The appearance on the Assembly Series this spring of Alex Haley, author of *Roots*, required moving the Assembly from Graham Chapel to the Field House to accommodate a crowd of more than 3500. Above, are the rows of buses that brought schoolchildren from all over the area to hear Alex Haley speak. See page 28.
Professors Lewis and Elvin-Lewis are a husband and wife team of Washington University scientists who have written what may be the definitive work on plants affecting man's health: Medical Botany, John Wiley & Sons, Inc., 1977. The 515-page, lavishly illustrated volume focuses on plants that injure, heal and nourish, or alter the conscious mind. On these pages, the authors give a brief survey of the book's contents.

Plants and Human Health

By Walter H. Lewis
Professor of Biology
Senior Botanist, Missouri Botanical Garden

and

Memory P. F. Elvin-Lewis
Associate Professor and Head of Dental Microbiology

A FEW YEARS AGO, books on the relation of herbs to our health began appearing in ever-increasing numbers. Although some were well illustrated and others contained well-documented herbal recipes from indigenous folk medicine, many were merely lists of plants accompanied by supposed efficacies. Little attempt was made to relate their contents to scientific data and only rarely were they correlated with current use in modern medicine. Moreover, it was unusual for these herbals to discuss plants known to be harmful or psychoactive; consequently, cross references to indicate remedial, as well as harmful, properties, which so often depend on either dosage or mode of preparation, were usually absent. It became clear that although numerous symptoms, syndromes, or bodily functions were glibly mentioned, the reasons why the plant worked, and for that matter what the plant substances affected specifically, were wanting. Often, unless you were a trained physician, it was difficult to understand the implication of presumed value and thus the average reader found most data meaningless. Our concern also was that an increasing number of readers were using such information for self-medication without a full appreciation of the potential dangers that such preparations might possess.

On the other hand, many plant-derived products were incorporated into modern pharmacopoeias without full appreciation of their original source. Because of this, related plants were often ignored for their medicinal potential. Moreover, new investigations of plants were rarely conceived with an appreciation of the results achieved through the empirical method of folk medicine. It became more the rule for scientists in search of a particular medicinal property to manipulate a man-made chemical rather than to search the enormous folk literature or to explore known cures among indigenous peoples for clues that would lead ultimately to a more efficacious product. Unfortunately, this approach has often served only to delay the application of many potential remedies. For example, it is unfortunate that man's first cosmopolitan tranquilizer, derived from *Rauwolfia*, did not come into general use until 1952, despite the long history of its use in Ayurvedic medicine in India, or that cromylyn, the miraculous prophylactic drug for asthma, has only recently been introduced, though its use in the form of *Ammi* seeds was part of Bedouin folk medicine for centuries.

Whereas a few centuries ago the physician was trained in botany, few medical scientists today have this experience. Their search for medically useful elements seldom combines the ability to distinguish chemical compounds for medical value with the ability to recognize the relationship of plants used medically by different cultures. Clearly, empirical selection has led to studies resulting in the isolation and use of important active principles and these, together with syn-
thetic derivatives of natural products, are an important source of our therapeutic armament. Nature is still mankind's greatest chemist, and many compounds that remain undiscovered in plants are beyond the imagination of even our best scientists. We hope that by bringing together information gleaned from both modern and herbal medicine, we will encourage future discoveries along these lines.

In writing Medical Botany, our task was to present information concerning plants and our well-being in a relevant and useful manner for the scientist, student, and in part, for those readers without scientific training. In this way, we could enhance the content of the typical folk herbal compilations, while at the same time emphasizing the plant origin of so many of our most useful drugs on the market today. We recognize that man's survival has been dependent on his innate curiosity, his desire to examine by trial and error all aspects of his environment, and to conclude, for example, which materials are remedial, which ones are harmful, and which give him the greatest nourishment. This legacy exists today, but it is only partially utilized in our endless quest for well-being.

What examples do we have of the correlation between empirical applications and proved efficacy? What examples are there of plant products or their derivatives that directly affect man's well-being?

There is no doubt that of products harmful to man, those of plant origin are important to everyday life in urban or rural areas, in more developed countries, and in the underdeveloped nations. In these various environments are found hundreds of plants that are injurious if ingested and are capable of causing many serious symptoms, and even death. People in rural settings, of course, are exposed to nature's lethal organisms every day, but even those in more urban areas must be wary of garden plants introduced from all parts of the world. House plants often are poisonous, and children are attracted to the colorful parts of these otherwise harmless organisms in our midst. Few realize, for example, that apple seeds contain cyanide, which may be lethal in large doses; that the alkaloid taxine from the common bedding plant English yew is rapidly absorbed and causes sudden death; that the leaves and twigs of boxwood, so common as a hedging plant, produce another alkaloid, buxine, which contributes to respiratory failure in humans and domestic animals; that children using peashooters made of elderberry stems may be poisoned from exposure to this plant's alkaloids and cyanide; and that the eating of green and sprouting parts of potatoes may cause severe poisoning. Likewise, common house plants such as oleanders, caladiums, and philodendrons must be avoided. A person ingesting the leaves of oleander or its sweet nectar, for instance, may develop severe vomiting, irregular heart-
The English yew tree contains in its bark, leaves, and seeds an extremely dangerous alkaloid toxin. Death is sudden and survival after poisoning uncommon. Children should be warned to avoid the red seeds.

Mandrake has been associated with magic and mysticism for centuries. It contains scopolamine, a well-known hallucinogen, as well as hyoscynamine and atropine. It once served as a pain-killer in surgery.

As the source of both a fruit and an oil that have been staples of the Mediterranean civilization for many centuries, the olive tree provides a natural aid to digestion and a mild laxative.

Hay fever and dermatitis result from a manifestation of our immune system known as allergy. The abundant grasses, trees, weeds, and fungi in our environment produce pollen, spores, and other materials to which we become sensitized so that on re-exposure they cause discomforting symptoms that may become life-threatening. No one who has suffered from ragweed hay fever, asthma attacks, or poison ivy dermatitis can doubt the role of allergenic plants in health and productivity. Even our health food stores can be a source of danger for those who are allergic. Camomile tea, for example, may present life-threatening symptoms to an individual who is allergic to ragweed pollen.

Certain plants have the disturbing quality of modifying the cells in other ways. Some give rise to mutations that may occur in the reproductive cells, permanently altering succeeding generations if these cells are utilized in reproduction. Others may affect the somatic, or body cells, in a way that causes congenital abnormalities, resulting in irreparable damage to the fetus. Even more insidious, some plants have the ability to induce cellular aberrations, especially in the peripheral blood, perhaps affecting the immune and clotting systems, and in some instances causing death. Plant proteins, typified by those found in the juice of the poke weed, enter the body through simple cuts and abrasions to do their damage. As a precaution, one should never handle mature poke weed without gloves.

Of the plants found to have remedial properties, none are more welcomed than those that help in our fight against cancer. Many thousands of lives have been saved or extended by the ability of agents from some microorganisms to inhibit the development of tumors and other abnormal growths, or by the alkaloids vincristine and vinblastine of the Madagascan annual periwinkle. The dramatic results of using these compounds in combination chemotherapy for treating Hodgkin's disease (80 per cent remission), acute lymphocytic leukemia (99 per cent remission), Wilms's tumor (80 per cent cured), Burkitt's lymphoma (50 per cent cured), and gestational choriocarcinoma (70 per cent cured) are testimonials to the gigantic strides achieved in the past few years when plant products have been introduced against the most terrifying of all disease complexes.

Many plant products affect the nervous system and we, like our forefathers, constantly take advantage of this property in either dulling or exciting the system. Throughout North Temperate America and Eurasia, our ancestors used willows and poplars, which contain an aspirin-like compound, to relieve fever and pain. Eventually we learned that opium alkaloids also relieve pain, and morphine became the all-important analgesic in cosmopolitan medicine. Almost as valuable to the surgeon as his knife are the curare plants (arrow poisons of South American Indians), which reversibly paralyze skeletal muscles.

Their current derivatives now make surgical procedures more effective. Our greatest killer is heart disease, but where would we be if the useful properties of foxglove had not been known empirical-
The European beech tree has long been a source of creosote, an antiseptic agent used in many soaps. Beech nuts, however, have been reported occasionally to cause poisoning in humans and animals.

Wild white hellebore contains ester alkaloids that are potent hypotensive agents. It contains agents that reduce hypertension, lower blood pressure, and help fight slow cardiac contraction rate.

The female mandrake, according to folklore, is considered the more delicate; the male plant, the more robust. The male-appearing roots were used for masculine problems, the female for "women's diseases."

Plant extracts appear to be available for the alleviation of most symptoms involving the gastrointestinal tract. Countless plants known to indigenous medicine are used for indigestion and stimulation of digestion and for emetics, anti-emetics, and purgatives. They are employed to control diarrhea, flatulence, and spasms, to kill worms and destroy amebic infestations, and to treat liver complaints and hemorrhoids. In most instances, commercial preparations derived from the same plants are available over the counter. A recent research development has been the use of two derivatives of Glycyrrhiza.
The clove tree. Cloves and oil of cloves have long been used as a toothache remedy. An agent in clove oil, mixed with zinc oxide, is used today as a temporary filling to disinfect root canals.

Poke, or pokeberry. A favorite spring herb in the southern United States, it is eaten like spinach. Uncooked, it is poisonous and is dangerous to handle because poison can be absorbed through skin.

Glabra root, the common licorice from which candy is made, to treat peptic ulcers. With this method, ulcers are reduced in size and healing occurs even though the patient is not confined to bed. Licorice has had a long history in European domestic medicine for treating indigestion and relieving inflamed stomachs.

Respiratory diseases include bronchial asthma and emphysema, in which bronchodilators, such as plant-derived ephedrine and theophylline, are indicated to expand the air passages of the lung. To clear the lungs of sputum, patients often use expectorants, such as ipecac syrup from Cephaelus, creosote from American beech, or mucus-dissolving agents from leaves of the Malabar nut tree. The latter, in very recent clinical trials, has proved efficacious. The vegetable kingdom abounds in agents to prevent or relieve coughs, as well as substances utilized in soothing sore throats and treating colds.

Plants are implicated in most folk medicinal aspects of the urogenital system, but none are more extensive than those involved in sexual drive and performance. Perhaps hundreds of aphrodisiac substances are allegedly used by men of certain indigenous populations. Some are available commercially, such as the alkaloid yohimbine, from the bark of the African Corynanthe.

The skin is man's largest tissue, and a great many herbs have cosmetic uses in perfumes, creams, salves, soaps, oils, and shampoos. Important to survival are plants having properties to stop bleeding and to heal wounds and burns.

Fortunately, man has displayed the ingenuity to seek out deterrents, such as the antibiotics, as well as pest inhibitors, to improve health and often save lives. Great strides in agriculture are intimately associated with pest control, whether it be by insecticide, fungicide, or herbicide. Pesticides from natural plant sources, such as the pyrethroids, are preferred because they have low mammalian toxicity and are biodegradable. As we become more sophisticated in our attitude about the environment, we shall undoubtedly increase our use of plant-derived compounds.

As man appears to have long had his
The common pumpkin. It provides a nutritious food source, and in addition, pumpkin seeds brewed as a tea have long been used as a specific against worm infestations.

The root of the iris yields an acrid resin and essential oil that has been used for centuries as a purgative. Some species of iris contain a substance that is poisonous to livestock when ingested in quantity.

Aphrodisiacs, whether real or imaginary, he has also had his panaceas. Some of these are imaginary, too, but the star of them all, ginseng, has been shown in recent years to aid the user under stress. Very possibly the millions dedicated to its use have an elixir after all.

Plants having psychoactive properties have always been popular. Stimulants like cocaine, chat, coffee, tea, chocolate, non-caffeine teas, and nicotine all give a sense of well-being and exhilaration, of self-confidence, and even of power. They also alleviate fatigue and insomnia. (A number of coffee substitutes are discussed in Medical Botany and these may provide the source of future alternatives to an increasingly costly beverage.) In addition, man has found plants ranging from cacti, spices, and morning glories, to mushrooms capable of inducing hallucinations. He has ingested, smoked, and sniffed them, rubbed them on the skin, and even deified them. But man also has his depressants, which include the widely enjoyed derivative of fungi, alcohol. All such drugs are enormously useful in medicine, but all are subject to abuse.

These are but a few examples of the plants discussed in Medical Botany. The book, which is directed to all those concerned with health, should be useful to the physician and the biologist and interesting to the layman. We hope that our approach will stimulate worldwide interdisciplinary studies of plants in relation to human health.

At Washington University, a course on medical plants is now a part of the regular curriculum of the Department of Biology. During its development as a course, it became increasingly popular when offered in intersession and this spring enjoyed an enrollment of more than 200 students. In addition to biology majors, many with premedical interests, others included anthropologists, chemists, psychologists, and engineers. It is heart-warming to see so many diverse students sharing an interest in the subject.

The pink periwinkle has long been used in folk medicine to treat diabetes. It has now been discovered that the plant contains a potent antitumor agent that is being used to combat certain kinds of childhood leukemia.
"Tennessee Williams went to Washington University, but won’t admit it publicly. Why not?" asks Shepherd Mead in this brief reminiscence of the campus literary scene in the Thirties. As editor of Eliot, the campus literary magazine, Mead published some of Tennessee Williams' very earliest writings—poems slipped under the Eliot office door at night. Shepherd Mead is the author of seventeen books, including How to Succeed in Business Without Really Trying on which the hit musical comedy and successful film were based.

TENNESSEE WILLIAMS, now quite probably America’s greatest living playwright, went to Washington University. I’ve always known it. Many of my friends and my younger brother knew him there. But Williams won’t admit it; he hides the fact as though it were some kind of guilty secret. For years I’ve wondered exactly why.

A short time ago, a copy of Williams’ recent Memoirs reached me in Switzerland. In it he tells the whole story of his personal life, including some of the most courageous revelations I’ve ever read. He hides almost nothing in this extraordinary book of some 250 pages that includes intimate details of his homosexuality, his struggles against, as he called it, "lunacy," and the time he spent in a mental hospital. Everything is there, everything but that one unspeakable secret: he went to Washington University.

Williams tells about the time he spent at the universities of Missouri and Iowa, but to judge by his Memoirs, he only dropped in once at WU for a meeting of the poetry club.

Yet, Williams' connection with Washington University extended over a long period, culminating in a year that was evidently so traumatic that he dropped it out of his life, and never refers to it at all. It has become the secret year of Tennessee Williams. This fascinated me so much that I carried out my own private investigation.

Gordon Sager and I published some of Williams' very earliest writing, long before he used the name Tennessee. We were editing the old Eliot, the University literary magazine named for Eliot Seminary, the forefather of WU. Occasionally, an envelope would be slipped under the door and it would be a poem, signed Thomas Lanier Williams. The poems were always first class, and I believe we published every one.

I never met this Thomas Lanier Williams, and to my knowledge never saw him. This, of course, is Tennessee Williams' real name, and his grandfather's name, too. The year was either 1933 or 1934, when Eliot was a "little" magazine, before Dirge, the "college comic," was abolished, and Eliot inherited the cigarette advertising that supported all campus magazines in those days. I worked on Dirge, too, with Bill Vaughan, the wonderful, witty fellow who later became the syndicated columnist of the Kansas City Star and who, I was distressed to hear, died in February. There is a kind of irony in the fact that Bill died of lung cancer.

WHAT WAS Williams doing at Washington University around 1933? He wasn't registered. He had spent three years at the University of Missouri. The depression had come along and his father, employed by the International Shoe Company in St. Louis, told young Tom he'd have to go to work for the company. This he did, from 1931 to 1934. The family lived near Washington U. There's a picture in Memoirs of the Williams' house in Arundel Place, Clayton. Young Tom just wandered over to the campus occasionally and slipped some poems under our door. No law against that.

Williams was already writing plays, and in the summer of 1934 had his first one performed by a little theater group
in Memphis, Tennessee. The Rose Arbor Players, so called because they performed in a member's backyard, produced his short play *Cairo, Shanghai, Bombay!*, the story of two sailors and a date with two "light ladies," as Williams called them. He was twenty-four at the time, and reading much Chekhov.

In the fall of 1936, three months after I graduated, Tom Williams entered Washington University and registered for courses in, among other things, Greek, General Literature, and William G. B. Carson's English XVI, the course in playwriting.

"Pop" Carson, who died in December of 1976 at eighty-five, was one of the truly beloved characters of the University. His English XVI was a club, a contest, and a tradition. Pop, also nicknamed "Boops," delighted in giving us his own dramatic readings of plays. And we would all go off as a group to attend performances, usually at the St. Louis Little Theater. Then we'd take the plays apart in class.

But the main thing was the contest. We were all supposed to be writing one or more one-act plays. Carson would read these, or bits of these, aloud in class, and give us advice and criticism. At the end of the school year an independent jury selected the three winning plays, which were produced by Thysrus, the dramatic club, the following year. Another jury watched the productions, all done together in one evening, and awarded the grand prize of $50 to the author of the winning play.

I'd been one of Carson's students in the previous 1935-1936 school year, and my play, a rather heavy-handed science fiction piece called *Eternity Unlimited* had been selected as one of the three for 1937 production, the year that Williams was in the class.

Among the students in the '36-'37 group was Aaron Hotchner, who later became Hemingway's famous friend and biographer—and who was called by him, and by all of us, "Hotch." Another was Wayne Arnold, now head of the drama department at John Burroughs School in St. Louis. Both Hotch, whom I'd known at the University, and Wayne Arnold, whom I hadn't met, have written me about the controversial '36-'37 class. Pop Carson, too, wrote me a letter about it some years before he died.

Here was Williams, at twenty-six older than the others, and probably the only one in the whole class who'd had anything produced anywhere. And at this time, by his own account, Williams was almost pathologically shy and very sensitive. And remember that Williams has never mentioned any of this publicly, anywhere, not the fact that he entered the class, or even that he entered the University. I've written him to try to find out his side of the story, but have had no answer.

What was he like in class? Because of his shyness, he was hardly noticed. Arnold writes: "In English XVI, he sat at the back of the class, mixing with no one and known to the rest of us as the SNC [Student Not Candidate for a Degree] . . . I remember that his silent, dark (he stays in my memory there as always wearing dark clothing) figure seemed to me then someone considerably older."

Hotch writes: "He did come to class, but not often. During the semester he wrote fragments of a play about his mother and sister, fragments which bore a strong resemblance to what was to be *The Glass Menagerie* years later. Professor Carson read these fragments (as he read all our works in progress) with great spirit and afterwards expressed his high approval of them. I took it for granted that when Williams got around to doing the one-act play . . . that these characters of his work scenes would be the principal ones in his one-acter."

But Williams evidently wasn't yet ready to write *The Glass Menagerie*, and submitted, instead, as his contest one-act, a melodrama called, *Me, Vasha*. Wayne Arnold had access to the script files, and read it a number of times. He writes: "Vasha concerned a peasant (Russian? Polish?) who became a munitions magnate selling arms to a world which seemed constantly at war. As a boy he had fallen in love with a child princess and—guess what—he has now married her. End of exposition. As the curtain rises Mrs. Vasha is in a bad mental state. It seems that she had had a deep friendship with a young poet who had managed to arouse the jealousy of her husband, who saw to it that said poet was shipped off to the front lines in some war or other and got it in the head. The princess is distraught and has been having visions of her friend standing at the front of her bed urging her to kill her husband for what he has done to mankind." There's lots more, a psychiatrist is brought in, the princess has a tirade against her husband, and finally shoots him dead. Dying, he kisses the hem of her garment.

Well, we all make mistakes, don't we?

When the play was read aloud in class, Hotch says, "there was considerable half-suppressed laughter."

Meanwhile, Hotch was writing a play about a campus gossip columnist, titled *Who's Aunt Tillie?* and Wayne Arnold was doing one about a best-selling book, called *First Edition*. And during all this, the three plays from the previous year were produced. I was in New York, working most of the day at an advertising agency and trying to write dialogue most of the night, and couldn't even afford to come back to St. Louis to see them. My *Eternity Unlimited*, which I've
never seen performed, lost to Arlene Thyson's play about the English XVI plays. Arlene had acted in them before, and knew all about it. It was to Arlene and Jack Pickering that I'd turned over the editorship of Eliot the year before.

All the new scripts were now in, and, to take it again from Hotch:

“On the final day in class, Professor Carson announced the winning three plays: Arnold's, mine, and a third one called Bangtail, about a guy who was a compulsive horseplayer. Williams was present that day. He rose slowly from his seat, suffused with anger, and left the room. None of us ever saw him again. Certainly not at the performance.” Actually, Wayne Arnold did see Williams again once or twice, briefly.

Williams, however, was asked to appear with the three winners at Graham Chapel. Wayne Arnold says that Carson told him about this: “He [Williams] refused—in fact, stormed into Mr. C's office and delivered a tearing denunciation of the judges' intelligence, said that he approved the choice of my [Arnold's] play, but that to choose the other two over his was an insult he could not countenance. He slammed his way out of the office and so far as I know it was the last time he ever spoke to Carson.”

Arnold writes that Williams tried to destroy or remove all the copies of Me, Vasha. “Dakin Williams, Tennessee's brother, was still at school . . . the play was signed out of the files by Dakin's frat brothers (Tekes) until it seemed to them they had all the copies in existence. Just then, Carson would discover the trick and have three more carbons made.” This kept on going, and Arnold doubts that any copies are now left.

In the following year the Arnold and Hotchner plays were produced, and Wayne Arnold's First Edition won.

The official records of Washington University (a university, like an elephant, never forgets) show that in the academic year 1936-1937 Thomas Lanier Williams was registered for William Carson's English XVI, both semesters, and for both semesters in Greek and General Literature. The University even has his grades in all these, but all our grades are (thank heavens!) confidential and top secret. In Memoirs, Williams has left the academic year 1936-1937 blank. It is mentioned only in a caption of a picture of the Eliot staff. Me, Vasha is not listed anywhere among his plays.

In the fall of 1937, Williams enrolled in the Drama Department of Iowa University. In that same autumn, his second play to be produced, Fugitive Kind, was performed by the Mummers, a semi-professional group in St. Louis. The critics, he says, "put it down."

As Williams writes in Memoirs:

"Afterward there was a desperate drunk party in someone's down-town hotel room. I made a sudden dash for a window but was tackled and I cannot say reliably whether or not it was my intention to jump. The point is that I already knew that writing was my life, and its failure would be my death . . ."

A playwright has to be made of steel. Three years later, Battle of Angels was bought by the Theater Guild, and closed by them in Boston. It wasn't until late 1944 that The Glass Menagerie opened in Chicago, and Tennessee Williams was able for the first time to make enough money to eat by practicing his trade. He was then thirty-four years old.

His steel was stronger than mine. After writing eight full-length three-act plays over a period of twelve years (while working full time to support my wife and children) and after signing stacks of Dramatists Guild production contracts, without ever having had a single production, I switched to books. My first novel was published in 1949, I was thirty-five.

To the best of my knowledge, this is a true statement: during the twenty-eight years of English XVI, only one of its students was able to support himself by writing predominantly for live actors on a stage, and that is Tennessee Williams, whose English XVI play wasn't nominated and wasn't produced. This isn't an indictment of English XVI, which gave all of us so much pleasure, and has since illuminated our playgoing. It is simply a comment on the terrifying arithmetic of the legitimate stage.

And what arithmetic! Four years after abandoning playwriting, I dashed off a little book, full of dialogue, in three months of my spare time, while commuting to a full-time job in New York—probably less than 100 hours of writing! How to Succeed in Business became a best-selling book, and nine years later won all the drama prizes as a musical comedy—the Pulitzer Prize, New York Drama Critics Circle Award, and Tony Award. It made me enough money to live for twenty years! Largely because of that "fabulous invalid," the live theater, Succeed is the only one of my seventeen books that most people know! Is there no justice?

But my twelve years in the theatrical wilderness make me understand how a playwright can have periods of deep despair. So I can forgive Williams for the fact that his year at Washington U. happened to coincide with, and perhaps helped to produce, one of his times of depression. I hope the University can forgive him, too.

And if he wins the Nobel Prize, as he should, and as I hope he will, we'll all be proud of him—whether or not he is proud of us!
George D. Selfridge, the new Dean of the School of Dental Medicine, pauses on a visit to the main clinic. There were 51,434 patient visits to the School’s clinics last year.
With its new skipper, the former Rear Admiral George D. Selfridge at the helm, the Washington University School of Dental Medicine is charting a course which promises to bring new programs and prestige to a division of the University which is alive and well and flourishing after almost closing its doors a few years ago. On the move and full of yeasty plans for the future, its pilot and his staff prepare to expand both the School's curriculum and its quarters in the years ahead.

New Dean Sees Bright Future For Dental School

By Dorothy Brockhoff

George Washington may have saved his country, but he wasn't able to save his teeth. By the time he was inaugurated in 1788 he had only one tooth left. "The Father of our Country" tried various dentures made of tusks from elephants, hippopotamuses, and cattle, but, perhaps because they were fitted by scientifically untrained individuals, including the portrait painter, Charles Willson Peale, most of us tend to think of him as that "hero with the ill-fitting teeth." Nowadays, however, there are some 120,000 professionally trained dentists in the United States—some of them specialists in prosthodontics (that branch of dental medicine that treats of prosthetics, or, in lay language, false teeth). But, in Revolutionary War days, there were no American dentists with formal and/or scientific training.

Today, about 6000 dentists graduate each year from some fifty-nine dental schools in this country—twenty-four of them privately maintained. One of those, of course, is Washington University’s School of Dental Medicine, established in 1866 as the first dental school west of the Mississippi. It was the sixth dental school founded in the United States and it is now the fourth oldest in continuous operation.

Organized as the Missouri Dental College, its name was changed in 1892 to Washington University Dental Department. Known since 1974 as the Washington University School of Dental Medicine, it has been headed by thirteen deans including the one installed in late August last year, the former Rear Admiral George D. Selfridge of the U.S. Navy.

Commanding Officer of the Naval Graduate Dental School in Bethesda, Maryland, at the time of his appointment by Chancellor William H. Danforth, the new Dean is a genial, jovial, well-built man with a commanding voice and a decisive bearing. Self-confident and a natural extrovert, he seems to have had no trouble adjusting to his new headquarters in the heart of the Washington University Medical Center.

"People ask me," the new Dean explained, "'How do you find the conversion from military life to a civilian lifestyle?' I haven't even realized that there has been a conversion, because the work I am doing here is precisely what I have been doing previously for some ten or twelve years."

The focus of Dr. Selfridge's career for more than a decade now has been in dental education. At the Bethesda installation, first as Chairman of the Educational Resources Department and Assistant Director of Graduate Programs from 1962 to 1972, and then, most recently, in a job which is comparable to that of a dean of graduate studies at a university, Dr. Selfridge became convinced that "to develop a good professional man, one has to be a good teacher." Putting this belief into practice, Dr. Selfridge himself returned to school and earned a master's degree in higher education at George Washington University, in the nation's capital, in 1974.

When it came time to haul down his two-star flag at Bethesda, in a ceremony which he likened to attending one's own funeral, he was not only an experienced oral surgeon, but also a seasoned educator-administrator, committed, at what he calls "our profession's crossroads of identity," to improving the methodology of teaching dentistry.

Casting around for an administrative job in an educational system, Dr. Selfridge sought to become part of a dental school. But not just any dental school. "I wanted to go to a private dental school," he emphasized, "because I believe that it is the last frontier as far as the private enterprise of dentistry is concerned. Here I am part of a group which is providing a legacy
for our profession as we have inherited it.”

Sometime after his predecessor, Dean John T. Bird, announced his intention to leave after thirty years of service, Dr. Selfridge was visited by one of the members of the Washington University search committee, and, in turn, came to St. Louis early last year to explain his philosophy of dental education. There’s more than a bit of Tennessee Ernie Ford in the Selfridge style, and he put it this way: “Before you knew it, we became kissin' cousins, then we became blood brothers, and here I am.”

TODAY, he is preoccupied with directing this school, and only talks of the past when pressed. The picture he paints of life in the Navy is not that of a swashbuckling adventurer, but rather that of a typical dentist with the same kinds of problems which are common to those who practice their profession on dry land. He explained that on an aircraft carrier about the size of a football field plus, you treat the same kind of traumas as the dentist in a high-rise or in a suburban shopping center.

“The cause of the trauma may have been a little different—getting hit by a boom or swept up by a jet, but the result of the trauma is just about the same,” he said. A carrier usually travels with a dental crew of four and, Dr. Selfridge added, “unless you get into very rough seas, or the ship is going through very sophisticated maneuvers in order to recover aircraft at high speed, you really don’t have the sensation of rocking and rolling.

“Submarines,” he explained, “don’t carry dentists on board.” Thus, when Dr. Selfridge served as senior dental officer of the submarine force in the Atlantic fleet, he, as well as those dentists under his command, used tenders as bases. “These are support ships and have on board everything from machine shops to medical-dental facilities to service the submarines. Such ships have much more of a roll, and here judgment is the better part of valor,” he added with a smile. “Fortunately, most of the tenders service submarines while in dry-dock. You have to know what your capabilities are. On a destroyer I didn’t operate when they were firing guns so powerful that they caused the light bulbs to break.

“It’s interesting to note, however,” he continued, “that a submarine is possibly the finest dental health-oriented community in the world. Some 25,000 to 30,000 personnel are involved with the subs. Both these craft and their crews are serviced approximately every three months. Thus, the men on board are constantly screened to make sure that when a submarine goes to sea its mission won’t
be aborted for any physical disability other than that caused by trauma. This preventive dental medicine is necessary because we don’t want to have an infected tooth foul up the whole Polaris system.”

Selfridge became Dr. Selfridge while in the Navy, which he joined in 1943. Awarded a D.D.S. in 1947 by the University of Buffalo, he completed his rotating dental internship at the National Naval Medical Center in Bethesda and the U.S. Naval Hospital at St. Albans, New York. His first seagoing assignment was aboard the USS Midway as an assistant dental officer in 1951, and he was on and off ships until a disk operation beached him. That’s when he began to turn all of his attention to administrative and educational problems, and gave up the active practice of oral surgery.

Since his civilian life began just a comparatively few months ago when he took command of the School of Dental Medicine, he has seldom been idle. Flying to both coasts to meet distant alumni and at the official School of Dental Medicine Alumni Meeting this spring in St. Louis, he has discussed the problems facing the profession of dentistry and the School itself.

As a speaker, Dean Selfridge likes to catch the interest of his listeners by asking rhetorical questions. The future of dental auxiliaries (those people who assist dentists as assistants or hygienists) is of great concern to him. Hygienists must complete a rigorous and formalized course of training of two or four years in order to become licensed professionals. Moreover, their duties have been explicitly restricted by the law.

On the other hand, the dental assistant is not recognized by statute and is literally free to do whatever the dentist says to do, except practice dentistry as defined by law. Some of the junior colleges offer minimal training, but it is not required nor is it necessary for such a person to pass an examination before beginning work in a dentist’s office. Thus, by a quirk of legislation, the much more highly skilled hygienist is most severely restricted. “Are we,” the Dean inquired, “to have educated auxiliaries, or don’t we want them?”

“What about denturists?” Dean Selfridge asked. “In Canada, laboratory technicians are permitted to perform a specific type of prosthetics (dealing only with removable dentures in the mouth). Now, legislators in a number of states in this country are considering passing enabling laws which would make that possible here. The American Dental Association is spending about a million and a half dollars to prevent the adoption of such legislation. Yet,” Dr. Selfridge said, “we refuse to vote a raise in our ADA dues to support its efforts. Why?”

Dr. Selfridge also pointed out that if dentists themselves do not adopt measures providing for professional standards (peer group) review, the government will. “Are we going to act?” he asked. “What about marketing our services?” he inquired. An article in a February issue of The New York Times explained that now you can go to a Sears store near you (in California only at the present time) and buy new tires, new furniture, new clothing and a new set of teeth. “Doesn’t that grab you?” he concluded.

The Dean also discussed the ever increasing parameters imposed by the government on the dental schools. No one at the time this article is being written in late April knows exactly what the passage of the Health Professions Educational Act of 1976 (commonly called the Manpower Act) will mean in relation to dentistry. It appears, however, “that a school must increase its student body by 5 percent if it has an enrollment of over 100; if the student body is less than 100 it must raise its number of students 10 percent during the academic year 1978-79. If this mandate is not carried out, each student will be required to perform six weeks of service in what the government calls community dentistry.”

The Act also refers to residency training. According to Dean Selfridge, it is generally believed that it will be interpreted to mean that if a school wants to start additional residency programs and also to qualify for the funding provisions of this legislation, 70 percent of its new residency appointments must be in either general practice or pedodontics (dentistry for children). Dental educators are puzzled as to the meaning of the legislative phrase “general practice.” Presumably, all persons who graduate from accredited dental schools are already trained in this area or they would not have earned their degrees.
Currently, the Washington University School of Dental Medicine offers postdoctoral training in four specialties: endodontics (the part of dentistry concerned with root canals), oral surgery, orthodontics (dentistry dealing with irregularities of the teeth), and oral pathology. Long before the new government regulations, it had made plans to offer graduate training in pedodontics, commencing in July. But, under the new law, it would seem that for every three new residents in the traditional specialties, the School of Dental Medicine would have to add seven in pedodontics and/or general practice. Is that truly the intent of this legislation? No one is quite sure at this point. But if it is, "What will it mean to new and expanding schools?" Dean Selfridge inquired. "As far as graduate programs are concerned, it will make for a very difficult situation."

He added, "The catch in all of this legislation is that if a school doesn't follow the letter of the law, it will be denied capitation funds." Such monies are, in lay terms, government subsides to dental schools based on a per capita (student) formula. These funds have been available for some years now, and deans have learned, according to Dean Selfridge, that "of the monies allocated, you get something like thirty cents on the dollar. They are no world savers," he stressed, and Dr. David A. Bensinger, associate dean, concurred.

A recognized authority on dental school fiscal management, Dr. Bensinger said that "only about 10 to 11 percent of the Washington University dental school budget is supported by such capitation funds," and he looks forward to the day when it will no longer need any federal money. Unfortunately, at the present time it isn't quite that simple. "One of the severest gimmicks of all is that we must accept capitation money or our students will be deprived of their loans," he said.

Dr. Bensinger believes that within the next few years it will be impossible to depend on federal funding. By that time he expects Washington University School of Dental Medicine to be self-sustaining. That will be quite an accomplishment for this University's dental school, which was so financially strapped in the late sixties that the University's Board of Trustees considered closing its doors. When the crisis seemed most acute, the School's faculty and alumni rallied to the cause, and with frugal management, supervised by Dr. Bird and Dr. Bensinger, the School simply refused to die.

Today, with Dean Selfridge at the helm, and Dr. Bensinger at his side, the future seems most promising. This fall a four-year curriculum will be instituted in a program which has been completely revamped. The aim is to develop a sound biological foundation for the practice of dentistry. Dean Selfridge has consolidated all of the pertinent basic sciences in a program called Oral Biology. Another grouping of courses has been brought together under the heading of Integrating Preclinical and Clinical Studies. A coordinator has been appointed to study and blend all of this educational material and to ensure the effective transfer of preclinical skills to clinical practice. The goal is to have a totally coordinated effort for treatment planning as well as for patient control. The necessary renovations are being instituted to accomplish this purpose.

Meanwhile, more emphasis is going to be placed on basic research. Presently, grants total $358,000. Dr. Selfridge's goal is for the school's awards for such study to break the million-dollar-mark within the next three years. There are plans to focus greater attention on bone implants, using stainless steel and titanium as a foundation on which to build new dental devices. The School also hopes to do in-depth studies on the relationship between bone and blood supply, and to learn more about dietary influence on dental and skeletal diseases.

But perhaps the most exciting news of all is that the dental school and the School of Medicine jointly plan to occupy the huge old bakery building directly to the east on Scott Avenue.

Remodeling will be expensive—about $100 per square foot—but it will be more economical than erecting a wholly new structure. Once completed, it will cost about five dollars a foot to maintain it—roughly, about $200,000 a year. The raise in tuition from $4900 to $5600 instituted this fall won't help (it costs between $11,000 and $15,000 a year to train a dental student). But a portion of the $1,500,000 bequest from the estate of Mrs. E. Alfred Marquard, in memory of her husband, who earned his dental degree from Washington University in 1920, may be of some assistance. Under terms of the will, which is subject to conditions which may arise during full audit and probate, one half of the money will be used for student aid and the rest for renovation and construction.

Some of the new full-time faculty which Dean Selfridge plans to add will be able to use space in the old bakery quarters for the private, intramural practice of dentistry. Such clinical facilities for the teaching staff are necessary if the dental school is to remain competitive with rival institutions in its search for faculty of high quality.

These are but a few of the ambitious plans which Dean Selfridge has for the Washington University School of Dental Medicine. In summary, as he told the alumni gathered in St. Louis recently: "I shall be responsible for all failures. I hope all of us will share the present and all future successes together."
Elizabeth Knoll, a George Mylonas Scholar in the humanities, is spending her junior year abroad at the University of Sussex, a venerable English educational institution founded some sixteen years ago. In this short billet from Britain, she compares and contrasts English collegiate life with the Washington University undergraduate experience. The University's Year Abroad Program offers study in France, Germany, Spain, Japan, Jerusalem, and the West Indies, as well as in England.

I bow toward St. Louis every morning and evening and say "Thank you for letting me come to Sussex," declares one WU student in a fit of anglophilia. Though she exaggerates slightly, her remark sums up the attitude of many of the American students here from WU and other American universities. Years abroad are no doubt culturally enriching and highly educational, and they turn out to be considerable fun as well. There are those who hint darkly that they may have to be dragged onto the plane home at the end of the year. The science students appreciate the small classes and the lack of pre-med pressure; the humanities students discover that History 441 and English 356 were talking about real places after all. For less than the cost of a year's tuition and room and board at WU, our parents can ship us out of the country, and get used to air letters full of London museums and theaters and vacation trips to the Continent, in addition to more mundane complaints about the price of coffee in the student co-op or the shortage of books in the library.

The famous British reserve still exists, mocked by Americans and British alike, but nonetheless the year in England is a sociable time. We learn as much, if not more, in chat in the Common Rooms as we would in tutorials on "The Structure of British Society." Similarities and differences between the two nations fade in and out of focus in the endless conversations of a year a WU student called "one long Holmes Lounge."

From course scheduling to architecture, the University of Sussex seems designed for such conversations. There are five arts and four science schools, permanently in half-joking competition, and each has its own Common Room, or lounge. Several additional snack bars are strategically scattered across campus, so that food can be obtained at hundred-yard intervals. So can alcohol. The official bar count is seven, but one dedicated booser claims to have located sixteen, tucked away in corners of the Arts maze. When one American expressed some surprise at this ready availability of strong waters, a British friend responded, "Oh, yes, your country is full of Puritans and things." Even the library, in an American university an ascetic place without even a coffee machine, has a Common Room in the basement, littered with plastic cups from hours of study breaks. Serving sandwiches, dubious tea, and still more dubious coffee, it draws campus politicos arguing policy, trendies discussing their trips to France, and Americans munching away happily on the engagingly named Nice Biscuits. Still used to the workload of our home universities, we can spend whole conversations telling each other how little we're working, and how little we care. Psychologists or biologists, engineers or historians, everyone at Sussex double-majors in relaxation.

Certainly there is little pressure from anyone to do anything else, until the finaler panic when the examinations covering the work of all three years loom like dragons at the exit from university. First and Second Years, however, can have a fairly easy time of it, sleeping all morning, visiting all afternoon, going out in the evenings. Enormous reading lists are made up for courses on the ingenuous assumption that students will read as much as they can. Tutors assign frequent essays, even in science courses, but give wide leeway on subjects, length, and most important, deadlines. (Sample exchange in a Modern European Mind course, a typical Arts sweep-of-civilization scan. Tutor: "Why not write a little something for next week on
There is no term-by-term course listing what we missed was not family or friends up most of the Science curriculum, as instructors can afford to be so lax about finding out what is being offered. In the early course conveners to individual tutors to stay in the same small group all year in the additional tutorials. The exam-less Arts lectures are helpful additions to the main teaching done in tutorials of two or three, and seminars of eight to ten. Since every major requires a certain pattern of courses, students know from about the second term of the First Year approximately what they will take in each later term.

Paradoxically, this seeming strictness only makes for an amiable confusion in the true Sussex style. There is no term-by-term course listings booklet; foreign students without requirements have to run from School offices to course conveners to individual tutors to find out what is being offered. In the early weeks of this year in an unfamiliar place, what we missed was not family or friends but computerized registration. Once the classes are at last assembled, the students can put together the courses as they see fit. Reading lists may be shortened, lengthened, altered, or made up from week to week; meeting hours are fixed by vote.

Hours tend to be a formality anyway. As far as any of us reared on buzzers and alarm clocks can tell, Sussex ignores Greenwich Mean Time, running on an obscure system all its own. There are clocks on every wall of every building, but none of them ever agree. Offices might be closed for lunch from 1 to 2, but it might be 2 to 3. A seminar which at the beginning of the term started at 9:10 and ended at 11:10 by the last week starts at 9:30 and ends when everyone is tired of talking. The only hour that anyone pays any attention to is 11 p.m., when "Time!" is yelled over dimple glasses throughout the country. The bars close for the night, and the barflies head home, over winding paths which suddenly seem yet more winding, to their residence hall kitchens for a cup of tea and midnight gossip.

About half the University of Sussex students live on campus, in one of the three kinds of residence hall. East Slope, the most recently built, is a flashy set of leaky-roofed flats, generally for twelve students sharing a common kitchen. Park Village, known as "the foreign students' ghetto," provides privacy to some and simply isolation to others, in semi-detached houses of twelve students sharing two kitchens. More American and Middle Eastern than English accents are heard by the mailboxes in the porter's lodge, and letters are often swiped by the children of the Mature Students for the foreign stamps. Park Village also has family flats for married students, and the small children roam the campus. Impromptu ball games with them become study breaks for the post-grad students laboring over their dissertations.

The five Park Houses each lodge about 100 students, mostly First Years, with a few Third Years as leavening of supposed maturity. The corridors, composed of twelve extremely randomly assorted people, share kitchens, which immediately become living rooms, dining rooms, and general conversation pits (a not inappropriate name, given the usual mess). Refectory meals consist of stodge on the one hand and mush on the other, so students prefer to risk their own cooking. Eggs and cheese are staples, much to the consternation of the Californians, who, according to the Overseas Relations Officer, are dedicated to leading cholesterol-free lives. Meat is seen seldom and in small quantities, and no cowhand ever ate so much baked-beans-on-toast. Only the Americans, living on American budgets, eat so-called English breakfasts; the English themselves prefer Kellogg's Corn Flakes. The presence of the Americans on a corridor, at first something of a shock for the First Years who've never seen one up close, noticeably broadens horizons, culinary and otherwise. We adopt cheese and toast, salads made of every vegetable but lettuce, and digestive biscuits; the English in turn try peanut butter and jelly sandwiches and chocolate chip cookies, and international disputes are drowned in cup after cup of tea.

The cultural imperialism that worries so many nationalists extends beyond the popularity of Coca-Cola. The "mid-Atlantic accent"—an unlikely blend of English and American—is very trendy, extending from disk jockeys on BBC 1 down to teen-agers, and "the States" exert considerable appeal for the many students who wonder what will become of them in a country that seems to be supported entirely by the International Monetary Fund. At a recent Film Society screening of "Far From the Madding Crowd," an appreciative chuckle ran through the audience when Gabriel declared that he was leaving England since he had no future here. The chuckle became a general laugh when he added, "I was thinking about California." American students may come with notions about studying in a country combining
the most romantic features of Hardy’s Wessex and Bronte’s Wuthering Heights. They discover to their amusement that Tess of the d’Urbervilles wears Levi’s jeans, and that Heathcliff rides a Harley-Davidson and tries to sound as much like Peter Fonda as he can. Thanks to the influence of a Texan member of the bar committee, Tequila Sunrises almost rival Harvey’s Old in popularity, and there is great curiosity about the exact constituents of a Harvey Wallbanger.

Living together, in house, flat or corridor, puts an end to much of the mutual myth-making. For all the constant joking about “our lot” and “your lot,” everyone comes to realize that every generalization about national characteristics has enough exceptions to invalidate it. Halfway through the year, one English First Year who said vaguely that he’d always thought Americans were more “extroverted,” by which he meant loud, blinked in surprise at his American neighbor and said, “I don’t think I’d know you weren’t English if it weren’t for your accent.” But even those soften somewhat, whether we like it or not. Americans serving in the co-op fling about “tomahato” and “hahlf!” like Sussexites, relapsing into their native patois only when serving each other. The really acclimated ones call their bathrobes “dressing-gowns” and swear “bloody hell” with the wrong inflection but the proper emphasis.

Luckily for our self-respect, the influence works the other way as well. British Thanksgiving dinners were served in many East Slope flats, though British taste buds had some difficulty coping with pumpkin pie. In one corridor’s vocabulary, “you guys,” “hi there,” and “weird” exist cheek by jowl with “jolly good show,” “bother,” and “dashed odd.” Exchange students begin to mutter
about doing post-grad courses in England, and their First Year neighbors consider taking a year abroad in the States. Newspaper photos of this winter’s tremendous snows go up on the kitchen bulletin board, with the caption, “Aren’t you glad you’re here?” We are—but paper American flags and five-dollar bills join family pictures on the private bulletin boards in our rooms, if only to tell ourselves, like Alice, to “remember who we are.”

Single rooms are the norm, with only a few doubles on the whole campus. British students are horrified at the idea of sharing with a complete stranger. The sense of privacy seems stronger here than in the States. One American noticed in surprise during the first week in her corridor that doors stayed shut even when the rooms were occupied, rather than always standing ajar as they did in her dorm at home. With the kitchen to congregate in, it is possible to spend a whole year on a corridor and never enter some neighboring rooms. With this greater restraint comes a lower noise level. Voices are quieter, stereo less blaring, and, since all essays are handwritten, even typewriter clacking is rare. Reserve does not prevent friendliness, however. Classes are cordial but not chummy, and First Years arrive assuming that the first friendships, and perhaps the most important ones, will grow up among neighbors. For all the occasional internecine squabbles on the order of Where’s-my-bloody-tea? and Get-out-of-the-bathtub and Somebody-besides-me-clean-up-this-kitchen, the sense of community remains strong. Even problem neighbors, as one resident informed an outsider, are our problem neighbors—and the effect of such supportiveness is that they soon cease to be problems.

The days go by lazily, especially for Arts students. If you sleep through the high-frequency good mornings of the cleaning lady’s arrival, you get up at the crack of ten o’clock and wander into the kitchen for a cup of coffee. One desultory conversation later, you wander back to your room to start reading, remember that you have to cash a check, see your personal tutor (translation: academic advisor), and look in your pigeonhole for the letter that never comes. The House newspapers—the respectable Guardian and the lowbrow Mirror—on the table beside the pigeonholes wait to be read. By then it’s time for your lecture. You go early, stopping in your School Common Room for a cup of tea, and a look in your pigeonhole there for the inevitable overdue notices from the library.

At lunchtime twelve persons pack themselves into a kitchen crowded by four. Neighbor No. 1 plants himself on a stool in the most inconvenient place possible and refuses to budge, neighbors No. 2 and No. 3 discuss egg-scrambling techniques with the gravity of chemists, neighbor No. 4 burns his toast to charcoal, and you and neighbor No. 5 decide to go to Brighton. You return just in time to start dinner, and sit in the kitchen talking for hours afterward. What is the best way to change the speakers on your record player? Is the Students’ Union ever going to have a quorate meeting? How can American college students stand to study so much? An Artist declares sweepingly that the only really interesting subjects in the world are religion, politics, and sex, and a more down-to-earth Scientist demands, “What about food—and drink?”

Drink undoubtedly is a principal topic, not only of talk but also of action. The Park Village bar is located in the Social Centre; though it sounds like a euphemism, the name accurately describes the function of the bars in campus life. Getting drunk is not the point, though of course there are those who make it so. Students go out as much for the sake of the talk over their pints of bitter or cider or lager as for the pints themselves. With the two most popular owned by the University of Sussex Tenants’ Association—the united dormies, in short—and staffed by volunteers, the bars have distinctive characters given by their regulars: the “loud crowd” in York House, the foreign students and postgrads in Park Village, the politicos in Falmer House. The quieter drinkers sip, chat, and watch the entries of the recognizable nutters, the Sussex interpretation of the traditional British eccentrics. In the bar, an unexpectedly theatrical streak appears in many usually restrained students. The Americans in their sweaters and jeans fade into the wall next to the sartorial fantasies of Sussex trends, a style alternating denim everything (‘Scuffy Revolutionary of 1969’ as one American puts it) on males, with pseudo-gypsy skirts and dramatic make-up on females. Many are eye-catching, but a few are arresting—the tiny-eyed Hell’s Angel-type who looks and acts like Bigfoot and is said to be doing the hardest major at the university, the cherub-faced giant who holds the campus record for race drinking, the pseudo-Neo-Nazi transvestite, the American-born, Eton-educated, wholesome Marxist-Leninist.

The improbable conglomeration of features of the last is typically atypical, of Sussex in general and its politics in particular. Though Arts Federation organizes frequent concerts, though the Gardner Arts Centre hosts visiting theatrical companies from all over the country, the best entertainment on campus
THE SUSSEX EXCHANGE

is usually to be found in the Old Refectory at 12:45 every other Thursday, when the Students' Union holds its General Meetings. They are frequently inquorate and almost always intensely pedantic, as the political parties with the alphabet soup names squabble over procedural points and the properly leftist line to be taken on such local problems as repression in Chile and censorship in South Africa. Although the Federation of Conservative Students is gaining power in other unions around the country, it still emits barely a peep at Sussex, which has been notorious for radicalism since its founding sixteen years ago. The politically naive among us at first have some difficulty distinguishing between the International Marxist Group, the Communist Party of Britain -Marxist-Leninist, the Communist Party of Great Britain, and the Broad Left, the organization presently in the saddle. After struggling valiantly for a while to keep them straight, one disgusted Exchange student announced that he was joining the Anarchist Society, contradiction in terms though it was.

As may be imagined, UGMs strike the apolitical students as a boring waste of time, but in second term of this year they changed their minds. Spring in England brings out daffodils on the lawns and revolutionaries in the universities; if some building somewhere doesn't get occupied, Sussex's reputation will be severely damaged. Great controversy has been roused by the government's increase in tuition fees, and the consequent lessening of the number of people who will be able to attend university. By early March, Students' Unions all over the country were passing to-the-barricades motions, and this one was no exception. The usual politicos dusted off their rhetoric, inventing phrases when standard English failed them at the microphone. They urged the meeting to "prioritize" earth-shaking motions, and accused each other of "splitist" tactics in debate. Though the slower wits of Union members might be dazed by having to vote for or against deletions of point supporting something or other, they did their best to untangle the speeches. The job was made more difficult by the tendency among the hacks to reverse the words of the anti-tuition hike slogan, "Freeze the Fees," at the climax of their arguments.

The occupation of the administration building was possibly the most well-behaved militancy imaginable, conducted with as many rules as a cricket game and as much decorum as a tea party. It was understood from the beginning that the Students' Union would be supported by the Association of University Teachers, as one union to another, and the students were honestly shocked when the more right-wing member of the AUT threatened the occupation with stopped lectures and withheld degrees. As the president of the Students' Union dryly observed, "It's rather ironic that we're supposed to be the extremists and it's the AUT that's trying to close down the university." In occupations, as in everything else in British life, it seems, there are tacit rules, and some things one simply does not do. Ideology gives way to manners every time. Graffiti was restricted to lavatory walls, nothing was burned by cigarettes, and the staff working in unoccupied areas came and went as usual. When the occupation ended after two weeks, the Union Executive reminded everyone to go over to Sussex House and clean up; the IMG calls for international revolution but wouldn't dream of picking the crocuses blooming on the campus lawns. In fact, the only people who ever disobey the polite notices not to walk on the grass are the innately anarchic Americans, most of whom spent the occupation days playing frisbee behind the residence halls.

We regarded the protest with sympathetic but detached amusement. As pundits have been observing for some time, the present generation of American college students is either apathetic or cynical politically, and it's true of most of us here on Exchange. As one Californian explained, "Look, I'm from Berkeley. I've seen all this before, and I've seen as much as I want to see." For us, watching the activities of the Union is like going back to the '60's fervor in American universities. It is as far from the romantic vision of old English universities as the angular architecture is from ivy-hung stone walls. WU looks more like Magdalen College than Sussex does. Some visiting students are, admittedly, disappointed at first not to find themselves studying in an academic version of Merrie Olde England; but a few confess self-mockingly, after the first shock had worn off, that though they'd expected a sort of Oxford-by-the-Sea, they weren't sorry not to have found it.

At once obstreperous and cultivated, Sussex is as complicated as reality, not as a foreigner's fantasy; we lose our illusions about it and England to enjoy the daily round of life here. This "new university" has a self-awareness and sense of purpose which prevents it from ever losing its distinctive identity. One of the campus firebrands spoke for many when he reminded a recent UGM, "This isn't Oxford or Cambridge, this is Sussex. We can—and we will—do everything differently." Can, and will, and as a rule, do.
Dan Broida: Pacesetter in Biochemicals

After receiving his B.S. in chemical engineering from Washington University in 1936, Dan Broida took a job at $50 a month with a small consulting firm formed by a couple of classmates. Today, he heads the Sigma Aldrich Corporation which grew from that tiny firm to become the world’s leading supplier of biochemicals for research.

At the foot of President Street in St. Louis is a block-square building now cut off from the great winding Mississippi by Interstate 55. A modest sign identifies it as Sigma Chemical Company, a division of Sigma Aldrich Corp. If its name were emblazoned in neon for all who exit the city via I-55, it is likely that only a few hundred St. Louisans would know more of Sigma than the sign. Yet it is unlikely that there is a medical research scientist in the world who does not know Sigma.

From that modest-looking building go hourly chemicals of such purity that research laboratories across the globe have come to depend upon Sigma. In the less than 30 years since its founding, Sigma has become the major manufacturer and distributor of biochemicals for research and clinical diagnostic reagents.

Those who could testify to the contributions of Sigma and its founder, Daniel Broida, to the field of biomedical research include the eminent scientists of our day. Dr. Oliver Lowry, head of the Washington University School of Medicine Department of Pharmacology from 1947 until retirement in 1976, sums it up, saying:

“Thirty years ago, biomedical research began to need more and more highly complex biochemical compounds. The quality then available from existing suppliers was often poor. Dan Broida recognized the need and succeeded in providing an increasing number of products of the highest quality. He set a standard for the whole industry to follow, not only of quality, but also of almost instantaneous delivery. World biomedical research owes a real debt to Broida, and St. Louis biochemists are particularly grateful to have the indispensable ingredients of their research so immediately available. You always felt that Sigma put your needs ahead of everything else.”

The titanic stature of Sigma in its field seems impossible to comprehend, but then so does Broida. He is, at once, engineer, shrewd businessman, excellent scientist, and outspoken, crusty, irreverent, hard headed, warm hearted man of principles.

Broida must have always known he had a penchant for success. He put himself through Washington University School of Engineering during the worst years of the Depression by making cosmetics. With Sigma, however, he found his mission: to supply the chemicals which were needed to advance biochemical research. He discovered that his “Little Sigma” could supply substances of greater purity than scientists had ever before been able to purchase. He believed that by producing in volume, he could sell these at a low price. If scientists could not afford to pay the price, Broida gave them the chemicals they needed. For many years, Sigma was supported by shoe polish. Today, Sigma-Aldrich with annual sales exceeding $45 million, is the tail that wags the dog, its parent company, Midwest Consultants.

Almost nothing about Sigma is usual. It has never had a salesman except Broida. It almost never advertises, except to announce a new product, and even these ads in scientific journals are rare. At Broida’s insistence, they are uniformly simple and informative. Sigma does not display at scientific meetings. As a matter of principle, Sigma has not, for years, signed a government “contract” for research chemicals, which would “approve” it for U.S. government buyers, and yet, Sigma is perhaps the government’s largest supplier of such chemicals. And it still gives away its products to those who cannot pay.

Then there is Broida. A researcher wrote him a few years ago, saying that Broida should use his influence to stop

By Dorothea Wolfgram

Dan Broida, BS in Chem. Engr. 36, co-founder and head of Sigma Chemical Company.
government cuts in research funds, reasoning that Sigma’s existence depended upon such funding. Broida wrote the researcher that he could not, because he could not let his own mercenary considerations influence a decision which just might be “in the best interest of the country.”

A scientist friend said of Broida recently, “Dan is so imaginative and principled, it is a shame to see him excoriate minor matters.”

Louis Berger, who started Broida and Sigma on biochemical production and for many years was a Sigma vice president, disagrees. “Dan is seldom frivolous, even though what he is fighting about may seem frivolous and unwise at the time. When we were still making shoe polish so we could afford to make biochemicals, Dan got into a fight with the Veterans Administration over a five-cent fee deducted by the VA from a Sigma invoice. He spent days of his time and much Sigma money arguing that the government had no right to tell us with whom to insure packages. Sigma had insured with a private firm, but a VA regulation provided that it would pay for no insurance except that issued by the U.S. Post Office. He finally won, not because he went to Washington to argue, which he did, but because he cut off Sigma chemicals to the laboratory that had taken off the nickel.

Broida is outspoken, litigious, and not above fighting with every weapon for a just cause. Although he loves to needle, his fight is not with individuals, but with stupidity, injustice, and bureaucracy. He became the ombudsman for researchers dealing with companies that Broida considered disreputable. He withdrew Sigma’s advertising from journals to force the Federation of American Societies for Experimental Biology to investigate a company which Broida believed outrightly fraudulent. Subsequently officers of the company in question were indicted, justifying Broida’s position.

Recently, a researcher at a state university objecting to Broida’s public attack on the government’s burgeoning bureaucracy, threatened never to buy another Sigma chemical. Broida wrote him saying that he would be pleased to cooperate. Sigma’s computers could be programmed to reject any order should one inadvertently slip through, but would the researcher be kind enough to clarify: should it reject all orders from the man personally, from the entire department of biochemistry, from the entire university, or from the entire state? The researcher has not replied.

There are orders on Sigma’s computer that print out “refer to DB.” Many represent old friends for whom Broida personally oversees service; some represent problems that he wants to follow personally; some represent grievances that Broida has for a past or present injustice. It has been Broida’s personal philosophy and dedication, and the response to that by friends and co-workers of long association, that has built for Sigma a reputation for honesty, integrity, and service.

Sigma’s policies are formally published and proclaimed in the form of a “creed” carried in the Sigma catalogue, its chief selling tool. The creed says:

Let no non-profit research organization anywhere in the world suffer for lack of Sigma reagents.

Let no one have cause to say a Sigma product was misrepresented.

Let no one have cause to say that Sigma was not more than fair, friendly, reasonable, and cooperative in every way.

Let no one have cause to say that a Sigma product was not absolutely the finest available anywhere.

Make everyone feel that doing business with Sigma is a revelation and a pleasure, even if you can’t pay.

As long as we have funds, no legitimate call for help will be disregarded.

Today the creed carries this footnote: “The above creed was published many years ago when research was generally carried out in ‘Research Organizations.’ The current trend within preparatory schools, hospitals, and clinics to do ‘Research’ as a teaching function or as part-time exercise has created a demand for Sigma-financing not intended to be covered by this creed. However, specific inquiries are invited.” Even with that disclaimer, thousands of dollars worth of chemicals are sent each month under a “Sigma Cooperative Allowance,” the name assigned when it was decided, with much trauma, to publicize the practice.

Sigma’s catalogue lists some 10,000 items on its 500-plus pages. These include biochemical and organic products which are used in life science research and in the diagnosis of diseases. The products encompass numerous scientific classifications, including amino acids and derivatives, buffers, carbohydrates, enzymes, lipids, nucleotides, peptides and derivatives, proteins, and steroids. The range and specificity of Sigma’s offerings and the amount of information which Sigma supplies is indicated in catalogue listings. Under Liver Acetone Power, for instance, Sigma offers extractions from beef, calf, chicken, dog, horse, lemon shark, lungfish (pfs), mouse, pig, pigeon “carefully prepared to maintain maximum DPN-Kinase activity,” rabbit, rat (pfs), rat “similar to L 8626: but is now being produced by Sigma,” salmon (pfs), seal (pfs), and whale (pfs). Each catalogue page carries the footnote: (pfs) Prepared for Sigma; Not prepared in our own laboratories.

About 65 percent of Sigma sales are
of items produced in its laboratories. The remaining items are produced to Sigma specifications by outside laboratories but are subjected constantly to Sigma quality control procedures before marketing under the Sigma label.

Broida says that it is possible to be criticized for raising the purity of a preparation. He illustrated with a recent example. "For the past few months, we have been getting complaints from researchers to the effect that a new Sigma-produced \(\beta\) lactoglobulin was not working in their experiments. They had been using a product we offered from an outside laboratory but which was no longer obtainable. When we knew that supply was going to be cut off, we tried to find another, but finally decided to produce our own. Our lab came up with an improved process which removed some of the impurities that contaminated the outside item. Researchers called to complain that the new product was too pure. Their use depended upon the impurity, folate binding protein. We verified the complaint by testing our old and new control samples (kept for every Sigma substance ever produced or shipped). Our problem then was to restore the impurity (which, by the way, the lab had trouble doing). To meet all needs, Sigma now offers purified and less purified \(\beta\) lactoglobulin and a new preparation of 'pure' folate binding protein, which will be quite useful in folate metabolism studies."

Sigma talks and listens to its clients. On the cover of the more than 150,000 catalogues distributed each year are three telephone numbers: a company order department number, a company customer service number, and Broida’s home number. Instructions are: "Call collect from anywhere in the world." Order telephones are answered eleven hours a day during the week and mornings on Saturdays, Sundays, and holidays. Complaints, questions, and problems are handled at the office weekdays and by Broida at any time. The cover reads, "If you have any trouble getting really excellent service at the above numbers, please phone me (Dan Broida) personally—person-to-person (collect) at (314) 993-6418. Call me anytime—day or nite, Sundays or holidays. I am usually (but not always) available. If you don't reach me, please try again later."

"It is not a hoax," says Berger. "Dan sleeps only about three or four hours a night, so a researcher in Australia or Africa who pays no attention to what time it is in St. Louis is still likely to find him in and answering the telephone."

In the days before Sigma grew big, Broida and Berger took all of the calls, sometimes spending much of their day talking to customers. Berger explains, "I don't know where Dan got the idea of calling collect from anywhere, but it was immediately successful. Mostly, people called about their problems. We learned their research from them and we had a remarkable success rate of solving problems by telephone."

"Dan is an excellent scientist. Why not? He learned from the best minds of the day—Carl Cori, Arthur Kornberg, Severo Ochoa, Oliver Lowry, to name just a few. Even today, Dan has an almost unequaled feel and knowledge of the important work going on over the world."

"Dan has a remarkable capacity to utilize the information given him. He is a good study, learns quickly and retains well, but his phenomenal talent is his ability to utilize information." In 1936, Broida graduated from the School of Engineering with a degree in chemical engineering. Chemical engineers were making only $150 a month, if they got a job, and, he says, he couldn’t afford to go to work for that amount. Paradoxically, he accepted a job at $50 a month. "I was asked by a relative to interview with Aaron Fischer and Bernard Fischlowitz, both Washington University engineering graduates. They had jobs elsewhere and needed someone to manage Midwest Consultants, a firm they had established. It was a chaotic interview. I was pretty arrogant and they became very irritated. They finally said, 'All right, wise guy, we'll give you $50 a month and see if you are worth it.' And I said something like, 'Okay, I'll take it and I will own the company before I'm through.' As it turned out, I don't think they ever paid me only $50 a month and eventually we all owned the company."

Broida began to help find clients for Midwest. A client needed cosmetics in bulk. A shoe retailer needed shoe dyes; another needed shoe polish. Broida would investigate production possibilities, and, if it seemed feasible, Midwest would manufacture that product. He would formulate the product and set up the manufacturing process. Midwest grew, then came World War II and Broida entered the service. When he returned, Midwest had grown and his position was adequately filled by others. In looking over a successful drug-packaging firm, which he had helped develop before the war, Broida learned that saccharin, the hottest-selling item of the day, was in short supply.

After a quick study of the economics of the shortage, Midwest decided to attempt to synthesize and sell saccharin. Within ninety days, they had worked out a process, rounded up available equipment, including bathtubs for acid tanks, and formed Sigma Chemical Company, as a division of Midwest. For a year, as fast as Sigma could produce saccharin, it was bought. Then sugar rationing ended and the demand for what Sigma made melted away like cotton candy.

Sigma had an almost empty lab and an almost full staff, because Broida never laid off employees. He needed a new product for Sigma. One day, Berger, a friend from engineering student days,
asked if he could use the idle laboratory occasionally. He had completed a master's degree in biochemistry under Nobel Laureates Carl and Gerti Cori at the Washington University School of Medicine. As a student, one of his tasks had been to extract Adenosine Triphosphate (ATP) from rabbit muscle for the Coris' research in phosphates. Berger was then a biochemist at the Veterans Administration Hospital, but had continued to extract and sell ATP at $25 a gram. Broida gave him a key and Berger used the laboratory one weekend. At tennis a week later he suggested that Broida use Sigma to produce ATP on a larger scale.

"I was skeptical that there was anyone much who wanted ATP, but we had nothing to lose. Lou taught us his process and we scaled it up and made our first batch. I estimated that it cost about $200 a gram, but no one could afford to pay that, so we adopted Lou's price. It seemed that at $25, scientists could buy the materials from us instead of making them themselves, which they had been doing.

"If we didn't get customers, we wouldn't lose anything. If we got orders, we would have to be good enough engineers to figure out how to extract ATP from elephants instead of rabbits, thereby reducing our costs proportionately."

ATP is a major source of energy in living organisms and biomedical research was involved, as the Coris were, in studies which had begun to require ATP in quantity. A small ad in a scientific journal brought orders and Broida went looking for elephants but settled for horses, which are used by Sigma to this day.

Within two years, Sigma offered eight compounds which were derivatives of ATP and had begun to refine the technology for producing high quality ATP. Sigma soon became the first company to offer crystalline ATP of a purity approaching 100 percent. The pure crystalline form is of such stability that today it is almost an article of commerce throughout the world.

When Carl Cori learned that Broida was selling research substances of greater purity than most researchers made themselves, he swore that Broida would foster more incompetent research than any other man before him. It is a sin Broida still admits to.

"Before Sigma, 90 percent of a researcher's time was spent making his reagents," Broida explains. "Knowledge enough to do this formed the credentials of every researcher. We took away the need for those credentials, so the field did open. But we also freed nine times more time for the research itself than it had been available previously. Carl came to realize this and he has been our staunch supporter ever since."

Soon after Sigma began to produce and sell research biochemicals, it began what was to become a permanent and profitable part of its business—the preparation of diagnostic reagents for clinical use. This step, says Berger, was a natural one, but happened almost by accident.

"Early in the 1950's, Oliver Lowry asked Dan if he would manufacture a phosphatase substrate. Lowry had an excellent procedure for measuring the level of acid and alkaline phosphatase in the blood to diagnose and monitor certain disease states. For his experiment, he had been buying a necessary substrate from a company that would no longer supply it. The substrate he had purchased was only about 50 percent pure and Lowry has to further purify it himself. Now he found himself with an excellent procedure for which there was no substrate.

"Dan agreed to try to produce the phosphatase substrate. We not only produced it, but we eventually produced a purity of 99 percent and the pure substance had much better stability, so that it was possible for clinical laboratories around the world to use the Lowry procedure."

Trademarked Sigma 104, the substrate led Broida and Berger to collaborate on what became the first Sigma Technical Bulletin. They wrote a manual on exactly how to run the procedure using Sigma 104. "We found that we had a knack for translating a scientific description into easy-to-follow language for technologists in clinical laboratories," said Berger.

"We originally had no intention of entering the diagnostic field. However, after supplying chemicals to researchers who were working on new diagnostic procedures, we often were induced to produce them for routine use. We would have preferred to have other companies take over this volume production, but we couldn't find anyone we could trust to maintain consistent quality and reasonable costs. So we did it ourselves."

In this field too, Sigma's work became more than producer. It aided many researchers in refining a technique, and Broida and Berger themselves developed new procedures by applying what they had learned on one project to another. Chemical reagents and technical bulletins followed each other in rapid succession. Today Sigma offers hundreds of products used to measure the concentration of various natural substances in the blood and urine. The concentration is often indicative of certain pathological conditions.

"When we began in biochemistry," said Broida, "we didn't know anything, and, as it turned out, that was to our advantage. Since we did not know the literature, we went at our job purely from an engineering standpoint, without preconceived ideas. We originated the instrumentation and the technology for much of the industry."

Berger joined Sigma in 1953 after agreeing with Dan that if he wasn't worth the $8000 salary he had been making, he wasn't to be paid. "I never was paid $8000," says Berger, "because Dan would sometimes give me bonuses bigger than my salary." In 1963, Broida
wrote Berger this note from Dublin: “In the rush to get away, I neglected a rather important detail. You will shortly be elected a vice president of Sigma, a position which you certainly deserve. While I am not the 'flowery' type, I am sure no one would question the fact that you have probably contributed more than anyone (or everyone combined) to the outstanding success of 'Little Sigma.' ”

Broida was then off on one of his breakneck tours visiting scientists and distributors. He would pack an extra pair of socks and a shirt among the bulging papers in an accordion-type briefcase to visit four countries in three days. The epithet “Little Sigma” was a standing joke for the David-like quality of Sigma in its Goliathan battles.

Sigma’s first break with the Federal government occurred over a decree that all chemical companies must submit catalogues measuring 8½ by 11 inches to be considered for a contract with the Veterans Administration. Sigma’s catalogue had always been 6 by 9 inches. It still is. Broida told the agency that if it intended to pay for the catalogues it used, he would publish to its specification, but so long as Sigma was supplying the catalogues gratis, Sigma would determine the size. Sigma was the only government contractor in the country which refused to knuckle under to what Broida thought was an unconstitutional encroachment on free enterprise. As a result, Sigma lost the contract for several years.

Sigma’s lack of a government contract today is based upon Broida’s refusal to offer the government even a small discount. “Our prices are probably the lowest in the country and we pay all postage, too. When the government contracting officer told me he would give me a contract immediately if I raised my prices 200 percent and allowed the government a discount of only .01 percent, I told him where to go. It is impossible to ask a bureaucrat to be reasonable. I have redefined ‘S.O.B.’ in my own use to ‘son of a bureaucrat.’ In my mind, there is no lower creature.”

Although it needed only 50,000 square feet of space, Midwest in 1969 acquired eight huge, old buildings on seven acres in South St. Louis to consolidate its operations. Into this 250,000 square-foot skin, Sigma has grown. As it grew, it would open another bay, remodel another building. When all were filled, new buildings began to rise within the shell and under the roof.

So Topsy-like has been Sigma’s growth, and so abhorrent to Broida is the idea of resembling “big business,” that it is possible to tour the plant without seeing a single huge laboratory or manufacturing, order, or shipping area. There are dozens of each. The average time between receipt of a telephone order and shipment is two hours. The shipping room never closes on an order received that day, unless the specific matter has been brought before Broida. So government-regulated is the shipping of chemicals that each Sigma shipping clerk has a shelf full of labels reading: Corrosive, Flammable, Refrigerate, Restricted, Poison, Do Not Freeze, Nonhazardous, Not Restricted, Flammable, Limit One Liter Per Airplane, etc. One standard label states that the substance was packed in dry ice at an exact time and must be delivered on or before an exact time or the dry ice must be replenished. The delivery dates are elapsed times to which the carrier has agreed. Most labels have graphic messages as well as words for worldwide communication.

Packages to be mailed are taken to the post office hourly. Once a day a truck takes to Chicago chemicals which must go on cargo-only aircraft, because no St. Louis departures fulfill regulations.

Sigma holds few patents. “I talked with people at the WU medical school about the matter when we began. We reasoned that it would deter progress and reasoned also that our work was based upon the work of many others who had not patented, so why should we?” says Broida.

“We had a knack,” says Berger wistfully, “of taking what worked in a test tube and making it work in a tank. But that is not Sigma’s success. It is Dan and the people he attracted and still attracts. He has a way of making people want to work and of giving them pride in the integrity of their company. We couldn’t operate with ordinary people and we don’t.”

Perhaps Berger himself is an example. So are Sigma’s current president, Tom Cori, a son of Carl and Gerti Cori; Leo Bressler, another WU engineer who joined the company at its beginnings; and Aaron Fischer, who after resigning as president of the Universal Match Corporation, took up an active role in Sigma as chairman of the board.

In 1972, Sigma offered a portion of its stock publicly. Although its founders remain major stockholders, Broida says that he discourages his children from entering Sigma. Even so, all four have studied engineering or are about to. “I don’t know that my kids have ever even taken a tour of the plant. They used to call it my ‘avocation,’ but it’s gone on for twenty-eight years now. They have implied that they don’t want to follow someone else. They believe that the fun of success is in making your own. Besides, being my children would be a tremendous disadvantage. They would have to start at the bottom and prove to everyone that, quite on their own, they were darned good just to be ‘accepted.’

“Yet, if we have the people, there is no limit to the new horizons we can conquer. As big and important as Sigma is today, we could easily become a much greater force of international goodwill. Unfortunately, the unbelievable drift of our government may strangle us before that.”
The Roots of "Roots"

Keynote speaker for the annual Martin Luther King Symposium at Washington University this spring was Alex Haley, author of Roots, which won the Pulitzer Prize and the National Book Award and was the basis for the most widely viewed television series in history. On these pages are a few short excerpts from Haley's talk.

My book Roots took twelve years to put together—nine years researching, three years writing. I began to find more and more which showed me that indeed that culture which was so allegedly heathen and savage was anything but that. It's a small part of the book, but in one sequence, the little boy Kunta's grandmother died and he was grief-stricken. His father came to him and said:

"It is permissible to be sad, for you loved your grandmother, but grief-stricken, no. I must teach you something. There are three peoples in every village. There are, one, those who, like your grandmother, have gone on to spend the rest of time among the ancestors; there are, two, those like you and me who are privileged now to be walking around and talking here in this village; there are, three, those who are waiting to be born into this village and to take your and my places." That is the human continuum. It is totally universal. It is as inexorable as the ebb and flow of the tides. It applies everywhere. It is as true in the village of Juffure, West Africa, as it is in the village of St. Louis or the villages of Paris or London or wherever in the world.

Those of us who here and now have the privilege of walking around and talking in the village of St. Louis, or wherever else our villages may be, can do some things rather quickly to alter for the better the society in which we live in this country, which is unquestionably the greatest country on the face of the earth and which could be so much greater if we could correct some of the principally social problems we deal with.

One of the main things we need to do is to hold to us and preserve and enlarge among us those people we call senior citizens. We've been drawing away from them almost apace with the development of television. Technologically, we've become the greatest country on the face of the earth. There's an almost metaphysical fact that every time you gain something, you lose something. What we have been doing in our pell-mell rush to be materially first, technologically first, is drawing more and more away from the people who are the very sources of us: our oldest people—our grandmothers, grandfathers, great aunts, great uncles. You can love your father, love your mother, and they love you in turn, but no one should ever forget that it is grandparents, more than anybody else, who sprinkle stardust over the lives of children.

This obviously has nothing to do with race; it's just us in our capacities as human beings walking around and talking on this earth today. We need, all of us, as quickly as we can, to get to the oldest people in our families and ask them to tell us every possible thing they can about the families which preceded us, everything they know.

We are so busy, so mobile. We run around so much that we have drawn away from the grandparents and the great elders of other sorts so much that
they feel ignored. They may be sitting right in your home or right down the block or maybe across the country with three or four generations of knowledge in their heads about your family. You'll never get it unless you ask them. When all the information that can be had is gotten, it should be written up in very simple form—just a document which says that this is what it has been possible to know about this family as of this time. That document should be copied and circulated to every member of the family, wherever they may live in the country. The urgency is that if we mess around and let those older people get away, then what is in their memories is absolutely irretrievable. Worse yet, you will never know the loss that you have sustained in the sense of your own literal heritage and culture, in your own literal family.

A second thing we have to do, scarcely less urgent of nature, is to take steps now to locate and preserve those old trunks and boxes in our attics and cellars. They are family archives. They contain the old letters, the clippings, the daguerreotype photographs, the articles of clothing, the various other things which attest to the fact that those predecessors lived and walked here on this earth, and that they are the people from which we came. Again, the urgency lies in the fact that if you let them go away, you'll never know what you lost.

Another thing that all of us in this country need to do much, much more of than we tend to in our brash young culture is to hold more family reunions. There is something about it, when a group of families who live in diverse locations elect to come together, to converge in one place, for the reason that they share a common blood bond. When they do that, they set into motion a kind of chemical reaction—the feeling of the clan. It'd be like the African extended family. All those people meet, look at one another, and even if there are people you never saw in your life before, you know that they have some connection with you and all you have to do is go up and ask them to find out what it is.

Finally, there comes the magic moment when the chairs are brought out—the biggest, softest chairs down front center, and into those chairs go the oldest people present: the matriarchs and patriarchs of the family. I don't know a more poignant sight on this earth than the strong, stalwart young ones in their twenties leading the elders, with their faltering footsteps and wavering visions to the softest chairs. Then, into the laps of the old ones go the little wriggling babies from all sides of the family.

When the photographer takes the pictures of them with all the others lined up behind, it is a priceless, precious document for the family, which is unique on earth. There's not another family exactly like it in existence, with that peculiar combination of cross-lineages and personalities. If we could spread that sort of feeling among others with whom we come into contact, we could do something about the culture and society of this total country.

It may well be that those of us who are older have contributed much more than we like to think to the younger generation's growing up with a considerable sense of what might be called rootlessness—the drawing away from the days when families used to gather and listen as the older people talked, which engendered respect and even reverence for those older people.

One idea I would like to spread to young people, and to the older ones of us as well: If you are so fortunate as to have a grandmother, a grandfather, great aunts or uncles, the next time you see them, just go hug them for what they did in bringing you to this point. I think that if we can do this, it will speak very powerfully to young people particularly.

Without anybody speaking a direct word, it says to those families which query their elders, treasure their words, save the trunks and boxes in the family archives: “You obviously are part of a family, of a clan, which is proud of itself. You obviously, therefore, are expected by the others of your clan to conduct yourself as you mature in a way that will at least reflect this pride and, if possible, will add to this family's reasons for pride.” That, collectively, can change the face of a society, because no society is more powerful than the collective strength of the families which are the components of that society.
Alex Haley autographs copies of *Roots* for the hundreds who brought copies of the book to campus.

In addition to his Assembly address, Haley met informally with students at Wohl Center to answer questions and discuss his work.

Above: Alex Haley and Stephen Leacock, Washington University senior who has been awarded a Rhodes Scholarship.

At a press conference before the Assembly address, Haley first announced that plans are being made for a sequel to the *Roots* television series.
Leaving Curtiss-Robertson in 1940, he joined American Airlines as a research engineer. His first assignment was to help the airline choose between Douglas and Lockheed equipment. Douglas was selected and he wrote the airline specifications for what became the four-engine DC-4.

In 1941, with the United States serving as the “Arsenal of Democracy,” Perkins joined the Office of Production Management (later the War Production Board) as head of the Aircraft Scheduling Unit, which had the responsibility of allocating and scheduling delivery of military aircraft among the armed forces of the United States, and its allies.

At the end of 1941, Perkins joined the newly formed McDonnell Aircraft Company, which later took over the Curtiss plant when the Curtiss-Robertson company was disbanded. Starting with McDonnell as a project engineer, he was given several assignments, including one on design of the XP-67 twin-engine Air Force fighter.

In 1943, he was sent to Washington to work with the Navy on studies and advanced design for a new fighter which became the XFD-1, the Navy’s first jet airplane and the prototype for the famed McDonnell Phantom. Since then, Perkins has worked on subsequent versions of the Phantom and on the Banshee, Demon, and Voodoo jet fighters.

“All modern aircraft design,” Perkins points out, “is team effort, but the size of the team keeps growing. I can remember one project at Curtiss where only three engineers were involved; today, there may be a thousand or more engineers on one project.”

Perkins played a key role in McDonnell’s first entry into the space field. For nearly a year, he headed a team that was working strictly on its own, without a contract of any kind, in development studies on manned spacecraft. When the National Aeronautics and Space Administration was formed in 1958, it invited proposals for manned spacecraft designs. “We had been working on the idea for so long, we had a headstart on everybody else and won the contract,” Perkins recalls. “That was the beginning of the Mercury project.”

He became Engineering Vice President in 1951 and Corporate Vice President of Engineering and Research of the McDonnell Douglas Corporation in 1967. In 1973, when he reached age 65, Kendall Perkins retired from the company. He wasn’t destined to stay retired long, however. When his successor, Robert L. Johnson, was made president of McDonnell Astronautics Company, Perkins was asked to return. “They asked if I’d like to come back to my old job as an ‘interim measure’ until they could find a replacement,” Perkins said. “That was two years ago and I’m still here.”

Commenting on the Educational Policy Committee, which deals mainly with tenure, he says, “I’ve had an advantage in dealing with tenure because my son is on the faculty and my daughter-in-law is a graduate student here. This provides helpful perspective.”

Perkins’ son, John, is associate professor of music and former chairman of the Music Department. John’s wife, Ann, is a graduate student in comparative literature. Perkins and his wife, the former Elizabeth Dorothy MacIvor, also have a daughter, Amy Doris Perkins Evans.

“All of my family are doing things far removed from engineering,” Perkins says, “That’s been a great advantage: It’s helped keep me civilized.”
Samuel C. Sachs

At seventy-five, Samuel C. Sachs says that he has become a little cynical, but then, maybe he always was a cynic just by nature. "I kind of discount the activities of people who are president of this and head of that, because I figure most of the work is done by the people behind them. I figure the administration of an organization does things as it wants and that is the way it should be."

Although Sachs has been associated with Washington University almost continuously since graduation in 1924, and has been a member (now emeritus) of the Board of Trustees for fifteen years, he believes that his only real contribution to the University has been the endowment of the Samuel C. Sachs Chair in Electrical Engineering. "I think we made a contribution of significance to the teaching of engineering and to the advancement of the profession."

Sachs says that when he first began to practice engineering, long before he had established Sachs Electric Company, he discovered a matter of business psychology he has remembered ever since. "When I was sixteen and wiring houses in my hometown of Desloges, Mo., I raised my prices and my business increased. I discovered that people don't value anything unless they pay at least fairly for it. When I began in business, right after graduation, I figured that if we did good work on a small profit margin, business was bound to grow."

It did. Sachs Electric Company has to its credit major electrical work nationwide. Much of St. Louis street lighting was done by Sachs; Busch stadium was wired by Sachs, so was the Gateway Arch. Its work has included major office and industrial complexes, power plants, hotels, dams, churches, department stores, and many other kinds of installations. Under the leadership of Sam's son, Louis, the company has diversified into land development, establishing Sachs Properties as a part of Sachs holdings.

According to Sam, he began in business in a boom construction year. "The nice thing about that was we were allowed to make our mistakes because our competitors were too busy to worry about us."

"In those early days," he says, one of the secrets of success was the regard which the company had for its employees. Sachs was the first local company to use power equipment to make work easier. On hot summer days, Sachs made sure there were umbrellas rigged to work under and ice water at hand. "Our men stuck to their jobs and we finished on time and within cost, so we grew."

Many of the men working in the company at its beginnings were not engineers with college degrees and Sachs believes that even today in his industry an engineering degree is not necessary for success, although he firmly believes in engineering education. "Ours is a profession in which you must learn the theories and then have the sense to apply them profitably. Today, I couldn't begin to do true engineering, because I don't know any of the theories anymore, but you can learn them on the job as well as in school. Maybe it just is slower on the job."

After the first few years, Sachs says, his personal contribution was "simply the ability to get contracts and have someone else do the work. Under our economic situation, that resulted in success."

What Sam Sachs does not relate is that one of those economic situations was the Depression, through which he held his company together. He reluctantly admits that for many years as head of the company, he worked day and night. He also does not mention his unassailable record of fairness in dealing with labor and labor unions, his strong sense of management responsibility, and his steadfast principle of honesty. A decade ago, he was quoted as saying, that, although the company had worked all over the nation, "I've never paid off one red cent to anyone. I passed up some jobs in cities where I was told in advance some donations had to be made."

For his own part, Sachs had been "head of this and president of that," countless times in community, trade, and religious groups and has given much of himself to those jobs, so that no one believes Sam Sachs when he says he is a cynic. He is a man generous of his time and talent and modest about its value, which to Washington University has been priceless in many ways.
Edward J. Schnuck

Self confessedly, Edward J. Schnuck has "never learned how to play." Perhaps he is simply one of that breed of men who never do; perhaps, he is also a child of his time, coming of age during those early depression years when no one played. His philosophy is and always has been that until you learn you have to make up in sheer effort, what you lack in intelligence.

For thirty-two years, his energy has been poured into his business, building Schnuck Markets into the largest retail food chain in the metropolitan St. Louis area. For many, many years, as profits went back into the business, so did the time of its owners and founders, and there was no excess. If Ed Schnuck had to close the doors of his markets on Sunday, and, after church, there was time to do something other than work, he would read. He would devour any kind of book on management or business he could find, educating himself in a subject in which he never received any formal education.

Although he relates that reading has always been one of life's greatest pleasures for him, he also acknowledges that his ten-year-old daughter, Stephanie, asked recently, "Daddy, don't you ever read for pleasure?"

In the 1930's, Schnuck joined his father in what was a family wholesale meat business, which meant work began at 4 a.m. and was usually wound up by noon. "My father would take a nap, but I was young and full of energy, so I would go out to Lambert Field and work with Major Robertson of Robertson Aircraft to study for an A & E (aircraft and engine) license."

When World War II began, that vocation stood Schnuck in good stead, because his draft board decided he might contribute to the war effort most as an employee of the fledgling McDonnell Aircraft Company. "It was a fantastic experience for me, because the company was small and I was fortunate to be a supervisor of one of the departments. In that way I learned to know Mr. Mac (founder James S. McDonnell) personally. I think that much of my future success was in applying to our business what had been the way of life at McDonnell."

In 1945, while still at McDonnell, Schnuck rented what had been a Kroger store at the corner of Taylor and Margaretta in north St. Louis. It was a store he had shopped in as a teenager and dreamed daydreams of owning. For some time, after a full day at work, he would put in another day laying a new floor, building shelves, stocking his "new" store.

A year later, he resigned his job at the aircraft company to devote full time to what was to quickly become seven small stores owned by him and his father. When his brother, Don, returned from service, he immediately bought one of the stores and a brother-in-law bought another, so the family enterprise was begun.

In 1952, Ed, Don, and their father sold all of their small stores, with the exception of one, and purchased their first "supermarket" in Rock Hill. "You understand, that at the time, we thought that store was huge, but today it is smaller than the stockroom of one of our new stores." Today, Schnuck Markets comprises fifty-two stores with more than 5,000 employees, including part-time workers. Corporate headquarters are located on a 55-acre track in Bridgeton, Mo., in north St. Louis county. Ed Schnuck, who began as a vice president of the corporation in 1952, became chairman of the board in 1970.

Today, he still devotes much of his time to the administration of the family enterprise. For many years, however, Schnuck has also been active in an industry association now called the Food Marketing Institute (a merger of two national groups). As a director, vice chairman, and former chairman of one of the groups, Schnuck has traveled extensively and has devoted years of his attention to the health and growth of the food industry as a whole.

He is also active in a number of community and civic affairs, including a trusteeship of Washington University. A member of the University board since 1973, he says, "I felt privileged to be asked to become a trustee and, to this day, I have a feeling of awe everytime I set foot on campus. I often wonder if the students can have any idea of the special quality of education they are receiving at Washington University?" As a member of the Student Affairs committee, he answers his own question in the affirmative, adding that dialogue with students also never ceases to amaze him.

"I think that Bill Danforth, in spite of his tremendous progress, is just getting a good start at the University. His great ability to respond to all persons and situations and his sensitivity to the students' needs will benefit the University more and more in years to come," he added. "I'm looking forward to helping that happen."
Warren McK. Shapleigh

EXCEPT FOR AN interval of six weeks in 1945-46, there has been a member of the Shapleigh family of St. Louis on the Board of Washington University for the past eighty-two years.

Alfred L. Shapleigh served on the Board for more than fifty years: from January 15, 1895, until his death on December 24, 1945. For the last three years of his tenure, he was vice president of the Board. On February 5, 1946, at the first Board meeting after Alfred Shapleigh's death, his son, A. Wessel Shapleigh was elected. He served in both active and emeritus roles until his death in 1972. During most of his service on the Board, he was chairman of the Investments Committee. On the same day, June 6, 1966, that A. Wessel Shapleigh became an emeritus member, his son, Warren McKinley Shapleigh, was elected to the Board of Trustees.

Warren Shapleigh, president of Ralston Purina Company, was born in St. Louis and educated at St. Louis Country Day School and Yale University. After graduating from Yale in 1942 with a bachelor of arts degree in economics, he served four years in the Navy during World War II.

After the war, he joined the family firm, Shapleigh Hardware Company, where he became vice president of buying and merchandising. In 1956, he bought the Hipolite Company, a food processing firm. After selling that company in 1959, he was vice president of Sterling Aluminum Company for two years.

In 1961, Shapleigh joined Ralston Purina as manager of diversified planning. He became successively vice president of the consumer products division, executive vice president of Ralston Purina, and president of the Consumer Products Group. In 1966, he became a director, and in 1972, president of Ralston Purina.

As president of Ralston Purina, Shapleigh heads a multinational corporation with facilities and personnel in twenty-six countries throughout the world. The company employs approximately 59,000 persons, including 47,000 in the United States. It is a nutritionally oriented food and feed company with a primary emphasis on protein.

Serving as president of an enterprise of that magnitude doesn't leave time for too many outside interests, but during his career as a prominent St. Louis businessman, Shapleigh has held many civic posts. He has served on the boards of Downtown St. Louis, Inc., the St. Louis Regional Commerce and Growth Association, the St. Louis Area Council of the Boy Scouts of America, the St. Louis Symphony Society, and many others. Of all his outside interests, Shapleigh ranks highest Washington University and the Missouri Botanical Garden, where he has been a board member since 1958.

Shapleigh has become involved in other aspects of community life through his wife, the former Jane Smith of St. Louis, who has been active in many educational projects, in particular, programs designed to improve the public secondary school educational system in the state. The Shapleighs have two daughters: Jane Shapleigh Mackey, who is a licensed stockbroker, and Dr. Christine Shapleigh Schmid, who received her M.D. from Boston University and is now finishing her internship at University Hospital in Boston.

On the Board of Trustees, Shapleigh is chairman of the insurance committee and a member of the executive, student affairs, and nominating committees.

"I've especially enjoyed working on the student affairs committee," he says, "because it gives a trustee a real perspective on what's going on at the University and an insight into the thoughts of young people.

"In today's world," he adds, "it is increasingly important to improve the communication links among students, faculty, administration, and trustees. The Student Activities Committee has done a lot of good work in bridging the gaps."

Commenting on his commitment to the University and his work on its behalf, Shapleigh states:

"I feel strongly about the importance of all education. In the case of Washington University, I think that it is essential to our society to have a strong and viable system of higher education. Until our entire society gets equal opportunities for good education, I don't think we're going to solve many of the problems that exist today. The long-term solution to society's problems is through education and that's going to take decades."

LOOKING AT Washington University today, Shapleigh comments, "At present, I feel very good about the way the University is operating, the attitude of the students and the faculty, and what appears to be more efficient administration in the face of stringent budget restrictions. Students I've met seem to have a genuine desire to be part of the whole University community and to help the institution in any way they can. That's quite a change from the attitude that existed in the late 1960's.

"Washington University is viable despite present financial difficulties. It would be tragic if financial problems would impinge on the quality of the institution. The trustee's primary role is to see that they don't."
For Author David Kranes, the week before production was both agony and ecstasy, watching his play come alive, rewriting, and rethinking. "It was a collaborative learning experience for us all," the playwright wrote.

Director Sid Friedman.

"Go, Ray, Go!" The cheerleaders worked in front of the stage and the action spilled into the aisles, the front rows, and the balcony. Split-second timing was necessary as scenes shifted between Ray's past and present.
When the Performing Arts Area presented David Kranes's *Horay* in March, it wasn't just another opening of another show. It was the world premiere of a prize-winning play that brought the playwright, the director, and the student cast together in a team effort that packed Edison Theatre and left audiences cheering. *Horay* was one of 300 entries in the Washington University Writers' Theatre Project, begun by Richard Palmer, Performing Arts Area chairman and Edison Theatre director, to give a published novelist or poet a chance to write for the theatre and to develop his craft. Twelve finalists were submitted to a distinguished panel of judges, including William Gass, novelist and Washington University professor of philosophy; Alan Schneider, director of the Juilliard School of Drama, and Howard Stein, associate dean of the Yale School of Drama. *Horay* emerged the winner. The play, produced with the assistance of a grant from the Columbia Broadcasting System Foundation, was directed by Sidney J. Friedman, associate professor of drama.

Horay is a slice of Americana, reminiscent of Thornton Wilder's *Our Town*. On one level, it is the saga of Horatio Y. (Ray) Grael, a high school football hero whose feats of glory culminate in winning the Heisman Trophy after an honor-studded collegiate career. The play, Kranes says, takes place “on all the stored and jumbled Saturday afternoons of our growing up—or trying to.” Pom-Pom waving cheerleaders and a rah-rah pep band recall memories we all share. But on another level, the action takes place in Ray's mind, as he juggles his own needs and the expectations of others. In a series of flashbacks and flashforwards, characters from Ray's past, present, and future appear on stage. Faced with time moving faster than his own life, Ray struggles with the high price of fame that comes too swiftly. Staging *Horay* was a challenge for Friedman. Edison Theatre had to be given a football stadium effect. The set, designed by Randle Farris, did just that. Then came staging the cheerleading sequences, football scenes and over fifty characters from Ray's life. Lighting design (by Frank Sarmiento), sound effects and music had to make the audience aware of the action occurring in Ray's mind. But it all jelled. Joe Pollack, *St. Louis Post-Dispatch* reviewer, wrote that "The all-student cast handled its chores in highly effective style."

Kranes has published a novel, poems, and short stories. His plays have been produced in this country and abroad. A University of Utah English professor, the playwright's latest work is slated for production in May at the Mark Taper Forum in Los Angeles, a major regional repertory theatre. A week on campus watching *Horay* take shape was a chance to learn. Back in Utah, Kranes is rewriting his play with an eye toward the future. Since a New York producer has already expressed interest in the play, maybe the last hurrah for *Horay* has yet to be heard.
HIP, HIP, HORAY!

Horay brought live football to Edison Theatre's stage for first time. *St. Louis Post-Dispatch* critic Joe Pollack called the game sequences outstanding.

Fame came too soon for Ray Grael, played by sophomore James Robertson. With Cheryl, the coach's daughter, played by senior Deborah Rich, he senses what his life might have been without football.
The locker room at half-time. The coach, John Murphy, delivers a pep talk but Ray, who has other interests than football, finds his mind wandering to scenes from his past.

For Director Sidney Friedman, *Horay* was "one of the most satisfying experiences I've had in the theatre. It was the most challenging script I've directed. Our students met the challenge."
Comment

TRIBUTE TO CHARLES ALLEN THOMAS

As this issue was about to go to press, plans were being made for the presentation of the 1977 William Greenleaf Eliot Award to Charles Allen Thomas, scientist, inventor, industrialist, civic leader, retired chairman of the board of the Monsanto Company, and one of the key figures in recent Washington University history.

The Eliot Society Award is given each year for outstanding service to the University. Election is by an anonymous committee of the Society. Since its inception in 1968, the Award has been made to Mrs. Arthur Holly Compton, Thomas H. Eliot, Thomas S. Hall, William N. Eisendrath, Jr., Edward A. O'Neal, Eugene M. Bricker, James S. McDonnell, Mr. and Mrs. Spencer T. Olin, and Morton D. May.

Charles Allen Thomas has been a member of the University's Board of Trustees since 1962 and served as chairman of the Board from 1966 until his resignation at the end of this school year. He became chairman of the Washington University Medical Center Board in 1976.

Dr. Thomas has given unstintingly of his time, his energy, and his wise counsel during one of the most crucial periods in the history of the University—a period that included the student unrest of the late sixties and the financial difficulties of the seventies. It was a period that saw the culmination of the effort begun by Chancellors Arthur Holly Compton and Ethan A. H. Shepley and continued by Chancellors Thomas H. Eliot and William H. Danforth, to transform a good but primarily local institution into a nationally recognized university of high academic quality.

In the major fund-raising campaigns that underwrote this transition to excellence, Dr. Thomas played a leading role. He was in the vanguard of the successful efforts to match the $15 million Ford Foundation grant and the $15 million and $60 million Danforth Foundation grants. He was one of the leaders of the Seventy by Seventy campaign, which reached its goal a year ahead of schedule, and he has been a tireless worker for sustained annual support.

Receiving awards is nothing new for Charley Thomas. For his work with the Manhattan Project during World War II, where he headed the team in charge of the final purification of plutonium, he received the Medal of Merit, the nation's highest civilian award. He has received the Perkin Medal, the highest award for achievement in industrial chemistry; the Priestly Medal, the highest honor given by the American Chemical Society, and the Palladium Medal, the highest honor of the French chemical industry.

He has been elected to the National Academy of Sciences. He has been awarded a dozen honorary degrees. He has been named Man of the Year by the St. Louis Globe-Democrat. He was one of five eminent scientists chosen by the government to draft a proposed master plan for the international control of atomic energy.

We are sure that everyone associated with Washington University will applaud the selection of Charles Allen Thomas for the 1977 Eliot Society Award.

Howard Nemerov, Washington University's Edward Mallinckrodt Distinguished University Professor of English, has been formally inducted into the Academy of Arts and Letters, an elite group of fifty American artists, writers, and composers whose works are thought likely to achieve a permanent place in American culture.

Joining Nemerov in the Academy this year is Tennessee Williams, whose connections with Washington University are the subject of Shepherd Mead's article in this issue of the Magazine.

After seventy-two years, the American Academy and the National Institute of Arts and Letters recently merged. Inducted into the 250-member Academy-Institute this spring was Charles Eames, former Washington University student and now an internationally famous designer-architect. Nemerov and Williams for some time have been members of the Institute, described as "the highest honor society of the arts in the country."

Also honored by the Academy-Institute this year was Harold Blumenfeld, composer and Washington University professor of music, who received a major award in recognition of his creative work in music.

In 1968, Howard Nemerov was the first writer to be named Visiting Hurst Professor at Washington University. After his year as a visiting professor, he joined the full-time faculty to become one of the brightest stars in the galaxy of noted writers on this campus. Nemerov is the author of nine books of verse, five books of fiction, and three volumes of literary criticism. He has won the Theodore Roethke Memorial Prize in Poetry and is a fellow of the Academy of American Poets.

Speaking of bright stars, alumna Mary Wickes, the distinguished comic actress, was back on campus this spring to teach a four-week course in comedy acting. It was a rare opportunity for students to work with an artist of Mary Wickes's stature, and a great time was had by all—including the teacher.

One of the first alumni cités and the recipient of an honorary degree in 1969, Miss Wickes was the Performing Arts Area's first artist-in-residence and was Mistress of Ceremonies at the dedication of Edison Theatre. She recently established the Mary Wickes Drama Prize for incoming performing arts freshmen.

Among her first great roles was her creation of the character Miss Preen, the harassed nurse in The Man Who Came to Dinner. She has had roles in eighteen Broadway shows, thirty-five movies, and numerous television shows, including her co-starring role in the recent series Doc. It would seem likely that she will return to campus next year—by popular demand.

—FO'B
"Dance for Those Who Can't" was the theme of a 24-hour dance marathon held at Francis Fieldhouse for the benefit of muscular dystrophy. Sponsored by Phi Xi sorority and Sigma Alpha Epsilon fraternity, the dance was open to anyone who could keep moving for twenty-four hours, and raised $4800 for a worthy cause.