Reactive microglia and IL1β/IL-1R1-signaling mediate neuroprotection in excitotoxin-damaged mouse retina

Levi Todd
University of Washington - Seattle Campus

Isabella Palazzo
The Ohio State University

Lilianna Suarez
The Ohio State University

Xiaoyu Liu
The Ohio State University

Leo Volkov
Washington University School of Medicine in St. Louis

See next page for additional authors

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Please let us know how this document benefits you.

Recommended Citation

Todd, Levi; Palazzo, Isabella; Suarez, Lilianna; Liu, Xiaoyu; Volkov, Leo; Hoang, Thanh V; Campbell, Warren A; Blackshaw, Seth; Quan, Ning; and Fischer, Andy J, "Reactive microglia and IL1β/IL-1R1-signaling mediate neuroprotection in excitotoxin-damaged mouse retina." *Journal of neuroinflammation*. 16, 1. 118 (2019).
https://digitalcommons.wustl.edu/open_access_pubs/9237

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Reactive microglia and IL1β/IL-1R1-signaling mediate neuroprotection in excitotoxin-damaged mouse retina

Levi Todd, Isabella Palazzo, Lilianna Suarez, Xiaoyu Liu, Leo Volkov, Thanh V. Hoang, Warren A. Campbell, Seth Blackshaw, Ning Quan, and Andy J. Fischer

Abstract

Background: Microglia and inflammation have context-specific impacts upon neuronal survival in different models of central nervous system (CNS) disease. Herein, we investigate how inflammatory mediators, including microglia, interleukin 1 beta (IL1β), and signaling through interleukin 1 receptor type 1 (IL-1R1), influence the survival of retinal neurons in response to excitotoxic damage.

Methods: Excitotoxic retinal damage was induced via intraocular injections of NMDA. Microglial phenotype and neuronal survival were assessed by immunohistochemistry. Single-cell RNA sequencing was performed to obtain transcriptomic profiles. Microglia were ablated by using clodronate liposome or PLX5622. Retinas were treated with IL1β prior to NMDA damage and cell death was assessed in wild type, IL-1R1 null mice, and mice expressing IL-1R1 only in astrocytes.

Results: NMDA-induced damage included neuronal cell death, microglial reactivity, upregulation of pro-inflammatory cytokines, and genes associated with IL1β-signaling in different types of retinal neurons and glia. Expression of the IL1β receptor, IL-1R1, was evident in astrocytes, endothelial cells, some Müller glia, and OFF bipolar cells. Ablation of microglia with clodronate liposomes or Csfr1 antagonist (PLX5622) resulted in elevated cell death and diminished neuronal survival in excitotoxin-damaged retinas. Exogenous IL1β stimulated the proliferation and reactivity of microglia in the absence of damage, reduced numbers of dying cells in damaged retinas, and increased neuronal survival following an insult. IL1β failed to provide neuroprotection in the IL-1R1-null retina, but IL1β-mediated neuroprotection was rescued when expression of IL-1R1 was restored in astrocytes.

Conclusions: We conclude that reactive microglia provide protection to retinal neurons, since the absence of microglia is detrimental to survival. We propose that, at least in part, the survival-influencing effects of microglia may be mediated by IL1β, IL-1R1, and interactions of microglia and other macroglia.

Keywords: Microglia, IL1β, IL-1R1, Retinal neuroprotection

Background

Microglia in the central nervous system have a significant impact upon neuronal function and survival following injury, and this impact can be beneficial or detrimental depending on the context [1]. Microglia are the innate immune cells of the central nervous system and are derived from erythro-myeloid precursor cells that originate in the yolk sac during early stages of development [2]. Prior to the onset of neurogenesis, microglia migrate into the retina through the vitreous and retinal periphery [3]. In the nervous system, microglia influence blood-vessel development, programmed cell death, phagocytosis of debris, and activity-dependent synaptic pruning [4, 5]. In response to injury, microglia rapidly migrate to the site of injury and undergo morphological and molecular changes associated with inflammation [1, 6]. Macrophages, another innate immune cell type, are often characterized by phenotypes that
range across a spectrum; the “M1” activation profile is pro-inflammatory and cytotoxic, whereas the “M2” activation can promote tissue repair (reviewed by [7]). Microglia can also be activated in helpful and harmful manners (reviewed by [1]), although the existence of a simple polarized phenotype is doubtful [8, 9].

Upregulation of pro-inflammatory or neurotoxic molecules by activated microglia is widely considered to be deleterious to neuronal survival [10, 11]. Multiple lines of evidence support this notion in diseased or damaged retinas. Activated microglia phagocytize healthy rod photoreceptors in a mouse model of retinitis pigmentosa and this exacerbates degeneration [12]. In a mouse model of glaucoma, upregulation of complement occurs prior to the onset of ganglion cell death, which tags synapses of ganglion cells to be targeted for engulfment by microglia [13]. In support of this finding, inhibition of complement suppresses the degeneration of RGCs in glaucomatous mouse retinas [14]. In a mouse model of hemorrhagic macular degeneration, treatment with minocycline prevents microglia accumulation in the sub-retinal space and increased photoreceptor survival [15]. However, in the context of retinal detachment, ablation of microglia prevented their accumulation in the sub-retinal space and this decreased survival of photoreceptors [16]. Multiple lines of evidence also support the notion that reactive microglia can be neuroprotective. In the chick retina, microglia ablation exacerbates NMDA-induced neuronal death [17]. Similarly, microglia are protective against excitotoxic damage in NMDA-treated hippocampal slice-cultures [18]. Ablation of microglia resulted in an increase in hippocampal neuron death in response to NMDA, and replenishment of microglia restored the resistance of hippocampal neurons to excitotoxicity [18]. In some paradigms, microglia can support neuronal survival during injury, but become detrimental to survival during the recovery phase [19]. Considered together, microglia can be beneficial or harmful to neuronal survival and the survival-influencing actions of microglia are context-specific.

In this study, we investigate whether microglia influence neuronal survival following an excitotoxic insult in the mouse retina. In addition, we investigate the involvement of IL1β and cell type-specific IL-1R1-receptor signaling. Collectively, our findings suggest that reactive microglia provide neuroprotection in excitotoxic-damaged retinas and this may be mediated by microglial production of IL1β, which acts, in part, via IL-1R1 in macroglia.

Methods and materials

Animals

The use of animals in these experiments was in accordance with the guidelines established by the National Institutes of Health and the Ohio State University. Mice were kept on a cycle of 12 h light, 12 h dark (lights on at 6:00 AM). C57BL/6J mice between the ages of P40-P100 were used for all experiments except when noted. Lines of mice included IL-1R1 reporter mice (IL-1R1GR/GR), IL-1R1 null mice (IL-1R1-/-/-), and GFAPCre-IL-1R1r/r [20]. GFAPCre-IL-1R1r/r mice are made from GFAP>Cre x homozygous knock in stop-fl/fl-IL1R1-3HA-IREStomato line of mice that was crossed onto the IL-1R1-null background [20, 21].

Preparation of clodronate liposomes

The preparation of clodronate liposomes was similar to previous descriptions [22, 23]. Fifty nanograms of cholesterol and 8 mg egg lecithin were dissolved in chloroform in a round-bottom flask. The solution was evaporated until a white liposome residue remained. One hundred and fifty-eight milligrams of dichloro-methylene diphosphonate (clodronate) in sterile PBS was added and rotated for 10 min. The liposomes were sealed under N2 at room temperature for 2 h. Clodronate encapsulation was facilitated by sonication for 3 min. The liposomes were centrifuged at 10,000 g for 15 min and re-suspended in 150 mL PBS. We are unable to determine the clodronate concentration due to the stochastic nature of the clodronate combining with the liposomes. We titrated doses to levels where > 70% of the microglia were ablated at 1 day after treatment.

Oral administration of PLX5622

C57BL/6 mice were fed chow formulated with PLX5622 (1200 ppm; provided by Plexxikon). Control animals were fed control chow AIN-76A (provided by Plexxikon). Mice were fed ad libitum on PLX5622 or control diets for a minimum of 2 weeks before experiments, and this diet was continued through the duration of each experiment.

Intraocular injections

Mice were anesthetized by using an isoflurane/oxygen non-rebreathing inhaler; 98% oxygen and 2% isoflurane. Injections were made into the vitreous chamber of the eye through the dorsal sclera. Injections are made by using a 20-μl Hamilton syringe with a disposable custom 31-gauge needle with a cutting tip. The volume of all injections was 2–3 μl. For all experiments, the right eyes of mice were injected with the “test” compound and the contra-lateral left eyes were injected with vehicle as a control. Compounds were injected in 2 μl sterile saline. Compounds used in these studies included N-methyl-D-aspartate (NMDA; 38.5 or 154 μg/dose) and IL1β (200 ng/dose; R&D systems).

scRNA-seq

Retinas were acutely dissociated via papain digestion and mild trituration. Dissociated cells were loaded onto the
10X Chromium Controller using Chromium Single Cell 3’ v2 reagents. Sequencing libraries were prepared following the manufacturer’s instructions (10X Genomics), with 10 cycles used for cDNA amplification and 12 cycles for library amplification. The resulting sequencing libraries were sequenced with paired end reads, with Read 1 (26 base pairs) and Read 2 (98 base pairs), on anNextseq500 at the Genomics Resources Core Facility (High Throughput Center) at Johns Hopkins University. Raw sequence data was processed with Cell Ranger software (10X Genomics) to align sequences, de-multiplex, and annotated to ENSEMBL databases; count reads; assess levels of expression; and construct gene-cell matrices. t-Distributed Stochastic Neighbor Embedding (tSNE) plots were generated and probed using Cell Ranger and Cell Browser software (10X Genomics). The tSNE plots were generated via aggregate cluster analysis of 9 separate cDNA libraries, including 2 replicates of control undamaged retinas and retinas at different times after NMDA-treatment. The identity of clustered cells was established using known cell type-specific markers. Violin/scatter plots were generated using Seurat [24, 25]. Identification of cell types clustered together in tSNE plots was established by using a candidate approach using well-known cell type-specific markers, as follows: ganglion cells (Pou4f2, Thy1, Nefl), amacrine cells (Tfap2a, Pax6, Gad1), bipolar cells (Vsx2, Grm6, Grik1), horizontal cells (Calb1, Lhx1), rod photoreceptors (Rh1, Nrl, Nr2e3), cone photoreceptors (Opn1mw, Arr3), astrocytes (Pax2, S100b), Müller glia (Vim, Slc3a2, Glul, Rlbp1), pericytes (Tagln, Acta2), and endothelial cells (Tiel, Cldn5).

Fixation, sectioning, and immunocytochemistry
Tissues were fixed, sectioned, and immunolabeled as described previously [26–28]. None of the observed labeling was due to non-specific labeling of secondary antibodies or auto-fluorescence because sections labeled with secondary antibodies alone were devoid of fluorescence. Primary antibodies used in this study are described in Table 1. Secondary antibodies included donkey-anti-goat-Alexa488/568, goat-anti-rabbit-Alexa488/568, and goat-anti-mouse-Alexa488/568/647 (Thermo Fisher Scientific) diluted to 1:1000 in PBS plus 0.2% Triton X-100.

Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)
To identify dying cells that contained fragmented DNA, the TUNEL method was used. We used an In Situ Cell Death Kit (TMR red; Roche Applied Science), as per the manufacturer’s instructions.

Photography, measurements, cell counts, and statistics
Photomicrographs were obtained using a Leica DM5000B microscope equipped with epifluorescence and Leica DC500 digital camera. Confocal images were obtained using a Leica SP8 imaging system at the Department of Neuroscience Imaging Facility at the Ohio State University. Images were optimized for color, brightness, and contrast, multiple channels over-laid, and figures constructed by using Adobe Photoshop. Cell counts were performed on representative images. Counts were consistently made from central regions of retina that were within a 0.7-mm radius of the posterior pole of the eye.

Where significance of difference was determined between two treatment groups accounting for inter-individual variability (means of treated-control values), we performed a two-tailed, paired \(t \) test. Where significance of difference was determined between two treatment groups, we performed a two-tailed, un-paired \(t \) test. Where significance of difference was determined across multiple groups, we performed a one-way ANOVA, followed by Tukey's test for multiple comparisons.

Table 1 Antibodies, sources, and working dilutions

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Working dilution</th>
<th>Host</th>
<th>Clone or catalog number</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calretinin</td>
<td>1:1000</td>
<td>Rabbit</td>
<td>CR 7697</td>
<td>Swant Inc.</td>
</tr>
<tr>
<td>Draq5</td>
<td>1:2000</td>
<td>n/a</td>
<td>62251</td>
<td>Thermo Scientific</td>
</tr>
<tr>
<td>F4/80</td>
<td>1:250</td>
<td>Mouse</td>
<td>MCA497GA</td>
<td>Bio-Rad Laboratories</td>
</tr>
<tr>
<td>Iba1</td>
<td>1:1000</td>
<td>Rabbit</td>
<td>019-19741</td>
<td>Wako Pure Chemical Industries</td>
</tr>
<tr>
<td>Ki67</td>
<td>1:300</td>
<td>Rabbit</td>
<td>DRM004</td>
<td>OriGene</td>
</tr>
<tr>
<td>Pax6</td>
<td>1:1000</td>
<td>Rabbit</td>
<td>50-103-0098</td>
<td>Biolegend</td>
</tr>
<tr>
<td>Tomato Lectin</td>
<td>1:1000</td>
<td>n/a</td>
<td>B-1175</td>
<td>Vector Laboratories</td>
</tr>
<tr>
<td>GFP</td>
<td>1:500</td>
<td>Chicken</td>
<td>Ab13970</td>
<td>Abcam</td>
</tr>
<tr>
<td>CD31</td>
<td>1:1000</td>
<td>Mouse</td>
<td>102502</td>
<td>Biolegend</td>
</tr>
<tr>
<td>RFP</td>
<td>1:500</td>
<td>Goat</td>
<td>Ab8181-200</td>
<td>Origene Technologies</td>
</tr>
<tr>
<td>S100b</td>
<td>1:300</td>
<td>Rabbit</td>
<td>Ab227914</td>
<td>Abcam</td>
</tr>
</tbody>
</table>
Results

Microglia reactivity accompanies NMDA-induced cell death

Reactive microglia are known to be prevalent in damaged retinas [4]. We characterized the progression of reactive microglia and cell death in the retina following a single intravitreal injection of NMDA. Consistent with previous reports [29], we found that Iba1-positive microglia exhibited an amoeboid “reactive” morphology shortly after NMDA-damage. This morphology was prevalent among microglia at 24 and 48 h after treatment, and there was a significant increase in the total number of Iba1-positive microglia at 4 h, 24 h, and 48 h after NMDA (Fig. 1a, b). TUNEL-positive cells were detected as early as 4 h after NMDA-treatment (Fig. 1c, d). The abundance of dying cells peaked at 24 h and was diminished by 48 h after treatment (Fig. 1c, d). At 48 h after damage, we observed a significant increase in the number of Iba1-positive cells that expressed F4/80 (Fig. 1e, f); a marker that is upregulated by reactive microglia [30, 31]. TSPO has been reported as a marker for reactive microglia and has been implicated with the ligand Dbi as coordinating pro-inflammatory signals between microglia and Müller glia [32, 33]. However, we found that TSPO is upregulated in both microglia and Müller glia, whereas Dbi is upregulated in microglia and downregulated in Müller glia in NMDA-damaged retinas (Additional file 1: Figure S1), consistent with a recent report [34]. The antibodies to Iba1 and F4/80 do not distinguish between microglia and macrophage that may have migrated into the retina. Thus, when describing Iba1/F4/80-positive microglia, it is implied that these cells may include macrophages.

The ablation of microglia exacerbates cell death in damaged retinas

We investigated whether the ablation of microglia/macrophages in the retina influences the survival of retinal neurons after an excitotoxic insult. Two consecutive daily intraocular injections of clodronate-liposomes depleted nearly 70% of the Iba1-positive microglia/macrophages in the retina (Fig. 2a, b). Empty liposomes were not used as a control because the liposomes potently stimulate the reactivity of microglia [22]. We did not detect any dying, TUNEL-positive cells in undamaged retinas following treatment with clodronate-liposome (not shown), suggesting that the clodronate-liposomes do not directly influence survival of retinal neurons or macroglia and that the destruction of the microglia is rapid and/or does not involve the fragmentation of DNA. With the majority of the microglia missing from the retina, we found more than a twofold increase in the number of TUNEL-positive cells in the retina after NMDA-treatment (Fig. 2c, d). The increase in cell death corresponded with decreased numbers of Pax6- and calretinin-positive cells in the ganglion cell layer (GCL) at 10 days after NMDA-treatment (Fig. 2e, f).

It is possible that the few remaining microglia that evade destruction with the clodronate-liposomes exacerbate the neuronal death resulting from NMDA-treatment. Thus, as an alternative means of ablating retinal microglia, we treated mice with chronic exposure to Csf1r antagonist (PLX5622), which selectively ablates microglia in the CNS [35]. Consistent with previous reports [36], we found a near-complete ablation of microglia from the retina after 2 weeks of PLX5622-treatment (Fig. 3a). In retinas treated with PLX5622 and NMDA, we found that less than 1% of the Iba1-positive cells survive exposure to PLX5622 (Fig. 3d). With the ablation of nearly all microglia at the time of injury, we found more than a twofold increase in the number of TUNEL-positive cells in the inner nuclear layer (INL) and GCL after NMDA-damage (Fig. 3b, c). Consistent with our findings in clodronate-treated retinas, there was a decrease in numbers of Pax6- and calretinin-positive neurons at 10 days after NMDA-damage in PLX5622-treated retinas (Fig. 3d–f).

Single-cell RNA-seq; expression of IL1β signaling components in the retina

To identify and provide a context for the IL-1-related factors that may mediate signaling in the different retinal cell types, we performed single-cell RNA sequencing (scRNA-seq) on NMDA-damaged mouse retina (Fig. 4). tSNE plots were generated from aggregate sequence data, 9 different single-cell cDNA libraries, including two preparations (rep1 and rep2) from undamaged retinas, and cells from retinas at 3, 6, 12, 24, 36, 48, and 72 h after NMDA-treatment (Fig. 4a). tSNE plots revealed distinct clustering of different retinal cell-types (Fig. 4a, b). The Müller glia were identified based on distinct and elevated expression, compared to all other cell types, of Vim, Lhx2, Sox9, Rlbp1, and Slc1a3 (Fig. 4c). Relatively few astrocytes (143 cells) were identified, based on expression of S100β and Pax2, (not shown) and were clustered in close proximity to the Müller glia. The small number of astrocytes reflects the relatively low abundance of astrocytes among retinal cell types. However, we cannot exclude the possibility of capture-bias wherein cell dissociation methodologies and micro-fluidic capture impacts the chances of capturing particular cell types. The clusters of bipolar cells were identified based on combined expression of Vsx2, Otx2, Lhx3, Gm6, and Grik1 (not shown). The cluster of endothelial cells was identified based on combined, distinct expression of Tie1 and Cldn5 (not shown). Microglia were identified based on combined, distinct expression of Rgs1, Ccl3, Ccl6, C1qa, C1qb, C1qc, Trem2, and Csf1r (Fig. 4d, e). The pattern of expression of Csf1r is consistent with the specific actions of PLX5622 at this receptor and selective ablation of microglia; Csf1r was
Fig. 1 (See legend on next page.)
not detected in significant numbers in retinal neurons, astrocytes, endothelial cells, or retinal pigmented epithelial (RPE) cells (Fig. 4e), suggesting that the diminished neuronal survival observed in PLX5622-treated animals resulted from specific actions at Csf1r expressed by microglia in the retina. Very few microglia from control, undamaged retinas were surveyed by scRNA-seq; less than 5% of the total number of microglia sampled came from control retinas whereas 34.4% of the total number of cells in the aggregate came from control retinas. Microglia from damaged retinas make up 95% of the total number of microglia captured. These findings suggest that quiescent microglia do not tolerate the dissociation and capture process for scRNA-seq as well as microglia from damaged retinas.

IL-1 signaling plays a prominent role in inflammatory responses [37]. Interleukin-1α (IL1α) and interleukin-1β (IL1β) both bind to IL-1R1 to initiate cell signaling. We queried for expression of cytokines, IL1-receptors, and associated signal transduction genes (Fig. 4f). We found that the secreted ligands Tnfa, Il1β, and Il1α were expressed exclusively by microglia, particularly following NMDA-treatment (Fig. 4g). Tnfa, Il1β, and Il1α were rapidly upregulated within microglia at 3 h after NMDA-treatment, and levels of expression remained elevated at 6 and 12 h after treatment but were reduced thereafter (Fig. 4h). Tnfrsf1α is a predominant receptor for TNFα [38, 39]. Tnfrsf1α expression was detected in endothelial cells, pericytes, astrocytes, and Müller glia in NMDA-damaged retinas (Fig. 4i, j). Tnfrsf12a was highly expressed by Müller glia at 3, 6, 12 + 24, and 36 + 48 + 72 h after NMDA-treatment and expressed in scattered microglia (Additional file 2: Figure S2). Tnfrsf21 was expressed at relatively high levels in scattered microglia and Müller glia in control and damaged retinas (Additional file 2: Figure S2). Tnfrsf1b, Tnfrsf11a, and Tnfrsf13b were expressed at relatively high levels in scattered microglia, but not other types of retinal cells (Additional file 2: Figure S2). Other isoforms of the Tnf-receptor (Tnfrsf4, 8, 9, 10a, 11b, 13c, 17, 18, 19, 22, 23, 25, 26) were not expressed at appreciable levels in retinal cells (not shown). By contrast, a recent study implied that retinal ganglion cells express receptors for TNFα, which is inconsistent with our findings [40]. By comparison, the receptor IL1r1 was predominantly expressed by astrocytes, and scattered expression was observed in endothelial cells, OFF bipolar cells, and some Müller glia (Fig. 4k, l). We failed to detect Il1r1 in microglia (Fig. 4k, l), suggesting that the reactivity and proliferation of microglia that resulted from exogenous IL1β was an indirect effect. We detected low levels of Il1r2 in only 5/655 microglia in the retina, consistent with RNA-seq data of purified cell types from the mouse CNS wherein Il1r2 was detected at very low levels in microglia/macrophage [10, 41]. Additionally, scRNA-seq from primate retina failed to detect appreciable levels of Il1r2 [42]. Myd88 serves as the canonical signaling adaptor for the IL-1 pathway and functions by linking IL-1R or TLRs to kinases (IRAK 1,2, and 4) [43, 44]. Activation of IRAKs can lead to downstream activation of the NFκB pathway [45]. These IL-1R1-associated signal-transduction genes were expressed in both microglia and Müller glia from NMDA-damaged retinas (Fig. 4f). The signal-transduction components are likely involved in TLR-signaling. Thus, we probed for changes in TLR1-13 after damage. We found scattered expression of Tlr2 and Tlr3 in Müller glia and scattered expression of Tlr1, Tlr2, Tlr3, Tlr4, Tlr7, and Tlr13 in microglia (Additional file 3: Figure S3). These findings are consistent with the hypothesis that microglia do not directly respond to IL1β.

To corroborate the data from scRNA-seq, we probed for the expression of IL-1R1 by using an IL-1R1-3HA-ires-tdTomato knock-in mouse line in which an IRES-tdTomato sequence is inserted in the 3’ end of IL-1r1 mRNA [20]. Consistent with our scRNA-seq data, immunohistochemistry labeling of RFP, which detects tdTomato, appeared in bipolar cells, astrocytes, endothelial cells, and a few Müller glia (Fig. 5a). Patterns of fluorescence did not appear different between control, NMDA-treated, and IL1β-treated retinas, and the expression of IL-1R1 did not vary significantly among individual cell types (Fig. 5a–e). IL-1R1-RFP was observed in nearly all endothelial cells that were CD31-positive and nearly all astrocytes that were Sox9- or S100β-positive (Fig. 5b, c, e). IL-1R1-RFP was detected in 4–10% of Müller glia that were positive for Sox9, which specifically labels Müller glia in the INL (Fig. 5c–e). IL-1R1-RFP-positive bipolar cells were positive for Vsx2 and Otx2 (Fig. 5c–e); these cells were presumptive OFF bipolar cells, consistent with the scRNA-seq data. Between 10 and
Fig. 2 (See legend on next page.)
Fig. 2 Clodronate-liposome-mediated ablation of microglia results in increased cell death and diminished neuronal survival in damaged retinas. Eyes were treated with 2 consecutive daily injections of saline or clodronate-liposomes and tissue harvested 4 days later (a, b), injected with NMDA at 4 days after clodronate-liposomes and harvested 1 day later (c, d), or injected with NMDA at 4 days after clodronate-liposomes and harvested 10 days later (e–g). Sections of the retina were labeled with antibodies to Iba1 (a), TUNEL (c), antibodies to Pax6 (green; e), or calretinin (red; e). The box plots in b, d, f, and g illustrate the mean, upper extreme, lower extreme, upper quartile, and lower quartile (n ≥ 6 animals). Significance of difference (*p < 0.05) was determined by using a t test. Arrows indicate microglia (a) or surviving ganglion cells (e). The calibration bars panels a, c, and e represent 50 μm. Abbreviations: ONL, outer nuclear layer; INL, inner nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer.

Fig. 3 PLX5622-mediated ablation of microglia results in increased cell death and diminished neuronal survival in damaged retinas. Mice were fed control diet or diet that included PLX5622 for 2 weeks. After 2 weeks of treatment with PLX5622, eyes were injected with NMDA and retinas harvested at 1 (b, c) or 10 days (d–f) later. Retinal sections were labeled using the TUNEL method (b), antibodies to Iba1 (green; top) (a, d), Pax6 (green; middle) (d), or calretinin (red) (d). The box-plots c, e, and f illustrate the mean, upper extreme, lower extreme, upper quartile, and lower quartile (n ≥ 6 animals). Significance of difference (*p < 0.05) was determined by using a t test. The calibration bars panels a, b, and d represent 50 μm. Abbreviations: ONL, outer nuclear layer; INL, inner nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer.
Fig. 4 (See legend on next page.)
20% of the bipolar cells and 4 and 10% of the Müller glia were positive for RFP regardless of treatment (Fig. 5e). We validated patterns of RFP expression, identifying IL-1R1-reporter (Fig. 4k, l and 5). There were no TUNEL-positive cells detected in IL1β-treated mice following damage (Fig. 7e). Iba1-positive cells, suggesting that cell death was not induced. These results suggest that a single intravitreal injection of IL1β is sufficient to stimulate microglial reactivity in the absence of damage, and this effect is likely to be indirect because we failed to detect significant expression of IL-1R1 in microglia via scRNA-seq or FACS (Fig. 4k, 1 and 5). Reactive microglia can influence the survival of neurons in the CNS, including the retina (reviewed by [4, 46–48]). Thus, we investigated whether IL1β-mediated activation of microglia influenced the survival of neurons in NMDA-damaged retinas. We found that a single intravitreal injection of IL1β prior to NMDA-treatment resulted in a significant decrease in the number of TUNEL-positive cells at 1 day after damage (Fig. 6f, g). Consistent with these findings, we found significant increases in the number of Draq5-labeled nuclei in the GCL, calretinin-positive ganglion cells in the GCL, and thickness of the inner nuclear layer (INL) when assayed 12 days after damage (Fig. 6h–k). In addition, we observed increased numbers of reactive microglia labeled for Iba1 and F4/80 in IL1β-treated retinas (Fig. 6l, m). Collectively, these findings suggest that intravitreal delivery of IL1β stimulates the activation of microglia and protects inner retinal neurons and ganglion cells against excitotoxic damage.

IL1β protects neurons from excitotoxic damage independent of microglia

We next sought to test whether the neuroprotective effects of IL1β were mediated through microglia/macrophage in the retina. We found that IL1β application was protective against cell death at 24 h post injury even with depletion of microglia (Fig. 7a, b). Although we found increased numbers of microglia/macrophage in NMDA-damaged retinas that were pre-treated with IL1β compared to damaged retinas alone (Fig. 6), there was a near complete depletion of microglia in IL1β/NMDA-treated retinas from mice fed a diet containing PLX5622 (Fig. 7c, d). All regions of retinas from mice treated with PLX5622, IL1β, and NMDA were depleted of Iba1-positive cells (Fig. 7c, d). However, Iba1-positive cells were observed within the optic nerve near the optic nerve head of PLX5622-treated mice following damage (Fig. 7e). Iba1-positive cells were present after NMDA damage with or without IL1β pre-treatment (not shown). These findings suggest that IL1β treatment conveys neuroprotection against excitotoxic damage independent of the presence of microglia, and the microglia/macrophages within the optic nerve survive exposure to PLX5622.

IL1β conveys neuroprotection by acting through IL-1R1 expressed by astrocytes

Considered together, our data suggest that IL-1R1-signaling may originate with pro-inflammatory cytokines provided by microglia/macrophage and broadly impact retinal neurons (namely OFF bipolar cells), endothelial cells, astrocytes, and Müller glia in damaged retinas. To further explore the involvement of IL-1R1-signaling, we...
investigated the impact of NMDA-induced damage in mutant retinas of IL-1R1r/r mice (IL-1R1-null) and GFAPCre-IL-1R1r/r mice (IL-1R1 expressed only in astrocytes). The GFAP-Cre-IL-1R1 mice are made from GFAP-Cre x homozygous knock in stop-fl/fl-IL-1R1-3-HA-IRES-tomato line of mice that was crossed onto...
Fig. 6 (See legend on next page)
the IL-1R1-null background [20, 21]. With this partial GFAP-promoter, IL-1R1 is restored only in astrocytes, not in Müller glia, according to the IRES-reporter; the tdTomato-reporter was detected exclusively in S100β-positive astrocytes (Fig. 8e). Additionally, HA-labeling revealed that IL-1R1 was specifically restored in astrocytes near the vitreous surface of the retinas (Additional file 4: Figure S4). We found that levels of cell death following NMDA-treatment are more variable but not significantly different in IL-1R1-null retinas compared to wild type (WT) retinas (Fig. 8a–d). The germline-loss of IL-1R1 may result in compensatory adjustments in gene expression during development that impact the variability of cell death in retinas treated with NMDA. Interestingly, injection of IL1β prior to NMDA treatment failed to provide neuroprotection in IL-1R1-null retinas. Numbers of TUNEL-positive cells were not significantly different in NMDA-damaged IL-1R1-null retinas treated with vehicle versus treatment with IL1β prior to damage (Fig. 8a–d). However, in retinas from GFAP-Cre-IL-1R1r/r mice, levels of cell death in NMDA-damaged retinas were not significantly different from those observed in WT retinas (Fig. 8a–d). In addition, the restoration of IL-1R1expression in astrocytes was sufficient to convey IL1β-mediated neuroprotection against NMDA-induced damage. Numbers of TUNEL-positive cells were significantly reduced by treatment with IL1β before NMDA-damage in retinas where IL-1R1 was restored only in astrocytes (Fig. 8a–c). Numbers of dying cells observed inGFAPCre-IL-1R1r/r retinas treated with IL1β were not significantly different from those observed in WT retinas treated with IL1β (Fig. 8a–d). Further studies are required to determine whether IL1β/IL-1R1-mediated neuroprotection involves IL-1R1 in bipolar cells, endothelial cells, and/or Müller glia.

Discussion

We report here that microglia can provide protection to retinal neurons following an acute excitotoxic injury. After NMDA-induced damage, microglia acquire an amoeboid morphology and upregulate F4/80, indicative of an “activated” phenotype [3, 49]. Depletion of microglia via clodronate liposomes or CsF1r-antagonist prior to an excitotoxic insult resulted in increased cell death and decreased neuronal survival. By comparison, treatment of retinas with IL1β stimulated the reactivity and proliferation of microglia. This “priming” of inflammation with IL1β resulted in decreased cell death and increased neuronal survival following an excitotoxic insult, and the protective effects of IL1β do not require the presence of microglia. These pro-inflammatory cytokines are exclusively expressed by microglia in damaged retinas. Inner retinal neurons, endothelial cells, astrocytes, and Müller glia express components of the IL-1-signal transduction pathway and the IL-1R1 receptor. IL1β fails to convey neuroprotection in the IL-1R1-null retina, but neuroprotection is conveyed by IL1β if the expression of IL-1R1 is selectively restored in astrocytes. Taken together, our data support the hypothesis that reactive microglia can provide protection to neurons and this may be mediated, in part, by IL1βacting at IL-1R1 expressed by astrocytes within the retina.

Microglia become “activated” during the progression of neurodegenerative diseases, but this may not always convey negative consequences. Selective ablation of microglia in an Alzheimer’s mouse model resulted in no differences in plaque load or neural survival [50]. Ablation of microglia had no effect on the survival or outgrowth of ganglion cells axons following optic nerve crush, although the depletion of microglia affected the removal of cellular debris [51]. In other contexts, activation of microglia has been associated with the onset of pathology, and suppression of microglial activation is a common strategy to promote neuronal survival and slow disease progression [4, 12, 15]. However, microglia activation is not exclusively correlated with detrimental outcomes [18, 52]. Microglia have the capacity to release anti-inflammatory cytokines and neurotrophic growth factors [53]. Furthermore, microglia can coordinate activities with Müller glia to mediate neuroprotection in the retina [48, 54]. Müller glia play a critical role in the context of retinal injury and can be beneficial or harmful to neuronal survival depending on the context [55]. Müller glia can communicate with microglia via diazepam-binding inhibitor ligand (DBI) that activates the translocator protein (TSPO) receptor on microglia [33]. DBI-TSPO signaling is upregulated during injury and inflammation and provides a mechanism for Müller glia to regulate microglia-mediated inflammation [33]. In response to activated microglia, Müller glia can release growth factors such as ciliary neurotrophic factor (CNTF) and leukemia inhibitory factor (LIF), both of
Fig. 7 (See legend on next page.)

Fig. 7: (a) Immunofluorescence staining showing TUNEL and Iba1 + Draq5 expression in different groups treated with PLX5622, saline + NMDA, IL1β + NMDA, and harvest tissue. (b) Bar graph representing the number of dying cells in different treatment groups. (c) Comparison of ONL, INL, IPL, and GCL layers in samples treated with PLX5622 + saline + NMDA and PLX5622 + IL1β + NMDA. (d) Box plot showing the number of Iba1+ cells across different treatment groups. (e) Representative images of PLX5622 + IL1β + NMDA treated tissue.
which have been implicated in neuroprotection [56]. The data presented here indicate that the depletion of microglia results in increased death of inner retinal neurons following NMDA-induced excitotoxicity.

Consistent with the notion that reactive microglia can provide protection against excitotoxic damage, we found that treating retinas with IL1β prior to injury leads to a decrease in cell death and an increase in long-term neuronal survival. IL1β-stimulated microglia proliferation and F4/80 upregulation, indicating that microglia were “activated” by this pro-inflammatory cytokine. IL-1 has been suggested to be a “master regulator” of neuroinflammation and is known to be produced by activated microglia as well as stimulate microglial activation [57, 58]. Inhibition of IL1β can decrease microglial reactivity, which correlates to a reduction in photoreceptor apoptosis and preservation of retinal function in a mouse model of retinitis pigmentosa [12]. Intraocular injections of tamoxifen are potent neuroprotective and may act by reducing the production of pro-inflammatory cytokines, including IL1β [59]. In contrast to these findings, we find that IL1β application is beneficial to neuronal survival after excitotoxic damage. This discrepancy could be due to the fact that NMDA-injury is an acute damage paradigm and an initial inflammatory response may be helpful to resolve the damaged environment whereas models of photoreceptor disease may represent a model of sustained injury where prolonged inflammation is detrimental. In addition to stimulating microglial reactivity, our data indicate that IL1β may act at different types of retinal cells that express IL-1R1. Interestingly, we find that IL1β treatment is sufficient to activate microglia (Fig. 6), although microglia do not express IL1R1 (Figs. 4 and 5) This is consistent with previous studies indicating the IL1R1 is not expressed by microglia [21, 60]. These studies indicate that IL1β indirectly activates microglia by acting through IL-1R1. Liu et al. [21] showed that endothelial IL-1R1 mediates IL-1-induced activation of microglia and upregulation of inflammatory mediators. Similarly, Krasnow et al. [60] showed that IL1β-treatment results in microglial activation when co-cultured with endothelial cells or astrocytes, whereas IL1β fails to stimulate microglia when cultured alone. Similarly, we find that the survival-influencing effects of IL1β are mediated by signaling through IL-1R1 expressed by astrocytes. Astrocytes have been shown to take on reactive phenotypes that can be neurotoxic or neuroprotective. IL1α, TNFα, and C1q, secreted from microglia, have been shown to induce an A1, neurotoxic astrocyte phenotype that promotes neuronal death [61]. IL1β alone or combined with TNFα or C1q favors an A2, neuroprotective astrocyte phenotype [61]. Additionally, recent work has shown that IL1β activation of IL1R1 on astrocytes specifically represses IL-1-induced inflammatory cytokine expression in microglia [21]. Consistent with this notion, significant attention has recently focused upon retinal astrocytes as promising targets to provide neuroprotection to ganglion cells in models of glaucoma [48, 62]. Herein, we may have provided the first direct evidence that a cytokine directly acting at retinal astrocytes impacts the survival of ganglion cells in damaged retina.

It remains unknown whether the signaling from microglia to Müller glia influences neuronal survival in the retina. A previous report found that pharmacological inhibition of NFκB was neuroprotective in NMDA-damaged mouse retinas, and this resulted from decreased production of TNFα by Müller glia [63]. Production of TNFα by Müller glia was probed by immunofluorescence [63]. However, these findings are not consistent with our scRNA-seq data which indicate that Tnfα is highly expressed by microglia, but is not expressed by Müller glia in damaged mouse retina (see Fig. 4). Similarly, RNA-seq data from sorted cells from human and mouse brain indicate that Tnfα is highly expressed by microglia/macrophage, but is not expressed by astrocytes, neurons, oligodendrocytes, or endothelial cells [10, 64]. The influence of NFκB-signaling on neuronal survival may be context-specific and remains controversial with findings supporting both protective [65–67] and detrimental functions [63, 68]. Further studies are required to determine the sites of action of IL1α and TNFα in damaged retinas.

NMDA elicits neuronal death via excitotoxicity and over-activation of calcium-permeable ionotropic NMDA receptors [69]. Elevated glutamate can lead to excitotoxicity in retinal pathologies including glaucoma, diabetic retinopathy, and retinal ischemia (reviewed by [70]). Considering our findings that microglia provide neuroprotection following an excitotoxic insult, targeting microglia may be a useful therapeutic strategy in diseases where excitotoxicity plays a role. Most therapeutic strategies targeting microglia in the CNS are aimed at dampening the pro-inflammatory “reactive” microglial responses that occur during chronic
Fig. 8 (See legend on next page.)
and progressive diseases [4]. Further studies are required to determine how reactive microglia influence neuronal survival following acute or progressive retinal damage in different models of disease. Consistent with our findings, a recent paper by Okunuki et al. [16] demonstrated that depletion of retinal microglia resulted in increased death of photoreceptors following retinal detachment. However, our findings differ significantly with those of Takeda and colleagues wherein ablation of microglia resulted in improved neuronal survival in NMDA-damaged retinas [40]. The differences between our studies may have resulted from differences in doses of NMDA, levels of damage, and activation/recruitment of microglia/monocytes and their focus on Brn3α retinal ganglion cells rather than surveying survival across different types of retinal neurons.

We did not observe significant repopulation of retinal microglia following depletion, likely because we did not make observations following withdrawal of PLX5622. Sources of repopulating microglia are known to include monocytes from the optic nerve [71]. Consistent with this notion, we found Iba1-positive monocytes in the optic nerve following PLX5622-treatment which was maintained through the course of our experiments. We failed to find significant numbers of repopulating monocytes within the retina through the course of our studies. Thus, it is unlikely that reactive, residual, or infiltrating monocytes impacted the diminished survival we observed in PLX5622/NMDA-treated retinas, nor influenced the survival-promoting effects of IL1β in PLX5622/NMDA-treated retinas. Evidence suggests pathogenic roles of microglia and infiltrating macrophages in mouse models of retinal degeneration [72, 73]. By comparison, a recent study has suggested that the protective actions of microglia include recruitment of peripheral monocytes to support the survival of photoreceptors following a detachment injury [16]. The different roles of these two populations of immune cells remain unclear, as microglia and infiltrating macrophages share many immunological functions and recent studies indicate similar genetic profiles between native and repopulated microglia/monocytes [71].

Conclusions
We conclude that reactive microglia can support survival of retinal neurons following excitotoxic injury, whereas the absence of microglia can be detrimental. In the retina, microglia are the predominant source of IL1β, which can act at IL-1R1 which is expressed by astrocytes, endothelial cells, Müller glia, and some inner retinal neurons. We find that exogenous IL1β is neuroprotective against excitotoxic damage, and this effect is predominantly mediated through IL-1R1 expression by retinal astrocytes. Thus, the influence of cytokines upon retinal astrocytes is implicated as an important therapeutic target to impact the survival of retinal neurons, particularly ganglion cells, in diseased retinas.

Additional files

Additional file 1: Figure S1. Expression of Tspo and Dbi in retinal cells following NMDA-treatment. scRNA-seq was used to identify patterns of expression of Tspo and Dbi in dissociated retinal cells. Each dot represents one cell. Violin/scatter plots of expression of Tspo (a) and Dbi (b). Abbreviations: ONL, outer nuclear layer; INL, inner nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer.

Additional file 2: Figure S2. Expression of Trnsf isoforms in retinal cells following NMDA-treatment. scRNA-seq was used to identify patterns of expression of Trnsf isoforms in dissociated retinal cells. Each dot represents one cell. Violin/scatter plots of expression of Trnsf isoforms in microglia and Müller glia at different times after NMDA-treatment. (JPG 3620 kb)

Additional file 3: Figure S3. Expression of Tlr isoforms in retinal cells following NMDA-treatment. scRNA-seq was used to identify patterns of expression of Tlr isoforms among acutely dissociated retinal cells. Each dot represents one cell. Cells were sampled from control retinas (rep1 5300 cells and rep2 12,932 cells) and from retinas at 3 h (8518 cells), 6 h (8000 cells), 12 h (4307 cells), 24 h (4270 cells), 36 h (1618 cells), 48 h (2246 cells), and 72 h (2269 cells) after NMDA-treatment (a). tSNE plots revealed distinct clustering of different types of retinal cells and numbers of cells surveyed (in parentheses) (b). Microglia were identified based on collective expression of Rgs1, Trem2, C3, C5, C1qα, C1qβ, and C1qε (Fig. 4d). (c) tSNE plots for the collective expression of Tlr1, Tlr4, Tlr7 and Tlr13, expression is predominantly restricted to microglia. (d, e) tSNE plots for the expression of Tlr2 and Tlr3. Violin/scatter plots of expression of Tlr isoforms in Müller glia at different times after NMDA-treatment (f). (JPG 3820 kb)

Additional file 4: Figure S4. IL-1R1-HA is localized to astrocytes near the vitread surface of the retinas. Sections of the retina were labeled for HA-immunoreactivity in both IL-1R1-3HA-ires-TdTomato mice and GFAPCre-Il-1r1/r mice, which also contain the IL-1R1-3HA-ires-TdTomato sequence. Abbreviations: ONL, outer nuclear layer; INL, inner nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer. (JPG 3120 kb)

Abbreviations
ANOVA: Analysis of variance; CNS: Central nervous system; CNTF: Ciliary neurotrophic factor; CSF1R: Colony-stimulating factor 1 receptor; DBI: Diazepam-binding inhibitor ligand; GCL: Ganglion cell layer; GFAP: Glial fibrillary acidic protein; IL1R1: Interleukin 1 receptor type 1; IL1β: Interleukin 1
Competing interests

Consent for publication

guidelines established by the National Institutes of Health and the Ethics approval and consent to participate the manuscript. All authors read and approved the final manuscript.

SB designed experiments, constructed figures, and contributed to writing the manuscript. AJF, NQ, and LT and IP designed and executed experiments, gathered data, constructed figures, and contributed to writing the manuscript. LS, LV, WAC, and TH

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Authors’ contributions

LT and IP designed and executed experiments, gathered data, constructed figures, and contributed to writing the manuscript. LS, LV, WAC, and TH executed experiments, gathered data, and constructed figures. AJF, NQ, and SB designed experiments, constructed figures, and contributed to writing the manuscript. All authors read and approved the final manuscript.

Ethics approval and consent to participate

The use of animals in these experiments was in accordance with the guidelines established by the National Institutes of Health and the Institutional Animal Care and Use Committee at Ohio State University.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details

1 Department of Neuroscience, College of Medicine, The Ohio State University, 3020 Graves Hall, 332 W. 10th Ave, Columbus, OH 43210-1239, USA. 2 Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA. 3 Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA. 4 Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, USA. 5 Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA. 6 Department of Biological Structure, University of Washington, Seattle, WA, USA.

Received: 31 January 2019 Accepted: 9 May 2019

Published online: 06 June 2019

References

