Supplementary Materials for

Wirelessly controlled, bioresorbable drug delivery device with active valves that exploit electrochemically triggered crevice corrosion

*Corresponding author. Email: jrogers@northwestern.edu (J.A.R.); kskg7227@snu.ac.kr (S.-K.K.); macewanm@wustl.edu (M.M.)

Published 28 August 2020, Sci. Adv. 6, eabb1093 (2020)
DOI: 10.1126/sciadv.abb1093

This PDF file includes:

Figs. S1 to S22
Notes S1 to S3
Fig. S1 Tunable sizes and shapes of reservoirs. (a) Fabrication procedure for a PBTPA reservoir. (b) Various size of PBTPA reservoirs. ("Photo Credit: Jahyun Koo, Korea University")
Fig. S2 Measurement of heat generation on the device under RF triggering. (a) Before triggering (0 V), (b) during triggering (7.8 V), (c) measurement of heat generation from device and antenna using IR camera under RF triggering (model). ("Photo Credit: Yeon Sik Choi, Northwestern University")
Fig. S3 Design of 9 turns of Mg coil. 100 µm width and 50 µm thickness of Mg conductive line with 8, 13 and 16 turns for different resonance frequencies.
Fig. S4 Arrhenius plot of dissolution data for PBTPA (1:1:2.5) measured at various temperatures (23, 37, 60 and 85°C).
Fig. S5 Characterization of an electrochemically etched anode gate. Optical images of the front and backside of the anode Mg gate. ("Photo Credit: Jahyun Koo, Korea University")
Fig. S6 Electrochemical impedance spectroscopy (EIS) of a Mg anode gate during the electrochemical etching process. (a) Randles’ equivalent circuit, corresponding to the corrosive layer. (b) Analysis of the charge transfer resistance (R), capacitance (C) and coefficient ‘n’ of constant phase element (C_{CPE}).
Fig. S7 Observation of surface change. (a-c) Surface morphology of the Mg gate determined by SEM at 0, 30 and 150 s, respectively, with a bias of 1 V. (d) EDS elemental analysis at the corresponding time points of Mg gate corrosion.

("Photo Credit: Jahyun Koo, Korea University ")
Fig. S8 Electrochemically etching behavior by crevice corrosion. (a) Comparison of the areas for uniform (~280 mm2) and crevice (~26 mm2) corrosion determined from the OM image (1 V for 200 s). (b) Sequential images of the anode gate at 10, 20 and 30 s of electrochemical etching with a bias of 5 V. ("Photo Credit: Jahyun Koo, Korea University")
Fig. S9 Electrochemically etching behavior of an anode gate. (a) The relationship between time required to open the Mg gate (t_o) and applied voltage. (b) The relationship between corrosion rate and applied voltage.
Fig. S10 The effect of the perimeter on the time to opening an anode gate.

(a) Design parameters for gates with circular and cross shapes to compare perimeter effects for the corrosion behavior.
(b) Current as a function of time during electrochemical etching at a bias of 1 V.
(c) Comparisons of time to open the Mg gate (t_o) for different designs.

$n = 4$ independent samples.
Fig. S11 Representative LSV polarization curves for Mg and Mo.
Fig. S12 Observation of an absorption peak measured by UV-vis spectroscopy during release of doxorubicin from a reservoir through 2×2 mm² gate over 24 h.
Fig. S13 Permeability tests of constituent materials. (a) Schematic illustration of the test setup. (b) Magnitude of the absorption peak associated doxorubicin as a function of time at body temperature (37°C) for 30 days.
Fig. S14 Series of optical and fluorescence images of tumor cells ((a) HeLa, (b) HepG2, (c) MDA-MB-231) with phalloidin staining of cell F-actin (green) and DAPI staining of the nucleii (blue) before and after triggered release. Images of the initial cell configuration and after one hour incubation with a device immersed in DMEM media. ("Photo Credit: Hojun Kim, University of Illinois at Urbana-Champaign")
Fig. S15 Schematic illustrations of a device that combines three reservoirs and three harvesters.
Fig. S16 Electromagnetic characteristics of a wireless, bioresorbable drug system that includes multiple, independently addressable reservoirs. (a-c) Inductance, Q factor and scattering parameters S11 of the wireless power harvesting units, respectively. (c) Schematic illustration of wireless triggering of a device with an external transmitting coil. Coil 1, 2 and 3 match with 85, 23 and 19 pF, respectively. (d) Power transfer efficiency versus distance for a single coil.
Fig. S17 Insulin release behavior from reservoirs with different sizes (1×1-5×5 mm²) of anode metal gates.
Fig. S18 In vivo operation of a wirelessly programmable, biodegradable drug release vehicle with a single reservoir in a mouse model. (a) Illustration of a system with a miniaturized single reservoir and nerve cuff for pharmacological release at a targeted site of the sciatic nerve. (b) Images that show the procedure for implanting a single reservoir system with a flexible PLGA nerve cuff (2×8 mm², ~20 μm thick) that wraps around the sciatic nerve. (c) Optical image of the sciatic nerve and adjacent muscle tissue after injection of a blue dye solution. (d) Changes in the evoked sciatic nerve activity associated with wirelessly triggered release of lidocaine from the reservoir by application of RF power at a frequency of 5 MHz for five minutes. Compound muscle action potential (CMAP, black) and sensory nerve action potential (SNAP, red) measured (data are mean ± s.d.; n = 3) before the release event for two hours after. Separate devices (n = 3) in independent
animals \((n = 3)\). (e) Change in CMAP and SNAP before and after triggering and release of lidocaine (1\%, \sim 20 \mu L). ("Photo Credit: Jahyun Koo, Korea University")
Fig. S19 *In vivo* biocompatibility studies of bioresorbable Mg-gate. **(a)** Hematoxylin and eosin (H&E) and **(b)** T-blue images of stained tissue sections at 5 weeks post-implantation of triggered Mg-gate with a dummy reservoir; a piece of PBTPA. Middle and right images show muscle fascia and muscle layers adjacent to the device, respectively. ("Photo Credit: Matthew MacEwan, Washington University in St. Louis")
Fig. S20 *In vivo* biocompatibility studies of bioresorbable Mo-gate. (a) Hematoxylin and eosin (H&E) and (b) T-blue images of stained tissue sections at 5 weeks post-implantation of triggered Mo-gate with a dummy reservoir; a piece of PBTPA. The middle and right images show muscle fascia and muscle layers adjacent to the device, respectively. ("Photo Credit: Matthew MacEwan, Washington University in St. Louis")
Fig. S21 Weight change of rats ($n = 3$ per groups) implanted with devices and reference material (HDPE) in the subcutaneous region for 5 weeks.
Fig. S22 White Blood Cell (WBC) Count at 5 weeks post-implantation for Mg and Mo device groups (n = 3 per groups).
Supplementary Note 1. Optimization of RF coil design.

In order to optimize the electromagnetic performance of the wireless RF coil, the finite element analysis (FEA) is used to determine the scattering parameters S11, inductance L, and the Q factor of the RF coil (diameter 16 mm) matching with 25 pF capacitor. The simulations (Ansys HFSS 13 User’s guide, Ansys Inc. 2011) use a lumped port to define the S11 and the port impedance (Z). An adaptive mesh (tetrahedron elements) ensures computational accuracy, to yield \(L = \frac{Z_{im}}{2\pi f} \) and \(Q = \frac{|Z_{im}|}{Z_{Re}} \), where \(Z_{Re}, Z_{im} \) and \(f \) represent the real and imaginary parts of the Z and the frequency, respectively.

The resonance frequency of the RF coil is designed to \(\sim 5 \) MHz, which gives magnetic coupling with small parasitic absorption by biological tissues\(^{14}\). A relatively high Q factor \(\sim 15 \) ensures a high induced voltage to achieve a long operating distance\(^{14}\). The optimized harvesting unit generates bias between Mg gate and counter electrode upon activation of an RF transmission coil (80 mm diameter, 3 turns) in proximity\(^{14}\).

To calculate the interference between multiple coils, the three coils use matching capacitors of 19, 23 and 85 pF, respectively, to achieve operating frequencies of 5.14, 9.92 and 14.78 MHz. The values of \(Q \) for these coils are 9, 15 and 15 with corresponding bandwidths of 0.6, 0.7 and 0.9 MHz respectively (fig. S15). The different resonance frequencies, taken together with the physical separation of the coils, minimize mutual interference. In fact, the electromagnetic characteristics (e.g., Q and S11) of the co-integrated harvesters are similar to those of isolated harvesters, consistent with negligible interference effects. The operating frequency of each harvester is
different from the corresponding self-resonance frequency, namely 18, 20 and 28 MHz for 16-, 13- and 8-turn coils, respectively, to ensure the operation stability.

Supplementary Note 2. Arrhenius scaling of degradation lifetime.

According to Arrhenius equation,

\[k_{\text{PBTPA}} = k_0 \times \exp(-E_A/RT) \quad (\text{eq. S1}) \]

where \(k_0 \) is the pre-exponential factor, \(E_A \) is the activation energy, \(R \) is the universal gas constant (=8.314 J·K\(^{-1}\)·mol\(^{-1}\)), and \(T \) is the absolute temperature\(^{18}\), measured degradation rates of the PBTPA (1:1:2.5) at different temperatures (0.5, 0.69, 6.69 and 16.285 mg/day at 23, 37, 60 and 85°C, respectively), yield values of \(k_0 \) and \(E_A \) as 6.9×10\(^{18}\) and 51500 J·mol\(^{-1}\), respectively (Fig. 1). Thus, we can estimate the degradation lifetime of the entire system, which is composed of PBTPA (1:1:2.5) reservoir, is \(\sim \)660 days at body temperature (37°C).

![Arrhenius plot: ln(k) versus 1/T.](image)

Supplementary Note 3. Electrochemical kinetics of corrosion.

Electrochemical kinetics relies on Faraday’s law and the Faraday equation is below;
\[m_{\text{Mg}} = \frac{M_{\text{Mg}} \cdot I}{n \cdot F} \cdot t \] \hspace{1cm} (eq. S2)

From Supplementary Eq. 2, the total current can be expressed given by;

\[I = \frac{nF}{M_{\text{Mg}}t} \cdot m_{\text{Mg}} \] \hspace{1cm} (eq. S3)

where \(m_{\text{Mg}} \) is the mass of the reacted Mg, \(M_{\text{Mg}} \) is the atomic weight of Mg, \(I \) is corrosion current passed, \(t \) is degradation time, \(n \) is number of electrons transferred, and \(F \) is Faraday constant (96,485 coulombs/mole).

Corrosion rate based on Mg weight change relies on an equation given by;

\[\text{Corrosion rate} = \frac{\Delta m_{\text{Mg}}}{\Delta t} = \frac{M_{\text{Mg}}}{nF} \cdot I \] \hspace{1cm} (eq. S4)

Total current can be sum of passive anodic dissolution current and crevice corrosion current as following;

\[I = I_{uc} + I_{cc} \] \hspace{1cm} (eq. S5)

\[I = jA = j_{uc}A_{uc} + j_{cc}A_{cc} \] \hspace{1cm} (eq. S6)

and \(A = A_{uc} + A_{cc} \) \hspace{1cm} (eq. S7)

where \(j \) is total current density applied on the gate surface, \(j_{uc} \) is uniform electrochemical etching current density on the exposed surface of the metal gate, \(j_{cc} \) is crevice corrosion current density along with the edge, and \(A \) is anodic area. The amount of degraded Mg is in equilibrium with eq. S5 as follows;

\[m_{\text{Mg}} = m_{\text{Mguc}} + m_{\text{Mgcc}} \] \hspace{1cm} (eq. S8)

\[I = \frac{nF}{M_{\text{Mg}}t} \left(m_{\text{Mguc}} + m_{\text{Mgcc}} \right) \] \hspace{1cm} (eq. S9)
Furthermore, eq. S3 can be modified to yield an expression for current to explain the relation of current and time as follows;

\[I = \frac{m_{\text{Mg}} nF}{M_{\text{Mg}} t} = k \frac{1}{t} \]

(eq. S10)

On the other hand, the current resulting from corrosion can be expressed as Tafel equation as follows;

\[I = I_0 e^{\frac{2.303 (E-E_0)}{\beta}} \]

(eq. S11)

where, \(E \) is the electrode potential, \(E_0 \) is the equilibrium potential, and \(\beta \) is the Tafel constant. The Tafel equation for anodic and cathodic reactions in a corrosion system can be combined to generate the Butler-Volmer equation as follows;

\[I = I_{\text{corr}} \left(e^{\frac{2.303 (E-E_{\text{corr}})}{\beta_a}} - e^{\frac{2.303 (E-E_{\text{corr}})}{\beta_c}} \right) \]

(eq. S12)

where, \(E \) is the electrode potential, \(E_{\text{corr}} \) is the corrosion potential, \(\beta_a \) is the anodic Tafel constant, and \(\beta_c \) is the cathodic Tafel constant. Equation S12 can be simplified as follows;

\[I_{\text{corr}} = \frac{1}{R_p} \frac{\beta_a \beta_c}{2.303 (\beta_a + \beta_c)} \]

(eq. S13)

and \[R_p = \frac{1}{I_{\text{corr}}} \frac{\beta_a \beta_c}{2.303 (\beta_a + \beta_c)} \]

(eq. S14)

where, \(R_p \) is polarization resistance. The corrosion rate can be summarized with corrosion current and parameters from Faraday’s law (eq. S3) as follows;

\[\text{Corrosion rate} = \frac{I_{\text{corr}} K W S}{dA} \]

(eq. S15)

\[(m_{\text{Mg}} = \frac{W_0 F}{F}, Q = nFM_{\text{Mg}}, \text{and}) \]
where, K is corrosion rate constant, W_E is equivalent weight, d is density of metal gate, and Q is the charge.

The corrosion rates at the edges and vertex regions are \sim10 times higher than that at the central surface regions, i.e. $\sim5.6\times10^{-8}$ mg·mm2·s$^{-1}$ and $\sim4.1\times10^{-9}$ mg·mm2·s$^{-1}$ respectively. These rates follow from estimates of the areas for uniform (~280 mm2) and crevice (~26 mm2) corrosion determined from the OM image (1 V for 200 s) and from the etched Mo volume determined with the 3D topology data (fig. S8a).