Pemphigus foliaceus in a patient with gastrointestinal stromal tumor treated with adjuvant imatinib mesylate

Hal A. Lewis  
Washington University School of Medicine in St. Louis

David Y. Chen  
Washington University School of Medicine in St. Louis

Ilana S. Rosman  
Washington University School of Medicine in St. Louis

Joel Picus  
Washington University School of Medicine in St. Louis

Milan J. Anadkat  
Washington University School of Medicine in St. Louis

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Recommended Citation

https://digitalcommons.wustl.edu/open_access_pubs/9615
Pemphigus foliaceus in a patient with gastrointestinal stromal tumor treated with adjuvant imatinib mesylate

Hal A Lewis1 MD, David Y Chen1 MD PhD, Ilana S Rosman1,2 MD, Joel Picus3 MD, Milan J Anadkat1 MD

Affiliations: 1Division of Dermatology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA, 2Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA, 3Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA

Corresponding Author: Milan Anadkat MD, 660 South Euclid Avenue, Campus Box 8123, Saint Louis, MO 63110, Tel: 314-362-9859, Email: manadkat@dom.wustl.edu

Introduction
Pemphigus in an autoimmune blistering disease often associated with specific medications. Discontinuation of the offending medication is considered the treatment of choice. Management of medication associated pemphigus can be difficult when the associated medication is vital to a patient’s survival. We report a patient in whom the onset of pemphigus foliaceus was associated with imatinib mesylate therapy in a patient with resected gastrointestinal stromal tumor (GIST). Imatinib was continued because of the survival benefit to the patient with a resected, high risk GIST. Treatment with rituximab resulted in near resolution of his blistering rash; however, the disease returned after imatinib dose was increased a year later, suggesting a dose-response relationship.

Case Synopsis
An 80-year-old man diagnosed with an 11cm, c-kit-positive gastrointestinal stromal tumor (GIST) with a...
high mitotic rate in the small bowel was subsequently treated with resection and adjuvant imatinib mesylate at a dose of 400mg daily. A few weeks after treatment initiation, he developed mild periorbital and lower extremity swelling with pruritus which subsided over the ensuing months. He then developed a whole body, pruritic eruption of pink, edematous plaques, small vesicles and tense bullae, and erosions 11 months after initiating imatinib therapy (Figure 1). Punch biopsy demonstrated superficial perivascular dermatitis with lymphocytes, histiocytes, and rare eosinophils consistent with a drug eruption (Figure 2). Direct immunofluorescence examination at this time was negative. The patient was treated with an oral prednisone taper over two weeks and a topical regimen of tacrolimus ointment to face, triamcinolone ointment to the body, and clobetasol ointment to worst areas, which resulted in improvement but incomplete clearance. He subsequently initiated narrow band ultraviolet B therapy three times weekly and underwent 27 treatments with complete clearance of his rash. Phototherapy was decreased to once weekly, resulting in recrudescence of the eruption six weeks after tapering narrow band ultraviolet B therapy (Figure 3).

At this time (approximately 18 months after initiation of imatinib therapy), a second biopsy demonstrated intraepidermal vesicular and spongotic dermatitis with eosinophils, whereas direct immunofluorescence was positive for intercellular IgG and C3 fluorescence within the epidermis (Figure 4). Enzyme-linked immunosorbent assay (ELISA) demonstrated elevated reactivity to desmoglein 1 (55.95, reference<14) and reference-range reactivity to desmoglein 3 (3.14, reference<9) consistent with...
Case Presentation

pemphigus foliaceus. Treatment with two doses of rituximab at 1000mg administered intravenously spaced two weeks apart resulted in marked improvement two months after therapy and near resolution of his blistering rash five months after therapy (Figure 5). Follow up ELISA two months after rituximab infusion demonstrated reference range immunoreactivity for both desmoglein 1 and desmoglein 3. Imatinib was continued throughout rituximab therapy to achieve three years of total treatment (stopped in June 2016).

Unfortunately, the patient was found to have recurrence of his GIST approximately one year after imatinib discontinuation. He was restarted on imatinib therapy at the same dose of 400mg daily in July 2017, with the plan to keep patient on therapy long term per medical oncology. The patient noticed periorbital edema soon after restarting therapy and mild recurrence of rash, specifically a few isolated erosions and edematous papules on scalp and back, adequately managed with topical corticosteroids 6 months after reinitiating therapy. Owing to progression of his cancer on 400mg daily of imatinib, the dosage was increased to 800mg daily in September 2018. A few weeks after this dose increase, the patient noticed worsening and was seen in dermatology clinic. At that time, he was found to have numerous scattered annular urticaria-like plaques on the back and upper arms (Figure 6A). Punch biopsy of one of the annular lesions showed focal intraepidermal vesiculation with acantholysis (Figure 6B) and once again, ELISA demonstrated elevated reactivity to desmoglein 1 (27.25, reference<14) and reference-range reactivity to desmoglein three (0.47 reference<9) consistent with recurrence pemphigus foliaceus. Of note, the histopathology findings in this case were not specific to pemphigus foliaceus but are compatible with the disease when taken together with the direct immunofluorescence and ELISA findings.

The patient has history of prostate cancer surgically resected 9 years prior to his presentation and

Figure 4. A) Punch biopsy of the skin at relapse with clinical bullae demonstrating spongiosis, intraepidermal vesiculation, and eosinophils. H&E, 200×. B) Corresponding direct immunofluorescence of punch biopsy of skin at relapse showing positive intercellular C3 reactivity on examination, 400×.

Figure 5. Clinical remission was achieved five months after one cycle of two rituximab infusions.
superficial urothelial cell bladder cancer treated with intravesical Bacillus Calmette-Guerin (BCG) therapy with recurrence and additional BCG therapy at the time of this report. His chronic medications included aspirin and levothyroxine.

Case Discussion
Imatinib mesylate was initially described as a clinically effective inhibitor of the oncogenic BCR-ABL fusion kinase in chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia [2-4]. At the same time, it was shown to have an anti-tumor effect in metastatic GIST related to the cross inhibition of the tyrosine kinase c-kit [5]. Imatinib mesylate used in the adjuvant setting for resected GIST has demonstrated improved relapse-free survival and longer term treatment yields with better five-year survival [5, 6]. In general, imatinib therapy is well tolerated, though edema and rashes are frequently seen in a dose-dependent fashion [3, 4, 7]. One prospective study characterized the majority of rashes as exanthematous or maculopapular eruptions, and less commonly severe exfoliative dermatitis, pustular eruption, and psoriasiform plaques [7]. Other manifestations reported include lichenoid rash, acute generalized exanthematous pustulosis, and Stevens-Johnson syndrome [8-11].

Our patient exhibited the common cutaneous manifestation of periorbital and lower extremity edema. The temporal relationship between the onset of pemphigus foliaceus and the initiation of imatinib is circumstantially suggestive of a causal relationship. Although imatinib mesylate does not contain a thiol group like other better characterized causes of drug-induced pemphigus, it is a methanesulfonate salt that does coordinate the thiol group in a critical methionine residue in the nucleotide binding pocket of the Abelson kinase [2]. The pathogenesis of thiol drug-mediated pemphigus is not known, though postulated mechanisms include direct, drug-induced acantholysis, upregulation of acantholytic enzymes like plasminogen activator, and neoantigen formation [1, 12, 13].

Aside from the temporal relationship between imatinib therapy initiation and the onset of pemphigus foliaceus, other characteristics of this presentation suggest a drug-related etiology rather than this representing a case of coincident idiopathic pemphigus foliaceus. The preceding eruption was typical of a drug-induced hypersensitivity eruption, and it responded very well to typical therapies for

![Figure 6](image_url)

**Figure 6.** A) Scattered annular urticaria-like plaques on the back and upper arms. B) Punch biopsy of the skin of the left back after rash recurrence shows mild spongiosis, focal intraepidermal acantholysis, and a mixed inflammatory infiltrate with eosinophils. H&E, 200×.
hypersensitivity, including narrow band UVB phototherapy and topical corticosteroid therapies. The hypersensitivity eruption subsequently gave way to a bullous dermatosis with features not typical for idiopathic pemphigus foliaceus, including grouped, tense bullae in an annular configuration. In a recent case series of patients with drug-induced pemphigus, 16 of 17 were induced by thiol drugs, yet the phenotype of blistering disorder was variable despite the well-defined causes. The predominant type was that of classic pemphigus foliaceus, though there were a few cases of pemphigus herpetiformis type as well as unclassified types [13]. The case presented in this report certainly does not fit classic, idiopathic pemphigus foliaceus, though the phenotype of idiopathic pemphigus foliaceus with concomitant imatinib therapy is not known.

Of note, a form of pemphigus — paraneoplastic pemphigus — is associated with certain malignancies such as non-Hodgkin lymphoma, chronic lymphocytic leukemia, and Castleman disease [14]. It is possible that the flaring of pemphigus in our patient could have been related to tumor recurrence rather than treatment. However, paraneoplastic pemphigus is characterized clinically by oral erosions often followed by polymorphic cutaneous disease and systemic manifestations [15]. The histopathology varies based on the type of skin lesions and direct immunofluorescence can show linear C3 and IgG deposits at the epidermal-dermal junction [16]. In addition, immunopathology can demonstrate antibodies to desmoglein 3, desmoplakin 1, BP230, desmoplakin 2, envoplakin, plectin, and epiplakin [17]. Paraneoplastic pemphigus has been associated with GIST [18]. However, our patient's clinical and immunopathological manifestations were compatible with pemphigus foliaceus rather than paraneoplastic pemphigus.

It is important to note that the highly morbid skin disease in this patient did respond well to rituximab therapy. This allowed the continuation of adjuvant imatinib therapy for this patient whose tumor had a high risk of recurrence. Recent data demonstrates that three years of imatinib therapy in high risk GIST is superior to one year of therapy in both recurrence-free survival at five years and overall survival [19].

To our knowledge, only one other case in the literature demonstrated imatinib-associated pemphigus foliaceus. However, in this case, imatinib was discontinued and treatment with prednisolone and azathioprine facilitated the resolution of the patient’s pemphigus. One month after reintroduction of imatinib, pemphigus recurred in this reported patient leading to indefinite discontinuation of imatinib [20].

**Conclusion**

Our case supports the observation that imatinib may induce pemphigus foliaceus, further confirmed by the development of this phenotype on two separate occasions, both after therapy initiation and dose increase. Most importantly, this case demonstrates that targeted therapy, specifically with rituximab, treats this imatinib toxicity and allows for continuation of anticancer therapy in high risk patients.

**Potential conflicts of interest**

Dr. Anadkat has served as a consultant for Abbvie, Adgero, Biogen, Boehringer-Ingelheim, Innovaderm, NovoCure, OnQuality, Eli Lilly, and UCB Biopharma. He has received honoraria in the past as a speaker for ImClone, Bristol Myers Squibb, Therakos, Eisai, and Biogen. He has also served as a Principal Investigator for Abbvie, Hana Biosciences, Xoma, InflamRx, Biogen, Lutris, AnaptyBio, Boehringer-Ingelheim, OnQuality, Veloce, Novartis, ChemoCentryx, UCB Biopharma, Eli Lilly, and XBiotech.

**References**

4. Druker BJ, Sawyers CL, Kantarjian H, et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of...


