Neuropeptide Y rs16147 single nucleotide polymorphism is associated with heavy drinking and severity of alcohol dependence

Derick Vergne
Medical University of South Carolina

Raymond Anton
Medical University of South Carolina

Konstantin Voronin
Medical University of South Carolina

Abraham Tiffany
Medical University of South Carolina

Hugh Myrick
Medical University of South Carolina

Follow this and additional works at: https://digitalcommons.wustl.edu/guzeposter2010

Recommended Citation

Vergne, Derick; Anton, Raymond; Voronin, Konstantin; Tiffany, Abraham; Myrick, Hugh; Canders, Caleb; Klaybor, Garrick; Randall, Patrick; and Schacht, Joe, "Neuropeptide Y rs16147 single nucleotide polymorphism is associated with heavy drinking and severity of alcohol dependence" (2010). *Posters*. Paper 28 Samuel B. Guze Symposium on Alcoholism.
https://digitalcommons.wustl.edu/guzeposter2010/28

This Poster is brought to you for free and open access by the 2010: Disentangling the Genetics of Alcoholism: Understanding Pathophysiology and Improving Treatment at Digital Commons@Becker. It has been accepted for inclusion in Posters by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Authors
Derick Vergne, Raymond Anton, Konstantin Voronin, Abraham Tiffany, Hugh Myrick, Caleb Canders, Garrick Klaybor, Patrick Randall, and Joe Schacht
Neuropeptide Y rs16147 single nucleotide polymorphism is associated with heavy drinking and severity of alcohol dependence.

Discussion/Future Directions

Neuropeptide Y rs16147

Since this genotype is purported to have independent effects on anxiety and on alcohol consumption, our results suggest that NPY genotype to be associated with alcohol severity is partially dependent on the presence of anxiety. Anxiety and alcohol consumption were assessed by evaluating drinkers' responses to stress. Our results suggest that NPY genotype is associated with heavy drinking and anxiety, and that this association is mediated by the presence of anxiety.

**Future studies will clarify the role of the NPY system on drinking behavior and the nature of the relationship with stress/anxiety to modulate this behavior. This aim could be achieved by combining brain-imaging paradigms and genetic differences in clinical investigation and by evaluating drugs that work on the NPY system in clinical laboratory and treatment trials.

Introduction

A wide array of preclinical animal work has established a link between a malfunctioning NPY system, anxiety, depression and alcohol dependence. In animals, neuropharmacological and neuroanatomical studies have consistently shown the NPY system to be dysregulated in limbic areas strongly related to the stress system, and 2) in behavioral animal models of excessive alcohol drinking. In humans the 485C>T rs16147 SNP in the NPY promoter region, has been shown to increase plasma neuropeptide Y. We wished to evaluate the relationship between NPY genotype and alcohol consumption as well as to investigate whether this relationship is influenced by levels of anxiety.

Subjects

-Subjects (average age about 29, 80% male, 90% Caucasian, alcohol) recruited from advertisements and assessed prior to participation in a back-lab and brain imaging study.

Methods

We also found a main effect of NPY genotype on drinking behavior. We also found a main effect of NPY genotype on drinking behavior. A large amount of preclinical and clinical data suggest that NPY is expressed in areas of the brain involved with reward.

NPY Genotype

Discussion/Future Directions

Since NPY is expressed in areas of the brain involved with reward, it is important to understand the role of the NPY system on drinking behavior and the nature of the relationship with stress/anxiety to modulate this behavior. This aim could be achieved by combining brain-imaging paradigms and genetic differences in clinical investigation and by evaluating drugs that work on the NPY system in clinical laboratory and treatment trials.

Discussion/Future Directions

Future studies will clarify the role of the NPY system on drinking behavior and the nature of the relationship with stress/anxiety to modulate this behavior. This aim could be achieved by combining brain-imaging paradigms and genetic differences in clinical investigation and by evaluating drugs that work on the NPY system in clinical laboratory and treatment trials.

Methods

Subjects

-Subjects (average age about 29, 80% male, 90% Caucasian, alcohol) recruited from advertisements and assessed prior to participation in a back-lab and brain imaging study.

Methods

We also found a main effect of NPY genotype on drinking behavior. A large amount of preclinical and clinical data suggest that NPY is expressed in areas of the brain involved with reward, it is important to understand the role of the NPY system on drinking behavior and the nature of the relationship with stress/anxiety to modulate this behavior. This aim could be achieved by combining brain-imaging paradigms and genetic differences in clinical investigation and by evaluating drugs that work on the NPY system in clinical laboratory and treatment trials.

Discussion/Future Directions

Since NPY is expressed in areas of the brain involved with reward, it is important to understand the role of the NPY system on drinking behavior and the nature of the relationship with stress/anxiety to modulate this behavior. This aim could be achieved by combining brain-imaging paradigms and genetic differences in clinical investigation and by evaluating drugs that work on the NPY system in clinical laboratory and treatment trials.

Discussion/Future Directions

Since NPY is expressed in areas of the brain involved with reward, it is important to understand the role of the NPY system on drinking behavior and the nature of the relationship with stress/anxiety to modulate this behavior. This aim could be achieved by combining brain-imaging paradigms and genetic differences in clinical investigation and by evaluating drugs that work on the NPY system in clinical laboratory and treatment trials.

Results

-Subjects (average age about 29, 80% male, 90% Caucasian, alcohol) recruited from advertisements and assessed prior to participation in a back-lab and brain imaging study.

Discussion/Future Directions

Since NPY is expressed in areas of the brain involved with reward, it is important to understand the role of the NPY system on drinking behavior and the nature of the relationship with stress/anxiety to modulate this behavior. This aim could be achieved by combining brain-imaging paradigms and genetic differences in clinical investigation and by evaluating drugs that work on the NPY system in clinical laboratory and treatment trials.

Discussion/Future Directions

Since NPY is expressed in areas of the brain involved with reward, it is important to understand the role of the NPY system on drinking behavior and the nature of the relationship with stress/anxiety to modulate this behavior. This aim could be achieved by combining brain-imaging paradigms and genetic differences in clinical investigation and by evaluating drugs that work on the NPY system in clinical laboratory and treatment trials.

Discussion/Future Directions

Since NPY is expressed in areas of the brain involved with reward, it is important to understand the role of the NPY system on drinking behavior and the nature of the relationship with stress/anxiety to modulate this behavior. This aim could be achieved by combining brain-imaging paradigms and genetic differences in clinical investigation and by evaluating drugs that work on the NPY system in clinical laboratory and treatment trials.