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Abstract

Background:A telecoil (t-coil) is essential for hearing aid users when listening on the telephone because
using the hearing aid microphone when communicating on the telephone can cause feedback due to

telephone handset proximity to the hearing aid microphone. Clinicians may overlook the role of the t-coil
due to a primary concern of matching the microphone frequency response to a valid prescriptive target.

Little has been published to support the idea that the t-coil frequency response should match the micro-
phone frequency response to provide “seamless” and perhaps optimal performance on the telephone. If

the clinical goal were to match both frequency responses, it would be useful to know the relative differ-
ences, if any, that currently exist between these two transducers.

Purpose: The primary purpose of this study was to determine if statistically significant differences were
present between the mean output (in dB SPL) of the programmed microphone program and the hearing

aid manufacturer’s default t-coil program as a function of discrete test frequencies. In addition, pilot data
are presented on the feasibility of measuring the microphone and t-coil frequency response with real-ear

measures using a digital speech-weighted noise.

Research Design: A repeated-measures design was utilized for a 2-cc coupler measurement condition.

Independent variables were the transducer (microphone, t-coil) and 11 discrete test frequencies (15 dis-
crete frequencies in the real-ear pilot condition).

Study Sample: The study sample was comprised of behind-the-ear (BTE) hearing aids from one man-
ufacturer. Fifty-two hearing aids were measured in a coupler condition, 39 of which were measured in

the real-ear pilot condition. Hearing aids were previously programmed and verified using real-ear mea-
sures to the NAL-NL1 (National Acoustic Laboratories—Non-linear 1) prescriptive target by a licensed

audiologist.

Data Collection andAnalysis:Hearing aid output wasmeasured with a Fonix 7000 hearing aid analyzer

(Frye Electronics, Inc.) in a HA-2 2-cc coupler condition using a pure-tone sweep at an input level of 60 dB
SPLwith the hearing aid in themicrophone program and 31.6 mA/M in the t-coil program. A digital speech

weighted noise input signal presented at additional input levels was used in the real-ear pilot condition. A
mixed-model repeated-measures analysis of variance (ANOVA) and the Tukey Honestly Significant Dif-

ference (HSD) post hoc test were utilized to determine if significant differences were present in perform-
ance across treatment levels.
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Results: There was no significant difference between mean overall t-coil and microphone output aver-
aged across 11 discrete frequencies (F(1,102) 5 0, p , 0.98). A mixed-model repeated-measures

ANOVA revealed a significant transducer by frequency interaction (F(10,102) 5 13.0, p , 0.0001). Sig-
nificant differences were present at 200 and 400 Hz where the mean t-coil output was less than the mean

microphone output, and at 4000, 5000, and 6300 Hz where the mean t-coil output was greater than the
mean microphone output.

Conclusions: The mean t-coil output was significantly lower than the mean microphone output at
400 Hz, a frequency that lies within the typical telephone bandwidth of 300–3300 Hz. This difference

may partially help to explain why some patients often complain the t-coil fails to provide sufficient loud-
ness for telephone communication.

Key Words: Electromagnetic (EM) field, hearing aid, telecoil (t-coil)

Abbreviations: ANSI 5 American National Standards Institute; BTE 5 behind the ear; digispeech 5

digital speech; EAM 5 external auditory meatus; EM 5 electromagnetic; FFC 5 far-field cancelling;

HFA 5 high frequency average; HSD 5 Honestly Significant Difference; REAR 5 real-ear aided
response; RSETS 5 relative simulated equivalent telephone sensitivity; SPLITS 5 sound

pressure level of the inductive telephone simulator; t-coil 5 telecoil; TMFS 5 telephone magnetic
field simulator

I
n1936 Joseph Poliakoff patented a magnetic induc-

tion loop that transmitted electromagnetic (EM) sig-

nals to a nearby antenna. In the subsequent year,

an induction coil acting as an antenna for EM signals

was embedded in the British Multitone hearing aid

for use on the telephone, representing the first docu-

mented use of the telecoil (t-coil) (Levitt, 2007). Sam
Lybarger, however, is acknowledged for implementing

t-coils in hearing aids in the United States in 1947,

reporting that unintended EM leakage from a tele-

phone receiver causes a field immediately adjacent to

the t-coil embedded in the hearing aid. This EM field

contains the source signal from the telephone receiver

with the EM signal proportional to the intended elec-

trical signal (Ross, 2005; Levitt, 2007). The EM signal
is detected by the t-coil, a wire coiled about a perme-

able metal core, and transduced by the hearing aid

into an acoustic signal (Yanz and Preves, 2003). Spe-

cifically, successful induction requires that the signal

must pass through the metal core while an electric

current flows through the coiled wire (Ross, 2005).

The result is an enduring technology that provides sev-

eral distinct advantages over the microphone when a
hearing aid user uses the t-coil while communicating

on the telephone.

One advantage, unlike the microphone, is that the

t-coil will only detect EM signals and not any undesired

nearby acoustic signals. This will provide the user with

a more favorable listening situation for achieving

improved speech recognition when using the telephone

or assistive devices. A second advantage is that the
t-coil allows the telephone receiver to be positioned in

close proximity to the ear without producing feedback.

Feedback will naturally occur due to the close proximity

of the telephone receiver to the hearing aid microphone

(Takahashi, 2005). A patient might decrease the hear-

ing aid volume to eliminate feedback with the expense

of a likelihood of decreased speech recognition. A third

advantage is that using the microphone when commu-

nicating on the telephone can cause attenuation of low

frequency energy as the user attempts to eliminate the

feedback by distancing the hearing aid from the EM

telephone receiver (Goldberg, 1975). In addition, the

t-coil can receive EM signals from sources other than
telephones such as a neck-loop or an inductive loop sys-

tem installed in educational settings, clinics, homes,

theaters, and places of worship. Inductive loop systems

transmit an EM signal to the hearing aid via a wire that

“loops” around a room. This arrangement provides a

high signal-to-noise ratio (SNR), whereby the acoustic

signal of interest can effectively circumvent distance

and background noise as it is transmitted electro-
magnetically from the induction loop to the t-coil. In

addition, t-coils and induction loops can provide connec-

tivity to modern technologies (e.g., cellular telephones

and portablemusic devices) that are of low cost and easy

to use relative to other options (Beck and Fabry, 2011).

Direct cell phone use with t-coils, however, can be prob-

lematic because cell phones use high frequency signals

in the gigahertz range that can become amplified by
metal and wire of short length (Victorian and Preves,

2004). Efforts are underway for cell phone manufac-

turers to specify EM interference as well as hearing

aid manufacturers to specify hearing aid immunity to

these signals. For example, the American National

Standards Institute (ANSI) C63.19 2006 (ANSI, 2006)

assists hearing aid users and clinicians to identify cell

phones that are less likely to cause interference (Levitt
et al, 2005). Unfortunately, the implementation of

standards specific to t-coil use has historically been slow

and limited.

For decades, electroacoustic measurement of the

t-coil frequency response has received substantially less

attention than the microphone frequency response
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(Ross, 2005; Takahashi, 2005). In fact, ANSI S3.22-1976

(ANSI, 1976) only required a test-field strength of 10mA/M

and output measured at 1000 Hz (Teder, 2003). Twenty

years later, ANSI S3.22-1996 (ANSI, 1996) mandated
that t-coil performance be evaluated with a test-field

strength of 31.6 mA/M. This can be accomplished in

one test system using a test transducer called a tele-

phone magnetic field simulator (TMFS), which is a

handheld device designed to generate a 31.6 mA/M

EM field, simulating the average EM leakage of a con-

ventional telephone. Furthermore, the high frequency

average (HFA) (1000, 1600, and 2500 Hz) in sound
pressure level of the inductive telephone simulator

(SPLITS) was compared to the HFA of the microphone

response using a 60 dB SPL input signal with the vol-

ume control at reference test position (RTP) (Teder,

2003). Formerly known as the simulated telephone sen-

sitivity (STS) in ANSI S3.22-1996, this difference

between the microphone HFA and t-coil HFA has

recently been renamed the relative simulated equiva-
lent telephone sensitivity (RSETS) in ANSI S3.22-

2003 (ANSI, 2003). The closer the RSETS is to 0 dB,

the closer the t-coil frequency response matches the

microphone frequency response at 1000, 1600, and

2500 Hz (Teder, 2003).

Prescriptive fits are typically based on themicrophone

frequency response to average conversational speech

presented at an input level of 65 dB SPL at a distance
of 1 m. This is conventionally deemed to be representa-

tive of “real-life” one-on-one listening. There is, however,

no standardized protocol for verification of t-coil perform-

ance because the listening condition is more of a chal-

lenge to simulate (Yanz and Pehringer, 2003). Despite

the fact that the conventional telephone’s bandwidth

is from 300 to 3300Hz, telephones are not equal in terms

of how much EM leakage is released from the handset
(Kozma-Spytek, 2003; Yanz and Preves, 2003). This

causes inconveniencewhereby the hearing aid usermust

manually adjust the volume control of the hearing aid

while in the t-coil program at the beginning of a tele-

phone conversation. Also, the distance from the tele-

phone receiver is only centimeters from the t-coil,

which makes the appropriate input level for creating a

prescribed target evenmore difficult to identify. Further-
more, not all hearing aid t-coil frequency responses are

programmable, and of those that are, not all allow fre-

quency specific adjustment of the gain of the frequency

response. Even if clinicians had the ability to program

the t-coil frequency response, it has not been determined

whether the t-coil frequency response should be the same

as the microphone frequency response when the band-

width of the telephone is narrower than the bandwidth
of average conversational speech arriving at the micro-

phone (Rodriguez et al, 1993).

Previous studies have measured hearing aids in a

test box with the volume control full on (Tannahill,

1983; Rodriguez et al, 1985). Rodriguez et al (1985)

reported that, in general, the microphone transducer

produced consistently higher gain (output) than the

t-coil transducer irrespective of the frequency region
of interest. These results necessitated verification

measures to determine the magnitude of gain (output)

arriving to the ear in the microphone and t-coil pro-

grams. Additional studies measured the real-ear inser-

tion response (REIR) and real-ear aided response

(REAR) for the microphone and t-coil programs using

an Audiometer Telephone Interface (ATI) designed to

match a conventional telephone in the t-coil (Rodriguez
et al, 1991; Rodriguez et al, 1993). Again, the mean gain

was higher for the microphone response at all frequen-

cies lower than 4500 Hz, and there was a subjective

preference for increased t-coil gain (specifically more

low frequency gain and a flatter frequency response).

Because the aforementioned studies reported that dif-

ferences exist between these two listening conditions

(i.e., microphone and t-coil) using coupler and real-
ear measures, other investigators elected to analyze

how different coupling modes would impact user per-

formance in word recognition. These studies concluded

that differences in word recognition between the micro-

phone and t-coil were not statistically significant and

the main variable affecting user performance was the

particular telephone used in the study (Holmes, 1985;

Upfold and Goodair, 1997; Plyler et al, 1998). These
studies, however, may have been limited by hearing

aids without effective feedback management and an

inability to program the t-coil independent of the micro-

phone program in order to investigate if an increase in

t-coil gain would improve word recognition.

In summary, despite comparisons of the microphone

and t-coil conditions using word recognition measures

that include distance, real-ear measures, and coupler
measures, the appropriate fit for the t-coil frequency

response remains ambiguous. Teder (2003) reports that

there is little evidence addressing what t-coil frequency

response condition is most satisfactory for “real-life”

telephone use. Specifically, should the t-coil frequency

response be based on the microphone frequency re-

sponse, and if so, should the overall gain of the t-coil

be equal to the overall gain of the microphone? Most
clinicians do not consider the role of the overall gain

and frequency response of the t-coil because clinicians

are primarily concerned with matching the microphone

response to a valid prescriptive target. Further, during

the hearing aid fitting it is probably typical for clini-

cians to upload the manufacturer’s default t-coil set-

ting. Moreover, if the patient then reports poor

performance with the telephone, clinicians typically
suggest an amplified telephone or counsel the patient

on the importance of correct telephone receiver position.

The clinician might also explain there is a poor history

of telephone-to-hearing-aid compatibility, as well as

Journal of the American Academy of Audiology/Volume 23, Number 5, 2012
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poor reliability in the coupling success between and

across telephones to hearing aids. None of these strat-

egies, however, take into account that the cause of the

poor t-coil performance could be an inappropriately pro-
grammed t-coil.

Due to the lack of t-coil consideration, little has been

published to support the idea that the t-coil frequency

response should match the microphone frequency

response to provide improved performance on the tele-

phone. Until these data become available it seems rea-

sonable to assume that the t-coil frequency response

should match the microphone frequency response. If
the audiologist’s goal were to match both frequency

responses, it would be useful to know the relative differ-

ences that may exist between these transducers.

The primary purpose of this study was to address dif-

ferences in the mean frequency response between the

programmed microphone and default t-coil hearing

aid settings through coupler measures of programmed

behind-the-ear (BTE) hearing aids. The following null
hypotheses were developed for the coupler test condition:

1. There will be no significant difference in the mea-

sured output (in dB SPL) of the frequency response

betweenmicrophone and t-coil transducers averaged

across 11 test frequencies.

2. There will be no significant difference in measured

output (in dB SPL) of the two-factor interaction of
transducers and frequencies.

METHODS

Hearing Aids

Fifty-two BTE hearing aids were measured in a 2-cc
coupler condition. All hearing aids were recently

returned from repair to the Adult Audiology Clinic at

the Center for Advanced Medicine at Washington Uni-

versity in St. Louis School of Medicine. Each hearing

aid had the ability for the investigators to select the

microphone and t-coil programs through the program-

ming software. For all hearing aids, themicrophone fre-

quency response was programmed to the NAL-NL1
(National Acoustic Laboratories—Non-linear 1) (Dillon,

1999) prescriptive target for the patient’s hearing loss

using an input level of 65 dB SPL. T-coil settings were

not adjusted and thereby left to the manufacturer

default setting. Prior to analysis, each hearing aid

was temporarily programmed via the manufacturer’s

NOAH-integrated software module so that the patient’s

previously programmed microphone and the default
t-coil frequency response were set to programs one (pro-

grammed microphone) and two (default t-coil) respec-

tively. The current manufacturer NOAH software

module was used to make these programming changes.

Equipment

All performance measures were completed using a

Fonix 7000 hearing aid analyzer (Frye Electronics,

Inc.) situated inside a double-walled sound suite absent

of EM interference. Coupler measures were completed to

determine possible differences between the programmed

microphone and default t-coil frequency response. A

pure-tone sweep was used to measure the frequency

response of the programmed microphone and default

t-coil in the 2-cc coupler in accordance with ANSI

S3.22-2003. By default, the source input level for ANSI

S3.22-2003 is 60 dB SPL. The equivalent EM drive of

the test-field strength of the TMFS that the Fonix

7000 is equipped with is 31.6 mA/M, and this was used

to measure the frequency response of the default t-coil.

The swept pure-tone signal presents one frequency at
a time from 200 to 8000 Hz. The output (in dB SPL) of

the frequency response wasmeasured at 11 discrete fre-

quencies (200, 400, 500, 800, 1000, 1600, 2000, 2500,

4000, 5000, and 6300 Hz). The output using a pure-tone

sweep could only be viewed in “graphic”mode (right side

in Fig. 1). This limited the investigators to visually

examine the measured output (to the nearest dB SPL

tick on the ordinate) based on the intersection of the

vertical lines that denote the 11 frequencies previously

listed and the horizontal line denoting dB SPL. To con-

trol for this possible confounding variable, the investi-

gators were careful to consistently read the measured

output of each “graphic” in the same manner for all

pure-tone measures. In Figure 1, the curve labeled

“O” is the OSPL90 curve, the curve labeled “S” is the

SPLITS curve representing the frequency response of

the t-coil, and the curve labeled “R” is the frequency

response of the microphone.
For accurate coupler measures of the microphone

frequency response, the coupler test microphone was

leveled at the test point of the test box prior to each

measurement to calibrate the test microphone and

the test box loudspeaker. Then the test BTE hearing

aid was connected to an HA-2 coupler by the earhook

via 25 mm of #13 tubing with the microphone of the

hearing aid placed appropriately at the test point and
facing the right side of the test box where the loud-

speaker is housed. The hearing aid was placed in the

test box connected to the HA-2 coupler, the test box

lid was closed and sealed, and the hearing aid was pro-

grammed to Program 1 (programmed microphone

mode). The frequency response was measured using

the pure-tone sweep (“R” in Fig. 2).

For the t-coil condition, the hearing aid was removed
from the test chamber while remaining coupled to

the HA-2 coupler, programmed to Program 2 (default

t-coil), and held upright in the investigator’s hand. In

the other hand, the TMFS shipped and designed for

Telecoil and Microphone Difference/Putterman and Valente
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use with Fonix 7000 was manipulated adjacent to the

hearing aid case until the “sweet spot” was found.

The “sweet spot” was detected by observing the maxi-
mum output (i.e., maximum output measured while

observing the HFA-SPLITS value shown in Figure 2,

which is 74.7 dB in this example) that could be observed

on the hearing aid analyzer computer screen.When this

was achieved, the pure-tone sweep was started to gen-

erate the t-coil frequency response (“S” curve in Fig. 2).

The analyzer automatically calculated the pure-tone

RSETS value (in dB) by subtracting the programmed
microphoneHFA (1000, 1600, 2500Hz) from the default

t-coil HFA (i.e., 22.6 dB in this example). This RSETS

value was recorded in addition to visually estimating

the output at discrete frequencies of both transducers

in “graphic” display (as was previously described).

RESULTS

Hearing aid output (in dB SPL)wasmeasured using

a pure-tone sweep (200–8000 Hz in 100 Hz incre-

ments) at an input level of 60 dB SPL with the hearing

aid configured to the programmed microphone and

an input level of 31.6 mA/M using the TMFS shipped

with the Fonix 7000 when measuring the t-coil. Inde-

pendent variables included (1) transducer (microphone

and t-coil) and (2) frequency (11 discrete test frequen-
cies and the HFA).

Transducer Main Effect

The mean (and 61 SD) overall output (output aver-

aged across the 11 discrete test frequencies) measured

for the programmed microphone and default t-coil is

reported in Figure 3. The mean overall output for the

programmed microphone was 77.1 dB SPL (SD 5

12.7 dB SPL), whereas the mean overall output for
the default t-coil was 77.0 dB SPL (SD 5 13.6 dB

SPL). A mixed-model repeated-measures analysis of

variance (ANOVA) revealed no significant difference

between transducers (F(1,102) 5 0, p , 0.98).

Transducer by Frequency Interaction

The mean (and 61 SD) output (in dB SPL) of the pro-

grammed microphone and default t-coil was compared at

the 11 discrete test frequencies and for the HFA as
reported in Figure 4. A mixed-model repeated-measures

ANOVA revealed a significant transducer by frequency

interaction (F(10,102) 5 13.0, p , 0.0001). Figure 5

reports the mean difference (and 61 SD) between the

microphone and t-coil conditions at the 11discrete test fre-

quencies and for the HFA calculated from Figure 4. If the

height of the bar is 0 dB, then the performance of the

microphone and t-coil was equal. If the height of the
bar is greater than 0 dB, then the meanmeasured output

of the microphone was greater than the mean measured

output of the t-coil. On the other hand, if the height of the

bar is less than 0 dB, then the mean measured output of

the microphone was less than the mean measured output

of the t-coil. Reported in Figure 5 are post hoc analyses

using the Tukey Honestly Significant Difference (HSD)

test, which revealed that significant differences were
present at 200 Hz (Delta 5 15.2 dB, SD 5 8.5 dB; p ,

0.001) and 400 Hz (Delta 5 6.0 dB, SD 5 7.7 dB; p ,

0.05) where the t-coil output was greater than the micro-

phone, and at 4000 Hz (Delta 5 25.9 dB, SD 5 9.6 dB;

p , 0.01), 5000 Hz (Delta 5 25.7 dB, SD 5 9.1 dB;

Figure 1. The “graphic” mode (right),which was the only viewing option available for the ANSI S3.22-2003 pure-tone coupler condition,
and the “data” mode (left) available for the experimental digispeech real-ear measures condition.
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p , 0.01), and 6300 Hz (Delta 5 27.4 dB, SD 5 9.7; p ,

0.001) where the microphone output was greater than

the t-coil. The mean output for 500–2500 Hz discrete

test frequencies was statistically equivalent between

the two transducers. A paired t-test comparing the
mean output for the HFA (1000, 1600, and 2500 Hz)

revealed no significant difference between the two

transducers (p , 0.10).

DISCUSSION AND CONCLUSION

Coupler Measures

This study compared the measured output of the pro-

grammedmicrophone frequency response to the default

t-coil frequency response in the coupler condition using

the pure-tone sweep signal. It is of note that post hoc

statistically significant frequency-specific differences

for coupler measures were found at 200, 400, 4000,

5000, and 6300 Hz. Figure 5 illustrates how this is pos-
sible despite the lack of significant difference in overall

output between the transducers, since the mean micro-

phone output was greater in the low frequencies (200

and 400 Hz), yet the mean t-coil output was greater

in the high frequencies (4000, 5000, and 6300 Hz). Thus

the low and high frequency differences between the two

transducers negated each otherwhen the overall output

of each transducer was calculated.
The relationship between the mean programmed

microphone and default t-coil frequency response

Figure 2. The “graphic” mode view of the measured coupler frequency responses (in dB SPL) of the programmed microphone (Curve R)
and default t-coil (Curve S) to a pure-tone sweep signal via ANSI S3.22-2003. Curve 0 represents the OSPL90 microphone frequency
response. Note in this case that the RSETS is 22.6 dB, which means that the HFA for the t-coil is 2.6 dB lower than the HFA for
the microphone.

Figure 3. Themean coupler output (in dB SPL) of 52 test hearing aids averaged across 11 discrete test frequencies when programmed to
the microphone (empty bar) and t-coil (shaded bar) using a 60 dB SPL (and 31.6 mA/M) pure-tone sweep. The error bars represent61 SD.

Telecoil and Microphone Difference/Putterman and Valente
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shown in Figure 5 is remarkably similar to single

hearing aid data (not shown) from a publication by Ross
(2006), who suggested that a t-coil with a pre-amplifier

could allow the t-coil frequency response to nearly

match the microphone frequency response. Consistent

with Figure 5, the Ross (2006) figure demonstrates

some reduction in the t-coil frequency response in the

low frequencies and an increase in the high frequencies

when compared to the programmed microphone fre-

quency response. Recall that a typical telephone band-
width is 300 to 3300 Hz (Yanz and Preves, 2003).

Importantly, when the telephone bandwidth is taken

into consideration then the only significant differences

reported from coupler results influential to telephone

communication are the low frequency differences (spe-

cifically 200 to 400 Hz), where the mean default t-coil
output was lower than the mean programmed micro-

phone output by 6 dB.While the t-coil response was also

3.9 dB lower at 500 Hz, this was not found to be a stat-

istically significant difference. Figure 2 provides an

example of how a difference in low frequency amplifica-

tion between transducers may be overlooked using cou-

pler measures. Note that there is clear low frequency

attenuation of the t-coil frequency response compared
to the microphone response, yet the RSETS value is

nearly zero (22.6 dB) because it is calculated as the dif-

ference between the HFA (1000, 1600, and 2500 Hz)

of each transducer. A reasonable question to ask is

Figure 4. Themean coupler output (in dB SPL) of themicrophone (empty bars) and t-coil (shaded bars) output of 52 test hearing aids for
11 discrete test frequencies using a 60 dB SPL (and 31.6 mA/M) pure-tone sweep. The HFA is included at the far left. The error bars
represent 61 SD.

Figure 5. The mean difference (delta) in coupler output (in dB SPL) between the microphone and t-coil output of 52 test hearing aids for
11 discrete test frequencies using a 60 dB SPL (and 31.6mA/M) pure-tone sweep. ***p# 0.001; **p# 0.01; *p# 0.05. TheHFA is included
at the far left. The error bars represent 61 SD.
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whether this magnitude of low frequency attenuation of

the t-coil frequency response can be problematic for the

listener.

It has been suggested that low frequencies should not be
amplified in the t-coil position because the t-coil can be sen-

sitive to low frequency interference (i.e., EM noise), which

is then amplified in conjunction with the signal of interest

(Ross, 2006).Without amplifying the low frequencies, how-

ever, patients often complain the t-coil fails to provide suf-

ficient loudness for telephone communication. In addition,

low frequency information below 300 Hz has already been

removed from the telephone bandwidth. If the hearing aid
user has hearing aids with a volume control, the patient

may still remain inconvenienced by the need to increase

the volume during a telephone conversation. Ideally, the

transition from themicrophone to the t-coil position should

be seamless (i.e., the programs should have equal loud-

ness).Moreover,much of the concern related to amplifying

the low frequencies in the t-coil positionmay be reduced in

part by the development of commercially available far-field
cancelling (FFC) t-coils (Marshall, 2005). If FFC t-coils are

incorporated into new hearing aids, then extraneous EM

signals that are not in the near field (i.e., within inches of

the t-coil) of the hearing aid will no longer contribute to

interference of the low frequencies.

Modern T-Coil Applications

In MarkeTrak VIII (Kochkin, 2010), consumers were

asked to rate 19 listening situations related to how “crit-

ical” these listening situations were to the consumer. At

64%, telephone communication was rated the third

most important, behind only one-on-one communica-

tion (75%) and communication in small groups (65%).

Moreover, t-coils have applications that extend beyond

conventional telephone communication (hearing assis-
tance technology that requires an induction loop for a

room or an induction neck-loop). This means that there

is an even greater responsibility on the part of clinicians

to begin to consider how to appropriately program the

t-coil mode. Advances in t-coil technology will be crucial

as many current limitations can diminish the ability of

the t-coil to transfer a clear and sufficiently amplified

signal to the hearing aid user.
One recent development in hearing aid technology

allows bilateral hearing aid users to hear the telephone

signal received by one hearing aid in both hearing aids.

Regardless of which hearing aid the telephone handset

is held to, the designated hearing aid transmits the sig-

nal wirelessly to the other hearing aid for binaural lis-

tening on the telephone. To date, it does not appear that

there have been any research studies on the efficacy
and/or effectiveness of this novel technology. Despite

advancements in t-coil design and flexibility, t-coil uti-

lization is not always straightforward for the clinician.

For example, not all manufacturers allow the same flex-

ibility of gainmanipulation in the hearing aid t-coil pro-

gram. Some manufacturers restrict the audiologist by

only allowing the ability to increase and decrease the

overall gain of the t-coil, but the shape of the frequency
response remains fixed. The extent to which the t-coil

gain can be programmed by the audiologist can vary

within the product line available from a single manufac-

turer. Some products allow the clinician to pair the t-coil

frequency response to an acoustic program, whereby

adjusting the frequency response of the acoustic setting

will be emulated in the t-coil program. Other manu-

facturers, however, allow audiologists to increase and
decrease gain across the frequency response of the hear-

ing aid similarly to any of the microphone programs.

Further Research

The investigators were interested to determine if

real-ear measures, using a “speechlike” signal, rather

than a pure tone signal, might be feasible to measure
differences in the performance between the microphone

and t-coil in hearing aids. To this end, 39 of the 52 hear-

ing aids from this study were measured using real-ear

measures in a pilot investigation. The output (in dB SPL)

was measured at 15 discrete frequencies (200, 300, 400,

500, 600, 800, 1000, 1200, 1600, 2000, 2500, 3200,

4000, 5000, and 6300 Hz) for real-ear measures using

the digital speech (digispeech) ANSI speech-shaped
noise. Digispeech is randomly interrupted to evaluate

the electroacoustic characteristics of digital hearing

aids. Unlike the pure-tone sweep, the signal frequencies

of digispeech are measured simultaneously, and the

analyzer individually adjusts the amplitude and phase

at each frequency based on reference microphone

placement (Frye, 2002). The use of digispeech bypasses

an undesirable “blooming” artifact that can occur with
the pure-tone sweep (Frye, 2002). Blooming (i.e., exces-

sive low frequency gain/output) occurs for compression

hearing aids because the circuit will focus amplification

entirely on the input frequency of the sweep signal that

is currently presented to the hearing aid. Measuring

the electroacoustic performance of hearing aids using

digispeech could provide a measured frequency re-

sponse that is more indicative of a “real-world” speech
signal. For real-ear measures, a left “demonstrator” ear

(Frye Electronics, Inc.) mounted on a tripod was uti-

lized to mimic the external auditory meatus (EAM).

A narrow hole was drilled into the anterior face of

the silicon block (i.e., 0� azimuth) into the medial por-

tion of the EAM to within 5 mm from where the EAM

terminates. A probe tube was then connected to the

probe microphone, and the probe tube was fed through
the hole. The probe tube was permanently affixed with

glue so the tip of the probe tube rested where the bored

hole intersected themedial EAM. An ear hanger housing

the reference and probe microphone was then placed on
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the pinna of the demonstrator ear. The test BTE hearing

aid was connected to an earmold fit specifically to the con-

cha of the demonstrator ear, and the test BTE hearing aid

was positioned on the demonstrator ear so that the front
and rear microphones were level on a horizontal plane

(Fig. 6). The demonstrator ear tripod was positioned with

the demonstrator ear at an equal height (and centered)

with respect to the real-ear loudspeaker. The distance

from the opening of the EAM in the concha of the demon-

strator ear to the loudspeaker was 22 in, consistent with

the length of a short NOAHLink programming cable.

Prior to measuring the frequency response of the pro-
grammed microphone, the reference and probe micro-

phones were enabled, and the sound field was leveled

to calibrate the loudspeaker with the reference micro-

phone. After leveling, the test BTE hearing aid was posi-

tioned on the demonstrator ear, the earmold was inserted

into the ear canal, and theBTEhearing aidwas set to Pro-

gram 1 (programmed microphone). The digispeech signal

was presented at 70 dB SPL and the REAR measured.
The programmed microphone REAR was visualized in

the “graphic” mode by the investigators to ensure stabil-

ity. Then themeasured REARwas recorded at each of the

15 discrete frequencies by switching “graphic” display to

“data” display (left side of Fig. 1) and the values recorded

and placed into a spreadsheet.

To measure the t-coil frequency response, the TMFS

from an FP40 hearing aid analyzer (manufactured by

Frye Electronics, Inc.) was used to generate a test field

strength of 56.2 mA/M (George Frye, pers. comm.).

Unlike the default telewand typically provided with

the Fonix 7000 for coupler measures, the FP40 tele-
wand is capable of producing an appropriate magnetic

drive for the t-coil when completing real-ear measures.

Unfortunately, consultation after completing data col-

lection and analysis revealed that the loudspeaker

input level for the microphone condition should have

been 65 dB SPL (instead of 70 dB SPL) to be equal to

the 56.2 mA/M input level to the telecoil provided by

the TMFS telewand used in this part of the study. How-
ever, these investigators believe that significant value

remains in reporting the results of the real-ear mea-

sures as it is hoped that the data in the following section

might serve as a catalyst for manufacturers of coupler

and real-ear equipment to consider providing the nec-

essary tools to allow for real-ear measures of t-coil

performance using a speechlike signal. Moreover, per-

haps the data in the following section will serve, in part,
to prompt those responsible for creating and revising

ANSI standards to consider the feasibility of promoting

the use of a speechlike signal for measuring t-coil per-

formance for coupler and real-ear measures.

Whenmeasuring the t-coil frequency response the ref-

erence microphone was turned off, and the test BTE

hearing aid was then programmed to Program 2 (default

t-coil). A foot switchwas used to direct the digispeech sig-
nal through the TMFS rather than through the loud-

speaker. With the signal turned on, the TMFS was

manipulated adjacent to the hearing aid case until the

“sweet spot” (most robust frequency response) was

observed on the monitor. The sweet spot was detected

by slowly manipulating the TMFS about the hearing

aid case while observing themaximum output that could

be measured in the “graphic” mode (bottom curve in Fig.
7). In Figure 7 the “RMS out” is 101.2 dB SPL for curve 1.

Once the sweet spot was detected, the “graphic” dis-

play was switched to “data” display to document the

output at each of the 15 discrete test frequencies. By

saving the t-coil frequency response as Curve 1 and

the programmed microphone frequency response as

Curve 2, the software of the Fonix 7000 calculates

the difference between the two curves (Curve 6 in the
top graph in Fig. 7). In this case, a value .0 dB gain

reveals the output was greater for the microphone, a

value of 0 dB means the output of the two transducers

was equal, and a value,0 dB gainmeans the output for

the t-coil was greater than the microphone. Finally, the

investigators calculated the real-ear RSETS value as

the difference between the HFA (1000, 1600, and

2500 Hz) of the programmed microphone and default
t-coil output.

As mentioned earlier, hearing aid output (dB SPL)

was measured using the digispeech ANSI speech-

shaped composite signal presented at 70 dB SPLwhen

Figure 6. A sagittal view of the demonstrator ear with real-ear
apparatus, custom earmold, and test hearing aid. The hearing aid
is situated with front and rear hearing aidmicrophones oriented atop
the pinna on a horizontal (level) plane. The reference microphone is
placedmedial to thehearingaidandadjacent to the frontmicrophone.
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measuring the programmed microphone and 56.2 mA/M

using the TMFS shipped with the Frye FP40 when test-

ing the default t-coil. Independent variables included

(1) transducer (microphone; t-coil), and (2) frequency

(15 discrete test frequencies).

The mean (and 61 SD) overall output (output aver-

aged across the 15 discrete test frequencies) measured
for the programmed microphone and default t-coil is

reported in Figure 8. The mean overall output for the

programmed microphone was 77.8 dB SPL (SD 5

12.9 dB SPL), whereas the mean overall output for

the default t-coil was 70.0 dB SPL (SD 5 16.8 dB

SPL). A mixed-model repeated-measures ANOVA re-

vealed that the mean difference of 7.8 dB was statisti-

cally significant (F(1,76) 5 18.8, p , 0.0001). Please

remember that if the correct input level of 65 dB SPL

had been used instead of the 70 dB SPL that was used

for the microphone measures, then the mean overall

output for the programmed microphone would have

likely been closer to 72.8 dB SPL, and the resulting
mean difference of 2.8 dB would have probably not been

statistically significant.

The mean (and61 SD) output (in dB SPL) of the pro-

grammed microphone and default t-coil was compared

at the 15 discrete test frequencies and for the HFA

as reported in Figure 9. A mixed-model repeated-

Figure 7. The “graphic” mode view of measured real-ear frequency responses (in dB SPL) of the programmedmicrophone (Curve 2) and
default t-coil (Curve 1) with the digispeech input signal set to 70 dB SPL (bottom graph). The gain curve (top graph) represents the differ-
ence (in dB) between Curves 1 and 2.

Figure 8. The mean REAR (in dB SPL) of 39 test hearing aids averaged across 15 discrete test frequencies when programmed to the
microphone (empty bar) and t-coil (shaded bar). The error bars represent 61 SD.
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measures ANOVA revealed a significant transducer by

frequency interaction (F(14,76) 5 31.1, p , 0.0001).

Again, if the correct input level of 65 dB SPL had

been used instead of the 70 dB SPL that was used for

the microphone measures, then the mean overall output

for the programmed microphone would have likely been

reduced by approximately 5 dB, and several of the
resulting mean differences across the 15 test frequen-

cies may not have been statistically significant.

Reported in Figure 10 are the post hoc analyses using

the TukeyHSD test, which revealed that themean default

t-coil output was significantly lower than the mean pro-

grammed microphone output at 200 Hz (Delta 5

20.9 dB, SD 5 6.4 dB), 300 Hz (Delta 5 17.5 dB, SD 5

6.5 dB), 400 Hz (Delta 5 12.6 dB, SD 5 7.1 dB), 500 Hz
(Delta 5 9.7 dB, SD 5 5.7 dB), 600 Hz (Delta 5 7.4 dB,

SD 5 5.0 dB), 1000 Hz (Delta 5 5.0 dB, SD 5 3.4 dB),

1200Hz (Delta5 5.7 dB, SD5 3.7 dB), 1600Hz (Delta5

4.9 dB, SD 5 4.0 dB), 2000 Hz (Delta 5 6.6 dB, SD 5

4.0 dB), 3200 Hz (Delta 5 7.7 dB, SD 5 4.5 dB), and

4000 Hz (Delta 5 6.0 dB, SD 5 5.4 dB). The mean out-

put for 800, 5000, and 6300 Hz discrete test frequencies

was statistically equivalent between the two trans-

ducers. A paired t-test comparing the mean output
for the HFA (1000, 1600, and 2500 Hz) revealed a sig-

nificant difference between the two transducers (p ,

0.0001). Once again, an input level of 65 dB SPL had

been used in lieu of 70 dB SPL for the microphone mea-

sures, then the mean overall output for the programmed

microphone at each of the 15 discrete test frequencies

would have been reduced by approximately 5 dB, and

the resulting mean differences (other than at 200, 300,
400, and 500 Hz) would not in all likelihood have been

statistically significant.

Figure 9. ThemeanREAR (in dBSPL) of themicrophone (empty bars) and t-coil (shaded bars) output of 39 test hearing aids for 15 discrete
test frequencies with the digispeech input signal set to 70 dB SPL. The HFA is included at the far left. The error bars represent 61 SD.

Figure 10. The mean difference (delta) in REAR (in dB SPL) between the microphone and t-coil output of 39 test hearing aids for 15
discrete test frequencies with the digispeech input signal set to 70 dB SPL. ***p# 0.001; **p# 0.01; *p# 0.05. TheHFA is included at the
far left. The error bars represent 61 SD.
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Measuring t-coil performance using real-ear mea-

sures is not novel. Grimes and Mueller (1991) proposed

a real-ear measurement protocol for t-coil verification

nearly 20 yr ago. In their study, a speech-shaped signal
was directed to one telephone handset, and this signal

was delivered to a second telephone handset with the

receiver held to the casing of the hearing aid that

was fit to the ear. The experimental equipment required

to conduct t-coil real-ear measurements in this manner,

however, is not typical for audiologists to undertake in a

clinical setting. The fact remains that real-earmeasure-

ment of the t-coil frequency response has not evolved
into conventional practice for clinicians. In the present

study, the frequency response of the default t-coil was

measured in a real-ear condition using a TMFS to

present the EM signal to the hearing aid situated on

the ear rather than using a series of telephones as

described by Grimes and Mueller (1991). This real-

earmeasurement could be performed quickly and easily

by an audiologist when using a Fonix 7000 with the
TMFS that is typically shipped with the FP40 hearing

aid analyzer.

Pilot data were also gathered over the course of this

project with the intent of determining if any differences

in the relationship of the default t-coil and programmed

microphone frequency response exist between manu-

facturers, as the data reported here were collected from

one manufacturer. Unfortunately, a limited number of
BTE products from the other manufacturer were avail-

able for measurement. The trend in the data from the

second manufacturer suggests that the default t-coil

frequency response not only matched the programmed

microphone frequency response in the pure-tone cou-

pler test condition as hearing aids used in this study

do but in some cases exceeded the microphone output.

There also appeared to be less disparity between the
microphone and t-coil in the real-ear condition, al-

though there were not substantial data to perform stat-

istical analyses to determine if significant differences

were present.
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