal cohort study in Southern

48 Klopmanker JO, Hoek G, Bloemsa LD,
Gehring U, Strak M, WiJha AH, et al. Green
space definition affects associations of green
space with overweight and physical activity.

49 Persson Å, Pyko A, Lind T, Bellander T,
Ostenson CG, Pershagen G, et al. Urban resi-
derential greenness and adiposity: a cohort
study in Stockholm County. Environ Int.
2018 Dec;121(Pt 1):832–41.

50 Teixeira A, Gabriel R, Quaresma L, Alencão
A, Martinho J, Moreira H. Obesity and natu-
ral spaces in adults and older people: a sys-

51 King BM, Csepedes YM, Burden GK, Brady
under-reporting of body weight by young
adults with obesity: relation to social desir-

52 Jakovljevic M, Liu Y, Cerda A, Simonyan M,
Correia T, Mariita RM, et al. The Global
South political economy of health financing
and spending landscape: history and presen-
33.